1
|
Borkovskaia A, Bogacheva S, Konyukhova T, Dadakhanova E, Gaskova M, Soldatkina O, Dubrovina M, Popov A, Mikhailova E, Inushkina E, Kazanov M, Matveev E, Novichkova G, Maschan M, Maschan A, Olshanskaya Y, Zerkalenkova E. Molecular Heterogeneity of Pediatric AML with Atypical Promyelocytes Accumulation in Children—A Single Center Experience. Genes (Basel) 2023; 14:genes14030675. [PMID: 36980947 PMCID: PMC10048084 DOI: 10.3390/genes14030675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Acute promyelocytic leukemia (APL) pathogenesis is based on RARA gene translocations, which are of high importance in the diagnosis of and proper therapy selection for APL. However, in some cases acute myeloid leukemia (AML) demonstrates APL-like morphological features such as atypical promyelocytes accumulation. This type of AML is characterized by the involvement of other RAR family members or completely different genes. In the present study, we used conventional karyotyping, FISH and high-throughput sequencing in a group of 271 de novo AML with atypical promyelocytes accumulation. Of those, 255 cases were shown to carry a typical chromosomal translocation t(15;17)(q24;q21) with PML::RARA chimeric gene formation (94.1%). Other RARA-positive cases exhibited cryptic PML::RARA fusion without t(15;17)(q24;q21) (1.8%, n = 5) and variant t(5;17)(q35;q21) translocation with NPM1::RARA chimeric gene formation (1.5%, n = 4). However, 7 RARA-negative AMLs with atypical promyelocytes accumulation were also discovered. These cases exhibited TBL1XR1::RARB and KMT2A::SEPT6 fusions as well as mutations, e.g., NPM1 insertion and non-recurrent chromosomal aberrations. Our findings demonstrate the genetic diversity of AML with APL-like morphological features, which is of high importance for successful therapy implementation.
Collapse
Affiliation(s)
- Aleksandra Borkovskaia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Sofia Bogacheva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Tatiana Konyukhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Elina Dadakhanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Olga Soldatkina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Maria Dubrovina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Evgenia Inushkina
- Moscow Regional Oncology Hospital, Karbisheva Str. 6, 143900 Balashikha, Russia
| | - Marat Kazanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Bolshoy Karetny per. 19, bld. 1, 127051 Moscow, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Evgeniy Matveev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Bolshoy Karetny per. 19, bld. 1, 127051 Moscow, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
- Correspondence:
| |
Collapse
|
2
|
Torque teno mini virus as a cause of childhood acute promyelocytic leukemia lacking PML/RARA fusion. Blood 2021; 138:1773-1777. [PMID: 34432867 DOI: 10.1182/blood.2021011677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Astolf et al provide the first report of acute promyelocytic leukemia driven by viral insertion into the RARA locus. This represents a clear demonstration of a pathology driven by the member of the anelloviruses, a group of viruses otherwise thought to have minimal or no pathogenic potential.
Collapse
|
3
|
Binu P, Soman R, Zakhariah Hisham O, Narayanan SP, Nair RH. Acute promyelocytic leukemia drug - arsenic trioxide in the presence of eugenol shows differential action on leukemia cells (HL-60) and cardiomyocytes (H9c2) - inference from NMR study. Toxicol Mech Methods 2021; 31:457-466. [PMID: 33879037 DOI: 10.1080/15376516.2021.1913685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The increased concern of cardiovascular dysfunction by cancer therapeutics has led to more effective treatment strategies. Arsenic trioxide (As2O3) is a potential chemotherapeutic agent for acute promyelocytic leukemia (APL), but the effectiveness is affected by potential cardiotoxicity. Researchers have been trying to find out novel modalities to manage the adverse effects of As2O3. In our study, the antioxidant molecule eugenol showed protective action against the destructive impact of As2O3 on cardiomyocytes (H9c2) without compromising the anti-cancer property As2O3 on leukemia cells (HL-60). We have studied the interaction between arsenic and eugenol in physiological and acidic pH to understand the molecular mechanism of differential action of As2O3 in the presence of eugenol using NMR spectroscopy. The study observed that at physiological pH, arsenic and eugenol interact to form an inactive product, positively affecting H9c2 cardiomyocytes. Still, there is no such interaction in acidic pH evidenced by the useful anti-cancer property of As2O3. The result concludes that the antioxidant molecule eugenol is an efficient protective agent against the adverse effect of As2O3 on cardiomyocytes.
Collapse
Affiliation(s)
- Prakash Binu
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Reshma Soman
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Omar Zakhariah Hisham
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | | |
Collapse
|
4
|
Sun J, Zhu J, Zhou D, Zhu L, Yang X, Xie M, Li L, Huang X, Zhu M, Zheng Y, Xie W, Ye X. Factors Affecting Early Death and Survival of Patients With Acute Promyelocytic Leukemia Treated With ATRA-Based Therapy Regimens. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 19:e63-e70. [PMID: 30661514 DOI: 10.1016/j.clml.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE To perform a retrospective analysis of the prognostic relevance of clinicopathologic parameters in a well-documented cohort of patients treated with all-trans-retinoic acid (ATRA)-based induction regimens in order to discover which indicators can predict a high risk of early death (ED) and patient survival. PATIENTS AND METHODS We analyzed data of 288 newly diagnosed adult acute promyelocytic leukemia patients in Hangzhou, China. The median follow-up time was 32 months (range, 6-78 months). RESULTS The 3-year disease-free and overall survival rates were 90.83% and 91.69%, respectively. In the multivariable analysis, older age (≥ 60 years) was the only independent risk factor for ED (hazard ratio [HR] = 15.057; P = .004). High white blood cell count was not a risk factor for ED (P = .055), but it was for relapse (HR = 2.7; P = .009). FLT3 mutation (HR = 3.9; 95% confidence interval, 1.4 to 10; P = .007) and older age (≥ 60 years) (HR = 5.3; 95% confidence interval, 2.4 to 11; P < .001) were prognostic factors for poorer disease-free and overall survival. Interestingly, CD15 negativity (HR = 0.23; P = .049) was a prognostic factor for relapse. The ED rate was 5.9% (17/288 patients). CONCLUSION The perceived impact of the identification of these high-risk factors should be described in order to decide whether any modifications to treatment strategy should be entertained.
Collapse
Affiliation(s)
- Jianai Sun
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jingjing Zhu
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - De Zhou
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lixia Zhu
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiudi Yang
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mixue Xie
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Li Li
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xianbo Huang
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mingyu Zhu
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanlong Zheng
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wanzhuo Xie
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiujin Ye
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Krumbholz M, Woessmann W, Zierk J, Seniuk D, Ceppi P, Zimmermann M, Singh VK, Metzler M, Damm-Welk C. Characterization and diagnostic application of genomic NPM-ALK fusion sequences in anaplastic large-cell lymphoma. Oncotarget 2018; 9:26543-26555. [PMID: 29899875 PMCID: PMC5995187 DOI: 10.18632/oncotarget.25489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion genes resulting from the translocation t(2;5)(p23;q35) are present in almost 90% of childhood ALK-positive anaplastic large-cell lymphomas (ALCL). Detection and quantification of minimal disseminated disease (MDD) by measuring NPM-ALK fusion transcript levels in the blood provide independent prognostic parameters. Characterization of the genomic breakpoints provides insights into the pathogenesis of the translocation and allows for DNA-based minimal disease monitoring. We designed a nested multiplex PCR assay for identification and characterization of genomic NPM-ALK fusion sequences in 45 pediatric ALCL-patients, and used the sequences for quantitative MDD monitoring. Breakpoint analysis indicates the involvement of inaccurate non-homologous end joining repair mechanisms in the formation of NPM-ALK fusions. Parallel quantification of RNA and DNA levels in the cellular fraction of 45 blood samples from eight patients with NPM-ALK-positive ALCL correlated, as did cell-free circulating NPM-ALK DNA copies in the plasma fraction of 37 blood samples. With genomic NPM-ALK fusion sequence quantification, plasma samples of ALCL patients become an additional source for MRD-assessment. Parallel quantification of NPM-ALK transcripts and fusion genes in ALCL cell lines treated with the ALK kinase inhibitor crizotinib illustrates the potential value of supplementary DNA-based quantification in particular clinical settings.
