1
|
Pettitt GA, Hurst CD, Khan Z, McPherson HR, Dunning MC, Alder O, Platt FM, Black EVI, Burns JE, Knowles MA. Development of resistance to FGFR inhibition in urothelial carcinoma via multiple pathways in vitro. J Pathol 2023; 259:220-232. [PMID: 36385700 PMCID: PMC10107504 DOI: 10.1002/path.6034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Geoffrey A Pettitt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Zubeda Khan
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Helen R McPherson
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Matthew C Dunning
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Emma VI Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| |
Collapse
|
2
|
Skowron MA, Petzsch P, Hardt K, Wagner N, Beier M, Stepanow S, Drechsler M, Rieder H, Köhrer K, Niegisch G, Hoffmann MJ, Schulz WA. Distinctive mutational spectrum and karyotype disruption in long-term cisplatin-treated urothelial carcinoma cell lines. Sci Rep 2019; 9:14476. [PMID: 31597922 PMCID: PMC6785536 DOI: 10.1038/s41598-019-50891-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA-damaging compound cisplatin is broadly employed for cancer chemotherapy. The mutagenic effects of cisplatin on cancer cell genomes are poorly studied and might even contribute to drug resistance. We have therefore analyzed mutations and chromosomal alterations in four cisplatin-resistant bladder cancer cell lines (LTTs) by whole-exome-sequencing and array-CGH. 720–7479 genes in the LTTs contained point mutations, with a characteristic mutational signature. Only 53 genes were mutated in all LTTs, including the presumed cisplatin exporter ATP7B. Chromosomal alterations were characterized by segmented deletions and gains leading to severely altered karyotypes. The few chromosomal changes shared among LTTs included gains involving the anti-apoptotic BCL2L1 gene and losses involving the NRF2 regulator KEAP1. Overall, the extent of genomic changes paralleled cisplatin treatment concentrations. In conclusion, bladder cancer cell lines selected for cisplatin-resistance contain abundant and characteristic drug-induced genomic changes. Cisplatin treatment may therefore generate novel tumor genomes during patient treatment.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Hardt
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicholas Wagner
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manfred Beier
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Stepanow
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Drechsler
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Harald Rieder
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Pinto-Leite R, Carreira I, Melo J, Ferreira SI, Ribeiro I, Ferreira J, Filipe M, Bernardo C, Arantes-Rodrigues R, Oliveira P, Santos L. Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer. Tumour Biol 2014; 35:4599-617. [PMID: 24459064 DOI: 10.1007/s13277-013-1604-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
Abstract
Several genomic regions are frequently altered and associated with the type, stage and progression of urinary bladder cancer (UBC). We present the characterization of 5637, T24 and HT1376 UBC cell lines by karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) analysis. Some cytogenetic anomalies present in UBC were found in the three cell lines, such as chromosome 20 aneuploidy and the loss of 9p21. Some gene loci losses (e.g. CDKN2A) and gains (e.g. HRAS, BCL2L1 and PTPN1) were coincident across all cell lines. Although some significant heterogeneity and complexity were detected between them, their genomic profiles exhibited a similar pattern to UBC. We suggest that 5637 and HT1376 represent the E2F3/RB1 pathway due to amplification of 6p22.3, concomitant with loss of one copy of RB1 and mutation of the remaining copy. The HT1376 presented a 10q deletion involving PTEN region and no alteration of PIK3CA region which, in combination with the inactivation of TP53, bears more invasive and metastatic properties than 5637. The T24 belongs to the alternative pathway of FGFR3/CCND1 by presenting mutated HRAS and over-represented CCND1. These cell lines cover the more frequent subtypes of UBC and are reliable models that can be used, as a group, in preclinical studies.
