1
|
miR-9 Acts as an OncomiR in Prostate Cancer through Multiple Pathways That Drive Tumour Progression and Metastasis. PLoS One 2016; 11:e0159601. [PMID: 27447934 PMCID: PMC4957825 DOI: 10.1371/journal.pone.0159601] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
Identification of dysregulated microRNAs (miRNAs) in prostate cancer is critical not only for diagnosis, but also differentiation between the aggressive and indolent forms of the disease. miR-9 was identified as an oncomiR through both miRNA panel RT-qPCR as well as high-throughput sequencing analysis of the human P69 prostate cell line as compared to its highly tumorigenic and metastatic subline M12, and found to be consistently upregulated in other prostate cell lines including DU-145 and PC3. While miR-9 has been characterized as dysregulated either as an oncomiR or tumour suppressor in a variety of other cancers including breast, ovarian, and nasopharyngeal carcinomas, it has not been previously evaluated and proven as an oncomiR in prostate cancer. miR-9 was confirmed an oncomiR when found to be overexpressed in tumour tissue as compared to adjacent benign glandular epithelium through laser-capture microdissection of radical prostatectomy biopsies. Inhibition of miR-9 resulted in reduced migratory and invasive potential of the M12 cell line, and reduced tumour growth and metastases in male athymic nude mice. Analysis showed that miR-9 targets e-cadherin and suppressor of cytokine signalling 5 (SOCS5), but not NF-ĸB mRNA. Expression of these proteins was shown to be affected by modulation in expression of miR-9.
Collapse
|
2
|
Budd WT, Seashols-Williams SJ, Clark GC, Weaver D, Calvert V, Petricoin E, Dragoescu EA, O’Hanlon K, Zehner ZE. Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis. PLoS One 2015; 10:e0142373. [PMID: 26544868 PMCID: PMC4636224 DOI: 10.1371/journal.pone.0142373] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3’-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression.
Collapse
Affiliation(s)
- William T. Budd
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah J. Seashols-Williams
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gene C. Clark
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Danielle Weaver
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Ema A. Dragoescu
- Department of Pathology, VCU Medical Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Katherine O’Hanlon
- American International Biotechnology, Richmond, Virginia, United States of America
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Horbach T, Götz C, Kietzmann T, Dimova EY. Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer. Front Pharmacol 2015; 6:3. [PMID: 25741280 PMCID: PMC4332324 DOI: 10.3389/fphar.2015.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 01/30/2023] Open
Abstract
The upstream stimulatory factors (USFs) are regulators of important cellular processes. Both USF1 and USF2 are supposed to have major roles in metabolism, tissue protection and tumor development. However, the knowledge about the mechanisms that control the function of USFs, in particular in tissue protection and cancer, is limited. Phosphorylation is a versatile tool to regulate protein functions. Thereby, phosphorylation can positively or negatively affect different aspects of transcription factor function including protein stability, protein-protein interaction, cellular localization, or DNA binding. The present review aims to summarize the current knowledge about the regulation of USFs by direct phosphorylation and the consequences for USF functions in tissue protection and cancer.
Collapse
Affiliation(s)
- Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland ; Department of Chemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University , Homburg, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
4
|
Horbach T, Chi TF, Götz C, Sharma S, Juffer AH, Dimova EY, Kietzmann T. GSK3β-dependent phosphorylation alters DNA binding, transactivity and half-life of the transcription factor USF2. PLoS One 2014; 9:e107914. [PMID: 25238393 PMCID: PMC4169611 DOI: 10.1371/journal.pone.0107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022] Open
Abstract
The upstream stimulatory factor 2 (USF2) is a regulator of important cellular processes and is supposed to have also a role during tumor development. However, the knowledge about the mechanisms that control the function of USF2 is limited. The data of the current study show that USF2 function is regulated by phosphorylation and identified GSK3β as an USF2-phosphorylating kinase. The phosphorylation sites within USF2 could be mapped to serine 155 and threonine 230. In silico analyses of the 3-dimensional structure revealed that phosphorylation of USF2 by GSK3β converts it to a more open conformation which may influence transactivity, DNA binding and target gene expression. Indeed, experiments with GSK-3β-deficient cells revealed that USF2 transactivity, DNA binding and target gene expression were reduced upon lack of GSK3β. Further, experiments with USF2 variants mimicking GSK3β phosphorylated USF2 in GSK3β-deficient cells showed that phosphorylation of USF2 by GSK3β did not affect cell proliferation but increased cell migration. Together, this study reports a new mechanism by which USF2 may contribute to cancerogenesis.