Collapse
Affiliation(s)
- Manuela Krumbholz
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - Wilhelm Woessmann
- Justus-Liebig University, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Jakob Zierk
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - David Seniuk
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - Paolo Ceppi
- Junior Research Group 1, Interdisciplinary Centre for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Vijay Kumar Singh
- Justus-Liebig University, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Markus Metzler
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - Christine Damm-Welk
- Justus-Liebig University, Department of Pediatric Hematology and Oncology, Giessen, Germany
| |
Collapse
|
6
|
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475:373-398. [PMID: 29363591 PMCID: PMC6110615 DOI: 10.1042/bcj20160583] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
Collapse
Affiliation(s)
- Justine L Delgado
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, U.S.A
| | - Chao-Ming Hsieh
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, U.S.A.
| |
Collapse
|
7
|
Molecular Heterogeneity in Acute Promyelocytic Leukemia - a Single Center Experience from India. Mediterr J Hematol Infect Dis 2018; 10:e2018002. [PMID: 29326799 PMCID: PMC5760075 DOI: 10.4084/mjhid.2018.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
Atypical breakpoints and variant APL cases involving alternative chromosomal aberrations are seen in a small subset of acute promyelocytic leukemia (APL) patients. Over seven different partner genes for RARA have been described. Although rare, these variants prove to be a diagnostic challenge and require a combination of advanced cytogenetic and molecular techniques for accurate characterization. Heterogeneity occurs not only at the molecular level but also at clinico-pathological level influencing treatment response and outcome. In this case series, we describe the molecular heterogeneity of APL with a focus on seven variant APL cases from a single tertiary cancer center in India over a period of two and a half years. We discuss five cases with ZBTB16-RARA fusion and two novel PML-RARA variants, including a Bcr3 variant involving fusion of PML exon4 and RARA exon3 with an additional 40 nucleotides originating from RARA intron2, another involving exon 6 of PML and exon 3 of RARA with addition of 126 nucleotides, which mapped to the central portion of RARA intron 2. To the best of our knowledge, this is the first case series of this kind from India.
Collapse
|
8
|
Brunet E, Jasin M. Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding the Repair Mechanisms That Give Rise to Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:15-25. [PMID: 29956288 DOI: 10.1007/978-981-13-0593-1_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chromosomal translocations are associated with several tumor types, including hematopoietic malignancies, sarcomas, and solid tumors of epithelial origin, due to their activation of a proto-oncogene or generation of a novel fusion protein with oncogenic potential. In many cases, the availability of suitable human models has been lacking because of the difficulty in recapitulating precise expression of the fusion protein or other reasons. Further, understanding how translocations form mechanistically has been a goal, as it may suggest ways to prevent their occurrence. Chromosomal translocations arise when DNA ends from double-strand breaks (DSBs) on two heterologous chromosomes are improperly joined. This review provides a summary of DSB repair mechanisms and their contribution to translocation formation, the various programmable nuclease platforms that have been used to generate translocations, and the successes that have been achieved in this area.
Collapse
Affiliation(s)
- Erika Brunet
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Hassan IB, Zaabi MRA, Alam A, Hashim MJ, Tallman MS, Kristensen J. Characteristics features and factors influencing early death in Acute promyelocytic leukemia; Experience from United Arab Emirates (UAE). Int J Hematol 2017; 106:90-98. [DOI: 10.1007/s12185-017-2211-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
|
10
|
Evison BJ, Sleebs BE, Watson KG, Phillips DR, Cutts SM. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med Res Rev 2015; 36:248-99. [PMID: 26286294 DOI: 10.1002/med.21364] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
Abstract
Mitoxantrone is a synthetic anthracenedione originally developed to improve the therapeutic profile of the anthracyclines and is commonly applied in the treatment of breast and prostate cancers, lymphomas, and leukemias. A comprehensive overview of the drug's molecular, biochemical, and cellular pharmacology is presented here, beginning with the cardiotoxic nature of its predecessor doxorubicin and how these properties shaped the pharmacology of mitoxantrone itself. Although mitoxantrone is firmly established as a DNA topoisomerase II poison within mammalian cells, it is now clear that the drug interacts with a much broader range of biological macromolecules both covalently and noncovalently. Here, we consider each of these interactions in the context of their wider biological relevance to cancer therapy and highlight how they may be exploited to further enhance the therapeutic value of mitoxantrone. In doing so, it is now clear that mitoxantrone is more than just another topoisomerase II poison.
Collapse
Affiliation(s)
- Benny J Evison
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Keith G Watson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Don R Phillips
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Suzanne M Cutts
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|
11
|
Hu Y, Duan Q, Chen Y, Yao L, Chen Z, Li K, Sun W. A Novel Multiplex RT-PCR Assay for the Detection of Four Chromosomal Translocations of Leukemia. Genet Test Mol Biomarkers 2014; 18:810-9. [PMID: 25387311 DOI: 10.1089/gtmb.2014.0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yingxi Hu
- 1 Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University , Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Silva IT, Rosales RA, Holanda AJ, Nussenzweig MC, Jankovic M. Identification of chromosomal translocation hotspots via scan statistics. ACTA ACUST UNITED AC 2014; 30:2551-8. [PMID: 24860160 DOI: 10.1093/bioinformatics/btu351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MOTIVATION The detection of genomic regions unusually rich in a given pattern is an important undertaking in the analysis of next-generation sequencing data. Recent studies of chromosomal translocations in activated B lymphocytes have identified regions that are frequently translocated to c-myc oncogene. A quantitative method for the identification of translocation hotspots was crucial to this study. Here we improve this analysis by using a simple probabilistic model and the framework provided by scan statistics to define the number and location of translocation breakpoint hotspots. A key feature of our method is that it provides a global chromosome-wide nominal control level to clustering, as opposed to previous methods based on local criteria. While being motivated by a specific application, the detection of unusual clusters is a widespread problem in bioinformatics. We expect our method to be useful in the analysis of data from other experimental approaches such as of ChIP-seq and 4C-seq. RESULTS The analysis of translocations from B lymphocytes with the method described here reveals the presence of longer hotspots when compared with those defined previously. Further, we show that the hotspot size changes substantially in the absence of DNA repair protein 53BP1. When 53BP1 deficiency is combined with overexpression of activation-induced cytidine deaminase, the hotspot length increases even further. These changes are not detected by previous methods that use local significance criteria for clustering. Our method is also able to identify several exclusive translocation hotspots located in genes of known tumor supressors. AVAILABILITY AND IMPLEMENTATION The detection of translocation hotspots is done with hot_scan, a program implemented in R and Perl. Source code and documentation are freely available for download at https://github.com/itojal/hot_scan.