Collapse
Affiliation(s)
- Rosário Pinto-Leite
- Cytogenetic Laboratory, Department of Human Genetics, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
López V, González-Peramato P, Suela J, Serrano A, Algaba F, Cigudosa JC, Vidal A, Bellmunt J, Heredero O, Sánchez-Carbayo M. Identification of prefoldin amplification (1q23.3-q24.1) in bladder cancer using comparative genomic hybridization (CGH) arrays of urinary DNA. J Transl Med 2013; 11:182. [PMID: 23914742 PMCID: PMC3750577 DOI: 10.1186/1479-5876-11-182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Array-CGH represents a comprehensive tool to discover genomic disease alterations that could potentially be applied to body fluids. In this report, we aimed at applying array-CGH to urinary samples to characterize bladder cancer. METHODS Urinary DNA from bladder cancer patients and controls were hybridized on 44K oligonucleotide arrays. Validation analyses of identified regions and candidates included fluorescent in situ hybridization (FISH) and immunohistochemistry in an independent set of bladder tumors spotted on custom-made tissue arrays (n = 181). RESULTS Quality control of array-CGH provided high reproducibility in dilution experiments and when comparing reference pools. The most frequent genomic alterations (minimal recurrent regions) among bladder cancer urinary specimens included gains at 1q and 5p, and losses at 10p and 11p. Supervised hierarchical clustering identified the gain at 1q23.3-q24.1 significantly correlated to stage (p = 0.011), and grade (p = 0.002). The amplification and overexpression of Prefoldin (PFND2), a selected candidate mapping to 1q23.3-q24.1, correlated to increasing stage and tumor grade by means of custom-designed and optimized FISH (p = 0.013 and p = 0.023, respectively), and immunohistochemistry (p ≤0.0005 and p = 0.011, respectively), in an independent set of bladder tumors included in tissue arrays. Moreover, PFND2 overexpression was significantly associated with poor disease-specific survival (p ≤0.0005). PFND2 was amplified and overexpressed in bladder tumors belonging to patients providing urinary specimens where 1q23.3q24.1 amplification was detected by array-CGH. CONCLUSIONS Genomic profiles of urinary DNA mirrowed bladder tumors. Molecular profiling of urinary DNA using array-CGH contributed to further characterize genomic alterations involved in bladder cancer progression. PFND2 was identified as a tumor stratification and clinical outcome prognostic biomarker for bladder cancer patients.
Collapse
Affiliation(s)
- Virginia López
- Tumor Markers Group, Molecular Pathology Program, Spanish National Cancer Center, Melchor Fernandez Almagro 3, Madrid E-28029, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Williams SV, Platt FM, Hurst CD, Aveyard JS, Taylor CF, Pole JCM, Garcia MJ, Knowles MA. High-resolution analysis of genomic alteration on chromosome arm 8p in urothelial carcinoma. Genes Chromosomes Cancer 2010; 49:642-59. [PMID: 20461757 DOI: 10.1002/gcc.20775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Loss of chromosome arm 8p, sometimes in combination with amplification of proximal 8p, is found in urothelial carcinoma (UC) and other epithelial cancers and is associated with more advanced tumor stage. We carried out array comparative genomic hybridization on 174 UC and 33 UC cell lines to examine breakpoints and copy number. This was followed by a detailed analysis of the cell lines using fluorescence in situ hybridization (FISH) and, in some cases, M-FISH, to refine breakpoints and determine translocation partners, heterozygosity analysis, and analysis of expression of selected genes. We showed an overall pattern of 8p loss with reduced heterozygosity and reduced gene expression. Amplification was seen in some samples and shown in the cell line JMSU1 to correlate with overexpression of ZNF703, ERLIN2, PROSC, GPR124, and BRF2. Apart from the centromere, no single breakpoint was overrepresented, and we postulate that frequent complex changes without consistent breakpoints reflect the need for alterations of combinations of genes. The region around 2 Mb, which was homozygously deleted in one cell line and includes the gene ARHGEF10 and the micro-RNA hsa-mir-596, is one candidate tumor suppressor gene region.