Collapse
Affiliation(s)
- Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - André H. Juffer
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y. Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
5
|
Drucker KL, Kitange GJ, Kollmeyer TM, Law ME, Passe S, Rynearson AL, Blair H, Soderberg CL, Morlan BW, Ballman KV, Giannini C, Jenkins RB. Characterization and gene expression profiling in glioma cell lines with deletion of chromosome 19 before and after microcell-mediated restoration of normal human chromosome 19. Genes Chromosomes Cancer 2009; 48:854-64. [PMID: 19544381 DOI: 10.1002/gcc.20688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nearly 10% of human gliomas are oligodendrogliomas. Deletion of chromosome arm 19q, often in conjunction with deletion of 1p, has been observed in 65-80% of these tumors. This has suggested the presence of a tumor suppressor gene located on the 19q arm. Chromosome 19 deletion is also of interest due to the better prognosis of patients with deletion, including longer survival and better response to chemotherapy, compared with patients without deletion. Two glioma cell lines with deletion of 19q were used for chromosome 19 microcell-mediated transfer, to assess the effect of replacing the deleted segment. Complementation with chromosome 19 significantly reduced the growth rate of the hybrid cells compared with the parental cell lines. Affymetrix U133 Plus 2.0 Gene Chip analysis was performed to measure and compare the expression of the chromosome 19 genes in the chromosome 19 hybrid cell lines to the parental cell line. Probes were considered significantly different when a P value <0.01 was seen in all of the cell line comparisons. Of 345 probes within the commonly deleted 19q region, seven genes (APOE, RCN3, FLJ10781, SAE1, STRN4, CCDC8, and BCL2L12) were identified as potential candidate genes. RT-PCR analysis of primary tumor specimens showed that several genes had significant differences when stratified by tumor morphology or deletion status. This suggests that one or more of these candidates may play a role in glioma formation or progression.
Collapse
Affiliation(s)
- Kristen L Drucker
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Weissman B, Knudsen KE. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 2009; 69:8223-30. [PMID: 19843852 DOI: 10.1158/0008-5472.can-09-2166] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10 to 12 unique subunits. Although the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present article focuses on the evidence linking SWI/SNF perturbations to cancer initiation and tumor progression in human disease.