Collapse
Affiliation(s)
- Israel T Silva
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Rafael A Rosales
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Adriano J Holanda
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| |
Collapse
|
13
|
Fan H, Ortega V, Fanasch HM, Wang Y, Holder KN, Higgins RA, Mendiola C, Mohamed G, Vadlamudi K, Velagaleti G. PML-RARA fusion resulting from a cryptic insertion ofRARAgene intoPMLgene without the reciprocal RARA-PML fusion: clinical, cytogenetic, and molecular characterization and prognosis. Eur J Haematol 2014; 93:354-8. [DOI: 10.1111/ejh.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Hongxin Fan
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Veronica Ortega
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Hilal M. Fanasch
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Yao Wang
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Kenneth N. Holder
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Russell A. Higgins
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Christina Mendiola
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Gihan Mohamed
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Kumari Vadlamudi
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Gopalrao Velagaleti
- Department of Pathology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| |
Collapse
|
14
|
|
15
|
De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol 2014; 7:347-57. [PMID: 24720386 DOI: 10.1586/17474086.2014.903794] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The t(15;17)(q24;q21), generating a PML-RARA fusion gene, is the hallmark of acute promyelocytic leukemia (APL). At present, eight other genes fusing with RARA have been identified. The resulting fusion proteins retain domains of the RARA protein allowing binding to retinoic acid response elements (RARE) and dimerization with the retinoid X receptor protein (RXRA). They participate in protein-protein interactions, associating with RXRA to form hetero-oligomeric complexes that can bind to RARE. They have a dominant-negative effect on wild-type RARA/RXRA transcriptional activity. Moreover, RARA fusion proteins can homodimerize, conferring the ability to regulate an expanded repertoire of genes normally not affected by RARA. RARA fusion proteins behave as potent transcriptional repressors of retinoic acid signalling, inducing a differentiation blockage at the promyelocyte stage which can be overcome with therapeutic doses of ATRA or arsenic trioxide. However, resistance to these two drugs is a major problem, which necessitates development of new therapies.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | | | | |
Collapse
|
16
|
Pendleton M, Lindsey RH, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci 2014; 1310:98-110. [PMID: 24495080 DOI: 10.1111/nyas.12358] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use also is associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II-active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential.
Collapse
Affiliation(s)
- Maryjean Pendleton
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
17
|
Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients. Leukemia 2013; 27:2105-7. [PMID: 23588714 DOI: 10.1038/leu.2013.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O'Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, Hundal J, Cook LL, Swift GW, Reed JP, Alldredge PA, Wylie TN, Walker JR, Watson MA, Heath SE, Shannon WD, Varghese N, Nagarajan R, Payton JE, Baty JD, Kulkarni S, Klco JM, Tomasson MH, Westervelt P, Walter MJ, Graubert TA, DiPersio JF, Ding L, Mardis ER, Wilson RK. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150:264-78. [PMID: 22817890 DOI: 10.1016/j.cell.2012.06.023] [Citation(s) in RCA: 1248] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/27/2012] [Accepted: 06/24/2012] [Indexed: 10/28/2022]
Abstract
Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.
Collapse
Affiliation(s)
- John S Welch
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Acute promyelocytic leukemia: an experience on 95 greek patients treated in the all-trans-retinoic Acid era. Mediterr J Hematol Infect Dis 2011; 3:e2011053. [PMID: 22220250 PMCID: PMC3248330 DOI: 10.4084/mjhid.2011.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 10/04/2011] [Indexed: 11/08/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is highly curable with the combination of all-transretinoic acid (ATRA) and anthracycline based chemotherapy, but the percentage of early deaths remains high. In the present study, we report the clinical, immunophenotypic, cytogenetic and molecular characteristics and outcome of APL patients diagnosed and treated in various Hospitals of Greece and Cyprus.We describe the data of ninety-five APL patients who were diagnosed during the last 15 years. Seven (7.4%) newly diagnosed APL patients died due to intracranial hemorrhage within 72 hours of presentation. All but two patients were induced with ATRA alone or ATRA plus chemotherapy. The early death rate was 14.9%. After induction all 80 evaluable patients achieved complete hematologic remission. The cumulative incidence of relapse was 18.3%. Eight of the ten relapsed patients were successfully salvaged, while both patients with molecularly resistant disease died during salvage treatment. Overall survival (OS) at 5 years was 78.4% and disease free survival (DFS) 73.6%. In multivariate analysis of OS age over 60 years, DIC at diagnosis and marginally major hemorrhage at presentation were identified as adverse prognostic factors. In the subgroup of patients with available data on FLT3 mutation status (49 out of 94), ITD positivity also remained as an independent prognostic factor in the final model of OS, together with major hemorrhage and marginally high Sanz score. We found a close correlation between the CD2 expression and the development of the differentiation syndrome (DS). In conclusion, the main problem in managing patients with APL is still the high early death rate.
Collapse
|
20
|
Qi X, Tan Y, Chen X, Bian S, Zhang L, Xu A, Xu Z, Wang H. The PML gene of the PML-RARα V-form fusion transcript breaks within exon 6. Acta Haematol 2011; 126:216-9. [PMID: 21934296 DOI: 10.1159/000329898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/31/2011] [Indexed: 11/19/2022]
MESH Headings
- Alternative Splicing
- Base Sequence
- Bone Marrow Cells/metabolism
- China
- DNA/chemistry
- DNA/metabolism
- Exons
- Genetic Variation
- Humans
- Introns
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Suppressor Proteins/chemistry
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Xiling Qi
- Department of Hematology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, Wallis J, Chen K, Payton JE, Fulton RS, Veizer J, Schmidt H, Vickery TL, Heath S, Watson MA, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Ley TJ, Wilson RK. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 2011; 305:1577-84. [PMID: 21505136 PMCID: PMC3156695 DOI: 10.1001/jama.2011.497] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Whole-genome sequencing is becoming increasingly available for research purposes, but it has not yet been routinely used for clinical diagnosis. OBJECTIVE To determine whether whole-genome sequencing can identify cryptic, actionable mutations in a clinically relevant time frame. DESIGN, SETTING, AND PATIENT We were referred a difficult diagnostic case of acute promyelocytic leukemia with no pathogenic X-RARA fusion identified by routine metaphase cytogenetics or interphase fluorescence in situ hybridization (FISH). The case patient was enrolled in an institutional review board-approved protocol, with consent specifically tailored to the implications of whole-genome sequencing. The protocol uses a "movable firewall" that maintains patient anonymity within the entire research team but allows the research team to communicate medically relevant information to the treating physician. MAIN OUTCOME MEASURES Clinical relevance of whole-genome sequencing and time to communicate validated results to the treating physician. RESULTS Massively parallel paired-end sequencing allowed identification of a cytogenetically cryptic event: a 77-kilobase segment from chromosome 15 was inserted en bloc into the second intron of the RARA gene on chromosome 17, resulting in a classic bcr3 PML-RARA fusion gene. Reverse transcription polymerase chain reaction sequencing subsequently validated the expression of the fusion transcript. Novel FISH probes identified 2 additional cases of t(15;17)-negative acute promyelocytic leukemia that had cytogenetically invisible insertions. Whole-genome sequencing and validation were completed in 7 weeks and changed the treatment plan for the patient. CONCLUSION Whole-genome sequencing can identify cytogenetically invisible oncogenes in a clinically relevant time frame.