Collapse
Affiliation(s)
- Sarah V Williams
- Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Multiplex in situ hybridization (M-FISH) is a 24-color karyotyping technique and is the method of choice for studying complex interchromosomal rearrangements. The process involves three major steps. Firstly, the multiplex labeling of all chromosomes in the genome with finite numbers of spectrally distinct fluorophores in a combinatorial fashion, such that each homologous pair of chromosomes is uniquely labeled. Secondly, the microscopic visualization and digital acquisition of each fluorophore using specific single band-pass filter sets and dedicated M-FISH software. These acquired images are then superimposed enabling individual chromosomes to be classified based on the fluor composition in accordance with the combinatorial labeling scheme of the M-FISH probe cocktail used. The third step involves the detailed analysis of these digitally acquired and processed images to resolve structural and numerical abnormalities.
Collapse
Affiliation(s)
- Rhona Anderson
- Laboratory of Genome Damage, Division of Biosciences, Centre for Cell and Chromosome Biology, Brunel University, Uxbridge, Middlesex, UK.
| |
Collapse
|
7
|
Chapman EJ, Williams SV, Platt FM, Hurst CD, Chambers P, Roberts P, Knowles MA. Integrated genomic and transcriptional analysis of the in vitro evolution of telomerase-immortalized urothelial cells (TERT-NHUC). Genes Chromosomes Cancer 2009; 48:694-710. [PMID: 19405089 DOI: 10.1002/gcc.20672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Much progress has been made in identifying the molecular genetic alterations that occur in bladder cancer. However, in many cases the genes targeted by these alterations are not known. Telomerase immortalized human urothelial cells (TERT-NHUC) are a useful resource for in vitro studies of genes involved in urothelial transformation. When cultured under standard conditions they remain genetically stable but when cultured under low-density conditions they exhibit genetic instability and acquire chromosomal alterations. TERT-NHUC from three donors were cultured at low plating density and examined at four time-points during a culture period of 600 days. Analyses included population doubling kinetics, array-based CGH (aCGH), chromosome counts, fluorescence in situ hybridization (FISH), mutation analysis, Affymetrix gene expression analysis, Western blotting for p16, anchorage-independent growth and tumorigenicity assays. Alterations acquired during continued culture of TERT-NHUC at low density (TERT-NHUC-L) included some observed in urothelial carcinoma (UC) cell lines and primary UC. Examination of gene expression in TERT-NHUC with distinct acquired genetic aberrations may pinpoint genes targeted by these alterations. Data from an aCGH study of UC cell lines and primary tumors were examined for changes in chromosomal regions that also showed alterations in TERT-NHUC-L. Loss of a region on 2q including BOK was identified in UC cell lines and primary tumors. DNER and FRAS1 were identified as potential candidate genes, whose expression is altered independently of the acquisition of any genetic event.
Collapse
Affiliation(s)
- Emma J Chapman
- Cancer Research UK Clinical Centre, St James's University Hospital, Leeds LS97TF, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Makridakis M, Gagos S, Petrolekas A, Roubelakis MG, Bitsika V, Stravodimos K, Pavlakis K, Anagnou NP, Coleman J, Vlahou A. Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer. Proteomics 2008; 9:287-98. [DOI: 10.1002/pmic.200800121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Abstract
Bladder tumors show widely differing histopathology and clinical behavior. This is reflected in the molecular genetic alterations they contain. Much information has accumulated on somatic genomic alterations in bladder tumors of all grades and stages and when this information is related to the common histopathological appearances, a model for the pathogenesis of two major groups of bladder tumors has emerged. This review summarizes the genetic alterations that have been reported in bladder cancer and relates these to the current two-pathway model for tumor development. The molecular pathogenesis of high-grade noninvasive papillary tumors and of T1 tumors is not yet clear and possibilities are discussed.
Collapse
|
10
|
Neveling K, Kalb R, Florl AR, Herterich S, Friedl R, Hoehn H, Hader C, Hartmann FH, Nanda I, Steinlein C, Schmid M, Tonnies H, Hurst CD, Knowles MA, Hanenberg H, Schulz WA, Schindler D. Disruption of the FA/BRCA pathway in bladder cancer. Cytogenet Genome Res 2007; 118:166-76. [PMID: 18000367 DOI: 10.1159/000108297] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/23/2007] [Indexed: 12/18/2022] Open
Abstract
Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression.