Collapse
Affiliation(s)
- Bernard Weissman
- Department of Pathology and Laboratory and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
7
|
Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 2009; 26:965-79. [PMID: 19771525 DOI: 10.1007/s10585-009-9287-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/04/2009] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) are a novel class of RNAs with important roles in regulating gene expression. To identify miRs controlling prostate tumor progression, we utilized unique human prostate sublines derived from the parental P69 cell line, which differ in their tumorigenic properties in vivo. Grown embedded in laminin-rich extracellular matrix (lrECM) gels these genetically-related sublines displayed drastically different morphologies correlating with their behaviour in vivo. The non-tumorigenic P69 subline grew as multicellular acini with a defined lumen and basal/polar expression of relevant marker proteins. M12, a highly tumorigenic, metastatic derivative, grew as a disorganized mass of cells with no polarization, whereas the F6 subline, a weakly tumorigenic, non-metastatic M12 variant, reverted to acini formation akin to the P69 cell line. These sublines also differed in expression of vimentin, which was high in M12, but low in F6 and P69 sublines. Analysis of vimentin's conserved 3'-UTR suggested several miRs that could regulate vimentin expression. The lack of miR-17-3p expression correlated with an increase in vimentin synthesis and tumorigenicity. Stable expression of miR-17-3p in the M12 subline reduced vimentin levels 85% and reverted growth to organized, polarized acini in lrECM gels. In vitro motility and invasion assays suggested a decrease in tumorigenic behaviour, confirmed by reduced tumor growth in male athymic, nude mice dependent on miR-17-3p expression. Analysis of LCM-purified clinical human prostatectomy specimens confirmed that miR-17-3p levels were reduced in tumor cells. These results suggest that miR-17-3p functions as a tumor suppressor, representing a novel target to block prostate tumor progression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry & Molecular Biology and The Massey Cancer Center, School of Medicine, VCU Medical Center, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zhang X, Fournier MV, Ware JL, Bissell MJ, Jacoub A, Zehner ZE. Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 2009; 8:499-508. [PMID: 19276168 PMCID: PMC2703491 DOI: 10.1158/1535-7163.mct-08-0544] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to beta-catenin, E-cadherin, or alpha6 and beta1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of alpha6 and beta1integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and beta1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| | - Marcia V. Fournier
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Joy L. Ware
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Adly Jacoub
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| |
Collapse
|
9
|
Williams YN, Masuda M, Sakurai-Yageta M, Maruyama T, Shibuya M, Murakami Y. Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4. Oncogene 2006; 25:1446-53. [PMID: 16261159 DOI: 10.1038/sj.onc.1209192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The TSLL2/IGSF4C encodes an immunoglobulin (Ig) superfamily molecule showing significant homology with a lung tumor suppressor, TSLC1. The TSLL2 protein of 55 kDa is mainly expressed in the kidney, bladder, and prostate in addition to the brain. Here, we report the biological significance of TSLL2 in the urinary tissues. An immunohistochemical study reveals that TSLL2 is expressed at the cell-cell attachment sites in the renal tubules, the transitional epithelia of the bladder, and the glandular epithelia of the prostate. Confocal microscopy analysis demonstrates that TSLL2 is localized in the lateral membranes in polarized Mardin-Darby canine kidney (MDCK) cells. TSLL2 forms homo-dimers and its overexpression induces aggregation of suspended MDCK cells in a Ca2+/Mg2+-independent manner, suggesting that it is involved in cell adhesion through homophilic trans-interaction. The TSLL2 gene is mapped on the chromosomal region 19q13.2, whose loss of heterozygosity has been frequently reported in prostate cancer. TSLL2 protein is lost in nine of nine primary prostate cancers and in a prostate cancer cell, PPC-1. Introduction of TSLL2 into PPC-1 strongly suppresses subcutaneous tumor formation in nude mice. These results suggest that TSLL2 is a new member of the Ig superfamily cell adhesion molecules and is a tumor-suppressor candidate in prostate cancer.
Collapse
Affiliation(s)
- Y N Williams
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Chen N, Szentirmay MN, Pawar SA, Sirito M, Wang J, Wang Z, Zhai Q, Yang HX, Peehl DM, Ware JL, Sawadogo M. Tumor-suppression function of transcription factor USF2 in prostate carcinogenesis. Oncogene 2005; 25:579-87. [PMID: 16186802 DOI: 10.1038/sj.onc.1209079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the transcription factor USF2 has been implicated in the regulation of cellular growth and proliferation, it is unknown whether alterations in USF2 contribute to tumorigenesis and tumor development. We examined the role of USF2 in prostate tumorigenesis. Western blot analysis revealed markedly decreased USF2 levels in three androgen-independent prostate cancer cell lines, PC-3, DU145, and M12, as compared to nontumorigenic prostate epithelial cells or the androgen-dependent cell line, LNCaP. Ectopic expression of USF2 in PC-3 cells did not affect the cell proliferation rate of PC-3 cells on plastic surfaces. However, it dramatically decreased anchorage-independent growth of PC-3 cells in soft agar (90-98% inhibition) and the invasion capability (80% inhibition) of PC-3 cells in matrix gel assay. Importantly, expression of USF2 in PC-3 cells inhibited the tumorigenicity of PC-3 cells in an in vivo nude mice xenograft model (80-90% inhibition). These results suggest that USF2 has tumor-suppression function. Consistent with its function in tumor suppression, we found that the USF2 protein is present in normal prostate epithelial cells but absent in 18 of 42 (43%) human prostate cancer tissues (P = 0.015). To further examine the functional role of USF2 in vivo, we generated mice with genetic deletion of USF2 gene. We found that USF2-null mice displayed marked prostate hyperplasia at a young age, suggesting that USF2 is involved in the normal growth and differentiation of prostate. Together, these studies demonstrate that USF2 has tumor-suppressor function and plays a role in prostate carcinogenesis.