Collapse
MESH Headings
- Adult
- Chromosome Breakpoints
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Gene Fusion
- Genome, Human
- Humans
- Introns
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/therapy
- Male
- Nuclear Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- John S. Welch
- Department of Medicine, Washington University, St. Louis, MO
| | | | - Li Ding
- The Genome Institute, Washington University, St. Louis, MO
| | | | - Jeffery M. Klco
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Shashikant Kulkarni
- Department of Pathology and Immunology, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
- Department of Pediatrics, Washington University, St. Louis, MO
| | - John Wallis
- The Genome Institute, Washington University, St. Louis, MO
| | - Ken Chen
- The Genome Institute, Washington University, St. Louis, MO
| | | | | | - Joelle Veizer
- The Genome Institute, Washington University, St. Louis, MO
| | | | | | - Sharon Heath
- Department of Medicine, Washington University, St. Louis, MO
| | - Mark A. Watson
- The Genome Institute, Washington University, St. Louis, MO
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | | | - Daniel C. Link
- Department of Medicine, Washington University, St. Louis, MO
| | | | | | - Elaine R. Mardis
- The Genome Institute, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
| | - Timothy J. Ley
- Department of Medicine, Washington University, St. Louis, MO
- The Genome Institute, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
| | - Richard K. Wilson
- The Genome Institute, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
| |
Collapse
|
22
|
Pepper C, Baird DM. Shortened telomeres: a driving force behind leukemia? Future Oncol 2011; 6:1681-6. [PMID: 21142655 DOI: 10.2217/fon.10.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
23
|
Liu L, Yang L, Mi Y, Wang J, Li J, Zhang Y, Ma X, Qin T, Xu Z, Xiao Z. RAD51 and XRCC3 polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)/CBFβ-MYH11(+) acute myeloid leukemia. Leuk Res 2011; 35:1020-6. [PMID: 21296419 DOI: 10.1016/j.leukres.2011.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
DNA double-strand break repair via homologous recombination (HR) is essential in maintaining genetic integrity, and may modulate susceptibility to the development of acute myeloid leukemia (AML) and influence outcomes of AML. This study was designed to evaluate the effects of polymorphisms in HR repair genes RAD51 and XRCC3 on the risk and treatment outcomes of inv(16)/t(16;16)/CBFβ-MYH11(+) AML. The distribution of polymorphisms in RAD51-G135C and XRCC3-Thr241Met were studied by PCR-RFLP analysis in 625 cases of de novo AML, including 105 cases with inv(16)/t(16;16)/CBFβ-MYH11, 806 family controls and 704 volunteer controls. It was found that the XRCC3-241Met variant significantly increased the risk of the development of the AML with inv(16)/t(16;16) as compared with both the volunteer control (OR=7.22; 95% CI, 4.37-11.91) and the family control (OR=7.99; 95% CI, 5.03-12.69). A retrospective study conducted in 103 inv(16)/t(16;16) AML patients. In multivariate analysis for the potential prognostic factors, the XRCC3-241Met variant significantly reduced disease-free survival (DFS) in complete remission (CR) achieved patients (HR=2.34, 95% CI, 1.32-4.16). These data indicate that the XRCC3-241Met variant may not be only a susceptibility factor to the AML with inv(16)/t(16;16), but also an independent poor-prognostic factor for this AML subtype.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Giguère A, Hébert J. Microhomologies and topoisomerase II consensus sequences identified near the breakpoint junctions of the recurrent t(7;21)(p22;q22) translocation in acute myeloid leukemia. Genes Chromosomes Cancer 2011; 50:228-38. [PMID: 21319259 DOI: 10.1002/gcc.20848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/30/2010] [Indexed: 12/14/2022] Open
Abstract
RUNX1 rearrangements are common genetic abnormalities in acute leukemia. The t(7;21)(p22;q22) translocation, recently described in three cases of myeloid neoplasias, fuses the ubiquitin specific peptidase 42 gene, USP42, a member of the deubiquitinating enzyme family, to RUNX1. In this study, we characterized the semicryptic t(7;21)(p22;q22) translocation, identified by fluorescent in situ hybridization and spectral karyotyping, in a novel case of acute myeloid leukemia. Sequence analysis of the reverse transcription-polymerase chain reaction products confirmed the presence of two in-frame RUNX1-USP42 and one reciprocal in-frame USP42-RUNX1 fusion transcripts. Bioinformatic analysis of the genomic translocation breakpoints revealed microhomologies and insertion of shared nucleotides at the junctions. A topoisomerase II sequence was also detected near the break site. Additionally, we demonstrated a significant overexpression of the rearranged USP42 gene in t(7;21) positive cells using quantitative real-time PCR. Our results provide the first evidence of the possible involvement of the nonhomologous end-joining mechanism in the origin of the recurrent t(7;21) translocation. Moreover, presence of the complete catalytic USP site in the putative chimeric proteins and the upregulated expression of USP42 suggest a role of the deubiquitinating enzyme in the pathogenesis of this leukemia.
Collapse
Affiliation(s)
- Amélie Giguère
- Quebec Leukemia Cell Bank and Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada, H1T 2M4; Department of Medicine, University of Montreal, Quebec, Canada, H3C 3J7
| | | |
Collapse
|
25
|
Rara haploinsufficiency modestly influences the phenotype of acute promyelocytic leukemia in mice. Blood 2010; 117:2460-8. [PMID: 21190992 DOI: 10.1182/blood-2010-08-300087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RARA (retinoic acid receptor alpha) haploinsufficiency is an invariable consequence of t(15;17)(q22;q21) translocations in acute promyelocytic leukemia (APL). Retinoids and RARA activity have been implicated in hematopoietic self-renewal and neutrophil maturation. We and others therefore predicted that RARA haploinsufficiency would contribute to APL pathogenesis. To test this hypothesis, we crossed Rara(+/-) mice with mice expressing PML (promyelocytic leukemia)-RARA from the cathepsin G locus (mCG-PR). We found that Rara haploinsufficiency cooperated with PML-RARA, but only modestly influenced the preleukemic and leukemic phenotype. Bone marrow from mCG-PR(+/-) × Rara(+/-) mice had decreased numbers of mature myeloid cells, increased ex vivo myeloid cell proliferation, and increased competitive advantage after transplantation. Rara haploinsufficiency did not alter mCG-PR-dependent leukemic latency or penetrance, but did influence the distribution of leukemic cells; leukemia in mCG-PR(+/-) × Rara(+/-) mice presented more commonly with low to normal white blood cell counts and with myeloid infiltration of lymph nodes. APL cells from these mice were responsive to all-trans retinoic acid and had virtually no differences in expression profiling compared with tumors arising in mCG-PR(+/-) × Rara(+/+) mice. These data show that Rara haploinsufficiency (like Pml haploinsufficiency and RARA-PML) can cooperate with PML-RARA to influence the pathogenesis of APL in mice, but that PML-RARA is the t(15;17) disease-initiating mutation.
Collapse
|
26
|
Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simões MA, Kreil S, Ward D, Hidalgo-Curtis C, Melo JV, Wiemels J, Nadel B, Cross NCP, Grand FH. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia 2010; 24:1742-50. [PMID: 20703256 DOI: 10.1038/leu.2010.174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/16/2010] [Accepted: 06/29/2010] [Indexed: 12/20/2022]
Abstract
We sought to understand the genesis of the t(9;22) by characterizing genomic breakpoints in chronic myeloid leukemia (CML) and BCR-ABL-positive acute lymphoblastic leukemia (ALL). BCR-ABL breakpoints were identified in p190 ALL (n=25), p210 ALL (n=25) and p210 CML (n=32); reciprocal breakpoints were identified in 54 cases. No evidence for significant clustering and no association with sequence motifs was found except for a breakpoint deficit in repeat regions within BCR for p210 cases. Comparison of reciprocal breakpoints, however, showed differences in the patterns of deletion/insertions between p190 and p210. To explore the possibility that recombinase-activating gene (RAG) activity might be involved in ALL, we performed extra-chromosomal recombination assays for cases with breakpoints close to potential cryptic recombination signal sequence (cRSS) sites. Of 13 ALL cases tested, 1/10 with p190 and 1/3 with p210 precisely recapitulated the forward BCR-ABL breakpoint and 1/10 with p190 precisely recapitulated the reciprocal breakpoint. In contrast, neither of the p210 CMLs tested showed functional cRSSs. Thus, although the t(9;22) does not arise from aberrant variable (V), joining (J) and diversity (D) (V(D)J) recombination, our data suggest that in a subset of ALL cases RAG might create one of the initiating double-strand breaks.
Collapse
MESH Headings
- Base Sequence
- Chromosome Breakpoints
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 9/genetics
- Fusion Proteins, bcr-abl/genetics
- Genome, Human/genetics
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Sequence Data
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- J Score
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hasan SK, Ottone T, Schlenk RF, Xiao Y, Wiemels JL, Mitra ME, Bernasconi P, Di Raimondo F, Stanghellini MTL, Marco P, Mays AN, Döhner H, Sanz MA, Amadori S, Grimwade D, Lo-Coco F. Analysis of t(15;17) chromosomal breakpoint sequences in therapy-related versus de novo acute promyelocytic leukemia: association of DNA breaks with specific DNA motifs at PML and RARA loci. Genes Chromosomes Cancer 2010; 49:726-32. [PMID: 20544846 DOI: 10.1002/gcc.20783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We compared genomic breakpoints at the PML and RARA loci in 23 patients with therapy-related acute promyelocytic leukemia (t-APL) and 25 de novo APL cases.Eighteen of 23 t-APL cases received the topoisomerase II poison mitoxantrone for their primary disorder. DNA breaks were clustered in a previously reported 8 bp "hot spot" region of PML corresponding to a preferred site of mitoxantrone-induced DNA topoisomerase II-mediated cleavage in 39% of t-APL occurring in patients exposed to this agent and in none of the cases arising de novo (P = 0.007). As to RARA breakpoints, clustering in a 3' region of intron 2 (region B) was found in 65% of t-APL and 28% of de novo APL patients, respectively. Scan statistics revealed significant clustering of RARA breakpoints in region B in t-APL cases (P = 0.001) as compared to de novo APL (P = 1). Furthermore, approximately 300 bp downstream of RARA region B contained a sequence highly homologous to a topoisomerase II consensus sequence. Biased distribution of DNA breakpoints at both PML and RARA loci suggest the existence of different pathogenetic mechanisms in t-APL as compared with de novo APL.