Collapse
Affiliation(s)
- K Neveling
- Department of Human Genetics, University of WürzburgBiozentrum, B107, Am Hubland, DE-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhao S, Tang QL, He MX, Yang F, Wang H, Zhang WY, Jiang W, Wang XL, Mo XM, Li GD, Liu WP. A novel nude mice model of human extranodal nasal type NK/T-cell lymphoma. Leukemia 2007; 22:170-8. [PMID: 17851553 DOI: 10.1038/sj.leu.2404945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel nude mice model of human extranodal nasal type NK/T-cell lymphoma was established by subcutaneously implanting the sample taken from the patient with secondary extranodal nasal type NK/T-cell lymphoma of the stomach into the right axillary region of a BALB/c (nu/nu) nude mouse. This model had been successfully transplanted in vivo for thirty-two generations with a stable growth cycle. The survival rates of both resuscitation and transplantation were 100%. Histologically, the tumor cells were medium to large size and arranged in sheets, with a little mesenchyma, and disseminated almost in all passages of the lymphoma-bearing nude mice. Immunologically, the tumor cells were positive for CD56, cytoplasmic CD3, granzyme B or TIA-1 and LMP1, sometimes for CD8 but negative for surface CD3, CD7, CD20 and CD1a. EBER1/2 was found. No T-cell receptor gamma gene rearrangement was detected in the transplanted tumors. Furthermore, both human sequencing-tagged sites SY14 and Y chromosome were detected by PCR or fluorescent in situ hybridization, respectively, in the transplanted tumor. The transplanted tumor in this novel nude mice model maintained the essential features of human extranodal nasal type NK/T-cell lymphoma, and it would be an ideal tool in vivo for further research of the tumor.
Collapse
Affiliation(s)
- S Zhao
- Department of Pathology, Institute of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saletta F, Matullo G, Manuguerra M, Arena S, Bardelli A, Vineis P. Exposure to the tobacco smoke constituent 4-aminobiphenyl induces chromosomal instability in human cancer cells. Cancer Res 2007; 67:7088-94. [PMID: 17671175 DOI: 10.1158/0008-5472.can-06-4420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationships between environmental factors and the genetic abnormalities that drive carcinogenesis are supported by experimental and epidemiologic evidence but their molecular basis has not been fully elucidated. At the genomic level, most human cancers display either chromosomal (CIN) or microsatellite (MIN) instability. The molecular mechanisms through which normal cells acquire these forms of instability are largely unknown. The arylamine 4-aminobiphenyl (4-ABP) is a tobacco smoke constituent, an environmental contaminant, and a well-established carcinogen in humans. Among others, bladder, lung, colon, and breast cancers have been associated with 4-ABP. We have investigated the effects of 4-ABP and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on genetically stable colorectal (HCT116) and bladder (RT112) cancer cells. Cells were treated with carcinogens to generate resistant clones that were then subjected to genetic analysis to assess whether they displayed either CIN or MIN. We found that 50% to 60% of cells treated with 4-ABP developed CIN but none developed MIN as confirmed by their ability to gain and lose chromosomes. In contrast, all MNNG-treated clones (12/12) developed MIN but none developed CIN as shown by the microsatellite assay. The mismatch repair protein expression analysis suggests that the acquired mechanism of MIN resistance in the HCT116 MNNG-treated cells is associated with the reduction or the complete loss of MLH1 expression. By providing a mechanistic link between exposure to a tobacco constituent and the development of CIN, our results contribute to a better understanding of the origins of genetic instability, one of the remaining unsolved problems in cancer research.