Collapse
Affiliation(s)
- N Chen
- Department of Molecular Genetics, The University of Texas, MD Anderson Cancer Center, Houston, 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gagnon A, Ripeau JS, Zvieriev V, Chevrette M. Chromosome 18 suppresses tumorigenic properties of human prostate cancer cells. Genes Chromosomes Cancer 2005; 45:220-30. [PMID: 16281261 DOI: 10.1002/gcc.20281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although prostate cancer is still the most diagnosed cancer in men, most genes implicated in its progression are yet to be identified. Chromosome abnormalities have been detected in human prostate tumors, many of them associated with prostate cancer progression. Indeed, alterations (including deletions or amplifications) of more than 15 human chromosomes have been reported in prostate cancer. We hypothesized that transferring normal human chromosomes into human prostate cancer cells would interfere with their tumorigenic and/or metastatic properties. We used microcell-mediated chromosome transfer to introduce human chromosomes 10, 12, 17, and 18 into highly tumorigenic (PC-3M-Pro4) and highly metastatic (PC-3M-LN4) PC-3-derived cell lines. We tested the in vitro and in vivo properties of these hybrids. Introducing chromosome 18 into the PC-3M-LN4 prostate cancer cell line greatly reduced its tumorigenic phenotype. We observed retarded growth in soft agar, decreased invasiveness through Matrigel, and delayed tumor growth into nude mice, both subcutaneously and orthotopically. This phenotype is associated with a marker in the 18q21 region. Combined with the loss of human chromosome 18 regions often seen in patients with advanced prostate cancer, our results show that chromosome 18 encodes one or more tumor-suppressor genes whose inactivation contributes to prostate cancer progression.
Collapse
Affiliation(s)
- Audrey Gagnon
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
12
|
Neville PJ, Conti DV, Krumroy LM, Catalona WJ, Suarez BK, Witte JS, Casey G. Prostate cancer aggressiveness locus on chromosome segment 19q12-q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 2003; 36:332-9. [PMID: 12619157 DOI: 10.1002/gcc.10165] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whole-genome scan studies recently identified a locus on chromosome segments 19q12-q13.11 linked to prostate tumor aggressiveness by use of the Gleason score as a quantitative trait. We have now completed finer-scale linkage mapping across this region that confirmed and narrowed the candidate region to 2 cM, with a peak between markers D19S875 and D19S433. We also performed allelic imbalance (AI) studies across this region in primary prostate tumors from 52 patients unselected for family history or disease status. A high level of AI was observed, with the highest rates at markers D19S875 (56%) and D19S433 (60%). Furthermore, these two markers defined a smallest common region of AI of 0.8 Mb, with 15 (29%) prostate tumors displaying interstitial AI involving one or both markers. In addition, we noted a positive association between AI at marker D19S875 and extension of tumor beyond the margin (P = 0.02) as well as a higher Gleason score (P = 0.06). These data provide strong evidence that we have mapped a prostate tumor aggressiveness locus to chromosome segments 19q12-q13.11 that may play a role in both familial and non-familial forms of prostate cancer.
Collapse
Affiliation(s)
- Phillippa J Neville
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|