Collapse
Affiliation(s)
- Syed Khizer Hasan
- Department of Biopathology, University of 'Rome Tor Vergata', Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Walz C, Grimwade D, Saussele S, Lengfelder E, Haferlach C, Schnittger S, Lafage-Pochitaloff M, Hochhaus A, Cross NCP, Reiter A. Atypical mRNA fusions in PML-RARA positive, RARA-PML negative acute promyelocytic leukemia. Genes Chromosomes Cancer 2010; 49:471-9. [PMID: 20155840 DOI: 10.1002/gcc.20757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reciprocal RARA-PML transcripts are not detected in approximately 25% of patients with PML-RARA positive acute promyelocytic leukemia (APL), but the reasons for this are poorly understood. We studied 21 PML-RARA positive/RARA-PML negative cases by bubble PCR and multiplex long template PCR to identify the genomic breakpoints. Additional RT-PCR analysis was performed based on the DNA findings. Three cases were found to have complex rearrangements involving a third locus: the first had a PML-CDC6-RARA forward DNA fusion and expressed a chimeric PML-CDC6-RARA mRNA in addition to a PML-RARA. The other two had HERC1-PML and NT_009714.17-PML genomic fusion sequences at their respective reciprocal breakpoints. Six patients were falsely classified as RARA-PML negative due to deletions on chromosome 15 and/or 17, or alternative splicing leading to atypical RARA-PML fusion transcripts, which were not identified by conventional RT-PCR assays. This study demonstrates that the frequency of RARA-PML expression has been underestimated and highlights remarkable complexity at chromosomal breakpoint regions in APL even in cases with an apparently simple balanced t(15;17)(q24;q12).
Collapse
Affiliation(s)
- Christoph Walz
- Pathologisches Institut, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood 2009; 115:326-30. [PMID: 19884644 DOI: 10.1182/blood-2009-07-235051] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Therapy-related acute promyelocytic leukemia (t-APL) with t(15;17)(q22;q21) involving the PML and RARA genes is associated with exposure to agents targeting topoisomerase II (topoII), particularly mitoxantrone and epirubicin. We previously have shown that mitoxantrone preferentially induces topoII-mediated DNA damage in a "hotspot region" within PML intron 6. To investigate mechanisms underlying epirubicin-associated t-APL, t(15;17) genomic breakpoints were characterized in 6 cases with prior breast cancer. Significant breakpoint clustering was observed in PML and RARA loci (P = .009 and P = .017, respectively), with PML breakpoints lying outside the mitoxantrone-associated hotspot region. Recurrent breakpoints identified in the PML and RARA loci in epirubicin-related t-APL were shown to be preferential sites of topoII-induced DNA damage, enhanced by epirubicin. Although site preferences for DNA damage differed between mitoxantrone and epirubicin, the observation that particular regions of the PML and RARA loci are susceptible to these agents may underlie their respective propensities to induce t-APL.
Collapse
|
30
|
Abstract
Until recently, the etiology of childhood acute lymphoblastic leukemia (ALL) has remained relatively elusive. Several studies have established a time frame for the development of ALL which could lead to the identification of specific exposures linked to leukemogenesis from the generation of the initial leukemic clone until clinical diagnosis. Utilizing newborn screening ('Guthrie') cards, leukemic clones have been detected retrospectively in dried blood spots using two different PCR-based approaches: (i) the amplification of patient/leukemia-specific breakpoint fusion sequences of rearranged oncogenes; and (ii) the amplification of clonal immunoglobulin heavy chain gene (IgH) or T cell receptor (TcR) gene rearrangements. These studies support the hypothesis that a large proportion of childhood ALL cases arise in utero. In several studies, a long latency period from the generation in utero of the initial ALL clone to clinical diagnosis, indicates that additional genetic events are required for the full development of the leukemia phenotype, potentially from postnatal exposures (e.g. infections). The identification of leukemia-associated translocations in umbilical cord blood samples of healthy newborns, suggest that in the future children may be identified prospectively who have an increased risk of developing leukemia.
Collapse
Affiliation(s)
- Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit 48201, USA.
| | | |
Collapse
|
31
|
Poleck-Dehlin B, Duell T, Bartl R, Lohse P, Rhein A, Diebold J, Kohl P, Mittermueller J, Schmetzer H. Genetic Analyses Permit the Differentiation Between Reactive Malfunctions (‘Promyelocyte Arrest’) and Arising Promyelocyte Leukemia in a Pregnant Patient With a History of a Medulloblastoma. Leuk Lymphoma 2009; 45:1905-11. [PMID: 15223653 DOI: 10.1080/10428190410001697377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the case of a 24-year-old woman with a history of radiotherapy for a cerebellar medulloblastoma 2 years prior to detection of a lymph node metastasis of the former disease and a pancytopenia in the peripheral blood. On bone marrow (BM) examination promyelocyte leukemia vs. a reactive 'promyelocyte arrest' were discussed. The translocation t(15;17) was found in some nuclei and there was a PML-RARalpha gene rearrangement detectable by RT-PCR. Furthermore, there was BM infiltration by the primary cancer. All these results led to the diagnosis of a relapse of the medulloblastoma and of a beginning promyelocyte leukemia. As the patient was pregnant, she had to be parted with the baby to facilitate intensive chemotherapy. She did not respond to a therapeutic regimen specific for promyelocytic leukemia but achieved complete remission of the medulloblastoma as well as the leukemia after the administration of polychemotherapy specific for medulloblastoma. One year later, she suffered from a relapse of her leukemia. Now nearly all cells showed a t(15;17) aberration. Immunophenotype analyses showed a shift to a more undifferentiated blast phenotype that was, however, still HLA-DR negative. The patient again received chemotherapy for leukemia but developed a sepsis 3 months later and died of pancytopenia ensuing her leukemia. There was no clinical evidence for recurrence of the medulloblastoma.
Collapse
|
32
|
Cluster analysis of genomic ETV6–RUNX1 (TEL–AML1) fusion sites in childhood acute lymphoblastic leukemia. Leuk Res 2009; 33:1082-8. [DOI: 10.1016/j.leukres.2008.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/18/2008] [Accepted: 11/02/2008] [Indexed: 11/22/2022]
|
33
|
Wang HY, Ding J, Vasef MA, Wilson KS. A bcr3/short form PML-RARalpha transcript in an acute promyelocytic leukemia resulted from a derivative chromosome 17 due to submicroscopic insertion of the PML gene into the RARalpha locus. Am J Clin Pathol 2009; 131:64-71. [PMID: 19095567 DOI: 10.1309/ajcpe0l7cijzbifr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia. Submicroscopic insertion of RARalpha into PML, resulting in PML-RARalpha from derivative chromosome 15, has been rarely reported. Herein, we describe a functional PML-RARalpha transcript from the long arm of derivative chromosome 17 in a patient with microgranular APL. The conventional karyotype showed normal chromosomes 15 and 17. It is interesting that interphase and metaphase fluorescence in situ hybridizations demonstrated a fusion signal on the long arm of one chromosome 17 homolog, with both PML and RARalpha still present on chromosomes 15 and 17, respectively, although the signal on one chromosome 15 was weaker, indicating partial loss of the PML gene. Reverse transcriptase-polymerase chain reaction revealed a transcript corresponding to a break cluster region 3 (bcr3) short form PML-RARalpha. To the best of our knowledge, this is the first report of an APL with a bcr3/short form PML-RARalpha transcript generated from derivative chromosome 17 due to submicroscopic insertion of the PML gene into the RARalpha locus.