Collapse
|
13
|
Seifert HH, Meyer A, Cronauer MV, Hatina J, Müller M, Rieder H, Hoffmann MJ, Ackermann R, Schulz WA. A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol 2007; 25:297-302. [PMID: 17440731 DOI: 10.1007/s00345-007-0166-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/08/2007] [Indexed: 11/28/2022] Open
Abstract
Several bladder cancer culture systems have been developed in recent years. However, reports about successful primary cultures of superficial urothelial carcinomas (UC) are sparse. Based on the specific growth requirements of UC described previously, we developed a new and reliable culture system for superficial low-grade UC. Between November 2002 and April 2006, 64 primary cultures of bladder cancer specimens were performed. After incubating the specimens overnight in 0.1% ethylenediaminetetraacetic acid solution, tumour cells could easily be separated from the submucosal tissue. Subsequently, cells were seeded in a low-calcium culture medium supplemented with 1% serum, growth factors, non-essential amino acids and glycine. The malignant origin of the cultured cells was demonstrated by spectral karyotyping. Overall culture success rate leading to a homogenous tumour cell population without fibroblast contamination was 63%. Culture success could be remarkably enhanced by the addition of glycine to the culture medium. Interestingly, 86.4% of pTa tumours were cultured successfully compared to only 50% of the pT1 and 38% of advanced stage tumours, respectively. G1 and G2 tumours grew significantly better than G3 tumours (86, 73 and 41%, respectively). Up to three passages of low-grade UC primary cultures were possible. We describe a new and reliable culture system, which is highly successful for primary culture and passage of low-grade UC of the bladder. Therefore, this culture system can widely be used for functional experiments on early stage bladder cancer.
Collapse
Affiliation(s)
- Hans-Helge Seifert
- Department of Urology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kearney L. Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenet Genome Res 2006; 114:189-98. [PMID: 16954655 DOI: 10.1159/000094202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/06/2006] [Indexed: 01/08/2023] Open
Abstract
Multiplex FISH (M-FISH) represents one of the most significant developments in molecular cytogenetics of the past decade. Originally designed to generate 24 colour karyotyping, the technique has spawned many variations and an equally diverse range of applications. In tumour and leukaemia cytogenetics, the two groups that have been targeted represent both ends of the cytogenetic spectrum: those with an apparently normal karyotype (suspected of harbouring small rearrangements not detectable by conventional cytogenetics) and those with a complex aberrant karyotype (which are difficult to karyotype accurately due to the sheer number of aberrations). In research, mouse M-FISH provides a powerful tool to characterize mouse models of a disease. In addition, the ability to accurately karyotype single metaphases without selection makes M-FISH the perfect tool in chromosome breakage studies and for characterizing clonal evolution of tumours. Finally, M-FISH has emerged as the perfect partner for the developing genomic microarray (array CGH) technologies, providing a powerful approach to gene discovery.
Collapse
Affiliation(s)
- L Kearney
- Section of Haemato-Oncology, Institute of Cancer Research, London, UK.
| |
Collapse
|
15
|
Wu YP, Yang YL, Han YL, Xu X, Cai Y, Yang GZ, Wang XY, Zhan QM, Wu M, Wang MR. Identification of complex chromosome abnormalities in esophageal carcinoma cells KYSE450 by multicolor fluorescence in situ hybridization. Shijie Huaren Xiaohua Zazhi 2006; 14:747-751. [DOI: 10.11569/wcjd.v14.i8.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish the technique of multicolor fluorescence in situ hybridization (M-FISH) for identification of chromosome aberrations in esophageal carcinoma cell line KYSE450.
METHODS: Two pools of 12-color whole-chromosome painting (WCP) probes were designed and labeled by degenerate oligonucleotide primer-polymerase chain reaction (DOP-PCR). FISH was performed twice on the same metaphase spreads. The karyotype was analyzed by the combination of inverted DAPI banding and M-FISH.
RESULTS: Repetitive 12-color M-FISH was successfully established and the cytogenetic abnormalities in KYSE450 cells were characterized. There were 54 chromosomes in the cell line, but only those numbered 13, 21 and X were normal. DNA losses were observed at parts of chromosomes 4, 7, 11, 12, 18 and 19. Chromosomal gains and translocations occurred at chromosome 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18 and 19. Chromosome 22 showed monosomy, and no chromosomes 10, 20 and Y were detected.
CONCLUSION: The established 12-color M-FISH is useful for the analysis of chromosomes in the whole genome of human tumors. KYSE450 cell line presents multiple cytogenetic abnormalities, which are in accordance with those occurred in primary esophageal squamous cell carcinoma.
Collapse
|