Collapse
Affiliation(s)
- Huan-You Wang
- Departments of Pathology, University of Texas Southwestern Medical Center at Dallas
| | - Jiantao Ding
- Internal Medicine, University of Texas Southwestern Medical Center at Dallas
| | | | - Kathleen S. Wilson
- Departments of Pathology, University of Texas Southwestern Medical Center at Dallas
| |
Collapse
|
34
|
|
35
|
Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood 2008; 112:3383-90. [PMID: 18650449 DOI: 10.1182/blood-2007-10-115600] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Therapy-related acute promyelocytic leukemia (t-APL) with t(15;17) translocation is a well-recognized complication of cancer treatment with agents targeting topoisomerase II. However, cases are emerging after mitoxantrone therapy for multiple sclerosis (MS). Analysis of 12 cases of mitoxantrone-related t-APL in MS patients revealed an altered distribution of chromosome 15 breakpoints versus de novo APL, biased toward disruption within PML intron 6 (11 of 12, 92% vs 622 of 1022, 61%: P = .035). Despite this intron spanning approximately 1 kb, breakpoints in 5 mitoxantrone-treated patients fell within an 8-bp region (1482-9) corresponding to the "hotspot" previously reported in t-APL, complicating mitoxantrone-containing breast cancer therapy. Another shared breakpoint was identified within the approximately 17-kb RARA intron 2 involving 2 t-APL cases arising after mitoxantrone treatment for MS and breast cancer, respectively. Analysis of PML and RARA genomic breakpoints in functional assays in 4 cases, including the shared RARA intron 2 breakpoint at 14 446-49, confirmed each to be preferential sites of topoisomerase IIalpha-mediated DNA cleavage in the presence of mitoxantrone. This study further supports the presence of preferential sites of DNA damage induced by mitoxantrone in PML and RARA genes that may underlie the propensity to develop this subtype of leukemia after exposure to this agent.
Collapse
|
36
|
Natrajan R, Williams RD, Grigoriadis A, Mackay A, Fenwick K, Ashworth A, Dome JS, Grundy PE, Pritchard-Jones K, Jones C. Delineation of a 1Mb breakpoint region at 1p13 in Wilms tumors by fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 2007; 46:607-15. [PMID: 17370329 DOI: 10.1002/gcc.20446] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wilms tumor karyotypes frequently exhibit recurrent, large-scale chromosomal imbalances, among the most common of which are concurrent loss of 1p and gain of 1q. We have previously identified a novel breakpoint at 1p13 by 1 Mb-spaced array CGH, and have now undertaken a fine-tiling oligonucleotide array approach to map the region accurately in four tumors exhibiting rearrangements at this locus. The use of a 10 bp-spaced platform revealed that all four tumors in fact harbored different breakpoints, which targeted intragenic sequences in PHTF1, DCLRE1B, and NRAS, and an intergenic region immediately downstream of TRIM33. All four genes and breakpoints were within the 1.78 Mb intervals identified by the genome-wide BAC arrays. The precise breakpoint interval was in each case mapped to a 200-1,200 bp region and was confirmed for one case to lie within intron 3 of DCLRE1B by quantitative PCR. Analysis of local genome architecture revealed no convincing conservation of repetitive sequences or specific translocation/recombination-associated elements within the breakpoint regions. This study highlights the power of fine-tiling oligonucleotide arrays to delineate breakpoint regions identified by genome-wide screens.
Collapse
Affiliation(s)
- Rachael Natrajan
- Paediatric Oncology, Institute of Cancer Research/Royal Marsden NHS Trust, Sutton, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jovanovic JV, Score J, Waghorn K, Cilloni D, Gottardi E, Metzgeroth G, Erben P, Popp H, Walz C, Hochhaus A, Roche-Lestienne C, Preudhomme C, Solomon E, Apperley J, Rondoni M, Ottaviani E, Martinelli G, Brito-Babapulle F, Saglio G, Hehlmann R, Cross NCP, Reiter A, Grimwade D. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007; 109:4635-40. [PMID: 17299092 DOI: 10.1182/blood-2006-10-050054] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The FIP1L1-PDGFRA fusion gene is a recurrent molecular lesion in eosinophilia-associated myeloproliferative disorders, predicting a favorable response to imatinib mesylate. To investigate its prevalence, 376 patients with persistent unexplained hypereosinophilia were screened by the United Kingdom reference laboratory, revealing 40 positive cases (11%). To determine response kinetics following imatinib, real-time quantitative-polymerase chain reaction (RQ-PCR) assays were developed and evaluated in samples accrued from across the European LeukemiaNet. The FIP1L1-PDGFRA fusion transcript was detected at a sensitivity of 1 in 10(5) in serial dilution of the EOL-1 cell line. Normalized FIP1L1-PDGFRA transcript levels in patient samples prior to imatinib varied by almost 3 logs. Serial monitoring was undertaken in patients with a high level of FIP1L1-PDGFRA expression prior to initiation of imatinib (100 mg/d-400 mg/d). Overall, 11 of 11 evaluable patients achieved at least a 3-log reduction in FIP1L1-PDGFRA fusion transcripts relative to the pretreatment level within 12 months, with achievement of molecular remission in 9 of 11 (assay sensitivities 1 in 10(3)-10(5)). In 2 patients, withdrawal of imatinib was followed by a rapid rise in FIP1L1-PDGFRA transcript levels. Overall, these data are consistent with the exquisite sensitivity of the FIP1L1-PDGFRalpha fusion to imatinib, as compared with BCR-ABL, and underline the importance of RQ-PCR monitoring to guide management using molecularly targeted therapies.
Collapse
Affiliation(s)
- Jelena V Jovanovic
- Department of Medical and Molecular Genetics, Guy's Hospital, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.
Collapse
Affiliation(s)
- Yanming Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, USA
| | | |
Collapse
|
39
|
Huang HY, Lui MY, Ladanyi M. Nonrandom cell-cycle timing of a somatic chromosomal translocation: The t(X;17) of alveolar soft-part sarcoma occurs in G2. Genes Chromosomes Cancer 2005; 44:170-6. [PMID: 15952162 DOI: 10.1002/gcc.20229] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell-cycle timing of somatic chromosomal translocations in cancer remains poorly understood but may be relevant to their etiology and the mechanism of their formation. Alveolar soft-part sarcoma (ASPS) is a rare malignant soft-tissue tumor of uncertain lineage that provides an opportunity to address this question. The great majority of ASPSs have relatively simple near-diploid karyotypes characterized by an unbalanced der(17)t(X;17)(p11.2;q25), resulting in nonreciprocal fusion of TFE3 with ASPSCR1 (a.k.a. ASPL), with consequent net gain of Xp11.2-->pter and loss of 17q25-->qter. The presence of a normal X along with the der(17)t(X;17) in ASPSs that occur in men has been well described in previous cytogenetic reports and is most readily explained by a translocation in the G2 phase of the cell cycle. To establish whether formation in G2 is a general feature of the t(X;17), we examined polymorphic loci in Xp11.2-->qter in ASPS from 9 women, including 7 with an unbalanced t(X;17). Our analysis showed that all 7 displayed retention of heterozygosity at all informative markers on Xp11.2-->qter, supporting preferential formation of the t(X;17) in the G2 phase of the cell cycle. Given that the two derivative chromosomes of a translocation in G2 would be expected to segregate together half the time, the predominance of an unbalanced der(17)t(X;17) also raises the possibility of a selective advantage in ASPS cells for gain of Xp11.2-->pter or loss of 17q25.3-->qter or retention of an active copy of TFE3.
Collapse
Affiliation(s)
- Hsuan-Ying Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Weinstock DM, Elliott B, Jasin M. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 2005; 107:777-80. [PMID: 16195334 PMCID: PMC1895622 DOI: 10.1182/blood-2005-06-2437] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recurrent reciprocal translocations are present in many hematologic and mesenchymal malignancies. Because significant sequence homology is absent from translocation breakpoint junctions, non-homologous end-joining (NHEJ) pathways of DNA repair are presumed to catalyze their formation. We developed translocation reporters for use in mammalian cells from which NHEJ events can be selected after precise chromosomal breakage. Translocations were efficiently recovered with these reporters using mouse cells, and their breakpoint junctions recapitulated findings from oncogenic translocations. Small deletions and microhomology were present in most junctions; insertions and more complex events also were observed. Thus, our reporters model features of oncogenic rearrangements in human cancer cells. A homologous sequence at a distance from the break site affected the translocation junction without substantially altering translocation frequency. Interestingly, in a direct comparison, the spectrum of translocation breakpoint junctions differed from junctions derived from repair at a single chromosomal break, providing mechanistic insight into translocation formation.
Collapse
Affiliation(s)
- David M Weinstock
- Department of Medicine and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
41
|
Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T, Schnittger S. Impact of FLT3 mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol 2005; 130:196-202. [PMID: 16029447 DOI: 10.1111/j.1365-2141.2005.05595.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study 170 newly diagnosed acute promyelocytic leukaemia patients (M3: n = 121; M3v: n = 49) were molecularly characterised with respect to PML breakpoint and additional molecular mutations. In total, 83 patients were positive for bcr1 (49%), five for bcr2 (3%) and 82 for bcr3 (48%). Bcr3 was more frequent in M3v (65.3%) compared with M3 (41.3%) (P = 0.005). Cases with bcr3 showed a significantly higher white blood cell count (median: 3.65 x 10(9)/l vs. 1.59 x 10(9)/l, P = 0.003), as well as a higher PML-RARAABL expression ratio (14.8% vs. 72.7%, P < 0.005) compared with bcr1. FLT3-length-mutations were detected more frequently together with bcr3 compared with bcr1 (56.5% vs. 19.4%, P < 0.001) and in M3v compared with M3 (64.5% vs. 24.1%, P < 0.005). FLT3 tyrosine kinase mutations were found in eight cases (6.4%) and were distributed equally within the total group. Analysis for further mutations revealed no MLL-PTD and KIT mutations and only two cases of 99 analysed (2%) with NRAS mutations. FLT3-mutations were detected in 62 of 139 cases (44.6%) and associated with a significant lower overall survival (P = 0.0339). In addition, cases with bcr3 showed a tendency for a worse event-free survival (P = 0.0795) compared with the bcr1 group.
Collapse
Affiliation(s)
- Florian Kuchenbauer
- Laboratory for Leukemia Diagnostics, Department of Internal Medicine III, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B, Parry A, Walz C, Wiemels JL, Segal MR, Adès L, Blair IA, Osheroff N, Peniket AJ, Lafage-Pochitaloff M, Cross NCP, Chomienne C, Solomon E, Fenaux P, Grimwade D. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 2005; 352:1529-38. [PMID: 15829534 DOI: 10.1056/nejmoa042715] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal translocations leading to chimeric oncoproteins are important in leukemogenesis, but how they form is unclear. We studied acute promyelocytic leukemia (APL) with the t(15;17) translocation that developed after treatment of breast or laryngeal cancer with chemotherapeutic agents that poison topoisomerase II. METHODS We used long-range polymerase chain reaction and sequence analysis to characterize t(15;17) genomic breakpoints in therapy-related APL. To determine whether topoisomerase II was directly involved in mediating breaks of double-stranded DNA at the observed translocation breakpoints, we used a functional in vitro assay to examine topoisomerase II-mediated cleavage in the normal homologues of the PML and RARA breakpoints. RESULTS Translocation breakpoints in APL that developed after exposure to mitoxantrone, a topoisomerase II poison, were tightly clustered in an 8-bp region within PML intron 6. In functional assays, this "hot spot" and the corresponding RARA breakpoints were common sites of mitoxantrone-induced cleavage by topoisomerase II. Etoposide and doxorubicin also induced cleavage by topoisomerase II at the translocation breakpoints in APL arising after exposure to these agents. Short, homologous sequences in PML and RARA suggested the occurrence of DNA repair by means of the nonhomologous end-joining pathway. CONCLUSIONS Drug-induced cleavage of DNA by topoisomerase II mediates the formation of chromosomal translocation breakpoints in mitoxantrone-related APL and in APL that occurs after therapy with other topoisomerase II poisons.
Collapse
MESH Headings
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacology
- DNA Damage
- DNA Repair
- DNA Topoisomerases, Type II/metabolism
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/metabolism
- Doxorubicin/adverse effects
- Etoposide/adverse effects
- Humans
- In Vitro Techniques
- Leukemia, Promyelocytic, Acute/chemically induced
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Mitoxantrone/pharmacology
- Neoplasms, Second Primary/chemically induced
- Neoplasms, Second Primary/enzymology
- Neoplasms, Second Primary/genetics
- Polymerase Chain Reaction
- Sequence Analysis, DNA
- Topoisomerase II Inhibitors
- Translocation, Genetic
Collapse
Affiliation(s)
- Anita R Mistry
- Department of Medical and Molecular Genetics, Guy's, King's, and St. Thomas' School of Medicine, London
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tadin-Strapps M, Warburton D, Baumeister FAM, Fischer SG, Yonan J, Gilliam TC, Christiano AM. Cloning of the breakpoints of a de novo inversion of chromosome 8, inv (8)(p11.2q23.1) in a patient with Ambras syndrome. Cytogenet Genome Res 2005; 107:68-76. [PMID: 15305058 DOI: 10.1159/000079573] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 05/05/2004] [Indexed: 11/19/2022] Open
Abstract
Ambras syndrome (AMS) is a unique form of universal congenital hypertrichosis. In patients with this syndrome, the whole body is covered with fine long hair, except for areas where normally no hair grows. There is accompanying facial dysmorphism and teeth abnormalities, including retarded first and second dentition and absence of teeth. In 1993, Baumeister et al. reported an isolated case of Ambras syndrome in association with a pericentric inversion of chromosome 8. Subsequently, another patient with congenital hypertrichosis and rearrangement of chromosome 8 was reported by Balducci et al. (1998). Both of these patients have a breakpoint in 8q22 in common suggesting that this region of chromosome 8 contains a gene involved in regulation of hair growth. In order to precisely determine the nature of the rearrangement in the case of Ambras syndrome, we have used fluorescent in situ hybridization (FISH) analysis. We have cloned the inversion breakpoints in this patient and generated a detailed physical map of the inversion breakpoint interval. Analysis of the transcripts that map in the vicinity of the breakpoints revealed that the inversion does not disrupt a gene, and suggests that the phenotype is caused by a position effect.
Collapse
Affiliation(s)
- M Tadin-Strapps
- Department ofDermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Studies utilizing experimental animals, epidemiological approaches, cellular models, and clinical trials all provide evidence that retinoic acid and some of its synthetic derivatives (retinoids) are useful pharmacological agents in cancer therapy and prevention. In this chapter, we first review the current knowledge of retinoic acid receptors (RARs) and their role in mediating the actions of retinoic acid. We then focus on a discussion of RARalpha and acute promyelocytic leukemia followed by a discussion of the role of RARs, in particular RARbeta expression, in other cancer types. Loss of normal RAR function in the presence of physiological levels of RA (either due to alterations in the protein structure or level of expression) is associated with a variety of different cancers. In some cases treatment with pharmacological doses of RA can be effective.
Collapse
Affiliation(s)
- Dianne Robert Soprano
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
45
|
Zhang Y, Zeleznik-Le N, Emmanuel N, Jayathilaka N, Chen J, Strissel P, Strick R, Li L, Neilly MB, Taki T, Hayashi Y, Kaneko Y, Schlegelberger B, Rowley JD. Characterization of genomic breakpoints in MLL and CBP in leukemia patients with t(11;16). Genes Chromosomes Cancer 2004; 41:257-65. [PMID: 15334549 DOI: 10.1002/gcc.20077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The recurring chromosome translocation t(11;16)(q23;p13) is detected in leukemia patients, virtually all of whom have received previous chemotherapy with topoisomerase (topo) II inhibitors. In the t(11;16), 3' CBP, on 16p13, is fused to 5' MLL, on 11q23, resulting in an MLL-CBP fusion gene that plays an important role in leukemogenesis. In this study, we cloned genomic breakpoints of the MLL and CBP genes in the t(11;16) in the SN-1 cell line and in five patients with therapy-related leukemia, all of whom had received topo II inhibitors for previous tumors. In all patients except one, both the genomic MLL-CBP and the reciprocal fusions were cloned. Genomic breakpoints in MLL occurred in the 8.3-kb breakpoint cluster region in all patients, whereas the breakpoints in CBP clustered in an 8.2-kb region of intron 3 in four patients. Genomic breakpoints in MLL occurred in intron 11 near the topo II cleavage site in the SN-1 cell line and in one patient, and they were close to LINE repetitive sequences in two other patients. In the remaining two patients, genomic breakpoints were in intron 9 in Alu repeats. Genomic breakpoints in CBP occurred in and around Alu repeats in one and two patients, respectively. In two patients, the breaks were near LINE repetitive sequences, suggesting that repetitive DNA sequences may play a role. No specific recombination motifs were identified at or near the breakpoint junctions. No topo II cleavage sites were detected in introns 2 and 3 of CBP. However, there were deletions and duplications at the breakpoints in both MLL and CBP and microhomologies or nontemplated nucleotides at most of the genomic fusion junctions, suggesting that a nonhomologous end-joining repair mechanism was involved in the t(11;16).
Collapse
MESH Headings
- Aged
- Base Sequence
- Cell Line, Tumor
- Child
- Child, Preschool
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 16
- Computational Biology
- DNA/chemistry
- DNA Primers/chemistry
- DNA-Binding Proteins/genetics
- Female
- Genome
- Histone-Lysine N-Methyltransferase
- Humans
- Introns
- Leukemia, Myeloid, Acute/genetics
- Male
- Models, Genetic
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein
- Nuclear Proteins/genetics
- Polymerase Chain Reaction
- Proto-Oncogenes/genetics
- Trans-Activators/genetics
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Yanming Zhang
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
A fundamental issue in cancer biology is the identification of the target cell in which the causative molecular lesion arises. Acute myeloid leukemia (AML) is thought to reflect the transformation of a primitive stem cell compartment. The resultant 'cancer stem cells' comprise only a minor portion of the leukemic clone but give rise through differentiation to more committed progenitors as well as differentiated blasts that constitute the bulk of the tumor. The maintenance of the leukemic clone is dependent on the self-renewal capacity of the cancer stem cell compartment, which is revealed by its ability to re-initiate leukemia in a transplant setting. The cellular basis of acute promyelocytic leukemia (APL) is however less clear. APL has traditionally been considered to be the most differentiated form of AML and to arise from a committed myeloid progenitor. Here we review apparently conflicting evidence pertaining to the cellular origins of APL and propose that this leukemia may originate in more than one cellular compartment. This view could account for many apparent inconsistencies in the literature to date. An understanding of the nature of the target cell involved in transformation of APL has important implications for biological mechanism and for clinical treatment.
Collapse
Affiliation(s)
- D Grimwade
- Department of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK.
| | | |
Collapse
|
47
|
Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JLE, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJM. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia 2003; 17:2318-57. [PMID: 14562125 DOI: 10.1038/sj.leu.2403135] [Citation(s) in RCA: 1144] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Detection of minimal residual disease (MRD) has proven to provide independent prognostic information for treatment stratification in several types of leukemias such as childhood acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and acute promyelocytic leukemia. This report focuses on the accurate quantitative measurement of fusion gene (FG) transcripts as can be applied in 35-45% of ALL and acute myeloid leukemia, and in more than 90% of CML. A total of 26 European university laboratories from 10 countries have collaborated to establish a standardized protocol for TaqMan-based real-time quantitative PCR (RQ-PCR) analysis of the main leukemia-associated FGs within the Europe Against Cancer (EAC) program. Four phases were scheduled: (1) training, (2) optimization, (3) sensitivity testing and (4) patient sample testing. During our program, three quality control rounds on a large series of coded RNA samples were performed including a balanced randomized assay, which enabled final validation of the EAC primer and probe sets. The expression level of the nine major FG transcripts in a large series of stored diagnostic leukemia samples (n=278) was evaluated. After normalization, no statistically significant difference in expression level was observed between bone marrow and peripheral blood on paired samples at diagnosis. However, RQ-PCR revealed marked differences in FG expression between transcripts in leukemic samples at diagnosis that could account for differential assay sensitivity. The development of standardized protocols for RQ-PCR analysis of FG transcripts provides a milestone for molecular determination of MRD levels. This is likely to prove invaluable to the management of patients entered into multicenter therapeutic trials.
Collapse
Affiliation(s)
- J Gabert
- Department of Hematology Biology, Institut Paoli Calmettes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Chromosome translocations are often early or initiating events in leukaemogenesis, occurring prenatally in most cases of childhood leukaemia. Although these genetic changes are necessary, they are usually not sufficient to cause leukaemia. How, when and where do translocations arise? And can these insights aid our understanding of the natural history, pathogenesis and causes of leukaemia?
Collapse
Affiliation(s)
- Mel F Greaves
- LRF Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|
49
|
Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17:71-97. [PMID: 12642121 DOI: 10.1016/s0268-960x(02)00075-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute promyelocytic leukaemia (APL) is characterised by chromosomal rearrangements of 17q21, leading to fusion of the gene encoding retinoic acid receptor alpha (RARalpha) to a number of alternative partner genes (X), the most frequent of which are PML (>95%), PLZF (0.8%) and NPM (0.5%). Over the last few years, it has been established that the X-RARalpha fusion proteins play a key role in the pathogenesis of APL through recruitment of co-repressors and the histone deacetylase (HDAC)-complex to repress genes implicated in myeloid differentiation. Paradoxically, the X-RARalpha fusion protein has the potential to mediate myeloid differentiation at pharmacological doses of its ligand (all trans-retinoic acid (ATRA)), which is dependent on the dissociation of the HDAC/co-repressor complex. Arsenic compounds have also been shown to be promising therapeutic agents, leading to differentiation and apoptosis of APL blasts. It is now apparent that the nature of the RARalpha-fusion partner is a critical determinant of response to ATRA and arsenic, underlining the importance of cytogenetic and molecular characterisation of patients with suspected APL to determine the most appropriate treatment approach. Standard protocols involving ATRA combined with anthracycline-based chemotherapy, lead to cure of approximately 70% patients with PML-RARalpha-associated APL. Patients at high risk of relapse can be identified by minimal residual disease monitoring. The challenge for future studies is to improve complete remission rates through reduction of induction deaths, particularly due to haemorrhage, identification of patients at high risk of relapse who would benefit from additional therapy, and identification of a favourable-risk group, for which treatment intensity could be reduced, thereby reducing risks of treatment toxicity and development of secondary leukaemia/myelodysplasia. With the advent of ATRA and arsenic, APL has already provided the first example of successful molecularly targeted therapy; it is hoped that with further understanding of the pathogenesis of the disease, the next decade will yield further improvements in the outlook for these patients.
Collapse
MESH Headings
- Animals
- Gene Rearrangement
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/therapy
- Models, Biological
- Mutation
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Translocation, Genetic
Collapse
Affiliation(s)
- Anita R Mistry
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK
| | | | | | | |
Collapse
|