1
|
Bozsik A, Butz H, Grolmusz VK, Pócza T, Patócs A, Papp J. Spectrum and genotyping strategies of "dark" genetic matter in germline susceptibility genes of tumor syndromes. Crit Rev Oncol Hematol 2025; 205:104549. [PMID: 39528122 DOI: 10.1016/j.critrevonc.2024.104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Despite the widespread use of high-throughput genotyping strategies, certain mutation types remain understudied. We provide an overview of these often overlooked mutation types, with representative examples from common hereditary cancer syndromes. METHODS We conducted a comprehensive review of the literature and locus-specific variant databases to summarize the germline pathogenic variants discovered through non-routine genotyping methods. We evaluated appropriate detection and analysis methods tailored for these specific genetic aberrations. Additionally, we performed in silico splice predictions on deep intronic variants registered in the ClinVar database. RESULTS Our study suggests that, aside from founder mutations, most cases are sporadic. However, we anticipate a relatively high likelihood of splice effects for deep intronic variants. The findings underscore the significant clinical utility of genome sequencing techniques and the importance of applying relevant analysis methods.
Collapse
Affiliation(s)
- Anikó Bozsik
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary.
| | - Henriett Butz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary; Department of Oncology Biobank, National Institute of Oncology, Budapest 1122, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary
| | - János Papp
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| |
Collapse
|
2
|
Miolo G, Marus W, Buonadonna A, Da Ros L, Della Puppa L, Corona G. Null Mismatch Repair Proteins Expression Reveals the Temporal Molecular Events in Lynch Syndrome-Related Cancers. Diagnostics (Basel) 2024; 14:888. [PMID: 38732303 PMCID: PMC11083082 DOI: 10.3390/diagnostics14090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The immunohistochemical assessment of mismatch repair (MMR) proteins represents a pivotal screening tool for identifying Lynch syndrome (LS)-related cancers, as the loss of their expression often indicates MMR dysfunction associated with genetic or epigenetic alterations. Frequently, LS-related colorectal cancers present germline pathogenic variants in the MLH1 or MSH2 genes, which result in the simultaneous immunohistochemical loss of MLH1 and PMS2 or MSH2 and MSH6 proteins expression, respectively. Less commonly observed is the single involvement of the MSH6 or PMS2 proteins expression, indicative of the presence of germline pathogenic variants in the corresponding genes. Extremely rarely reported are the null immunohistochemistry phenotypes represented by the complete loss of expression of all MMR proteins. The molecular mechanisms contributing to the raising of this latter uncommon immunohistochemical phenotype are derived from the combination of pathogenic germline variants in MMR genes with the somatic hypermethylation of the MLH1 gene promoter. This study focuses on elucidating the molecular cascade leading to the development of the null immunohistochemical phenotype, providing valuable insights into understanding the sequential molecular events driving the LS-associated tumorigenesis, which may have pivotal implications in the clinical management of patients with LS-related cancers.
Collapse
Affiliation(s)
- Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (L.D.R.)
| | - Wally Marus
- Pathology Unit, Department of Medicine Laboratory Section, Pordenone Hospital, 33170 Pordenone, Italy;
| | - Angela Buonadonna
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (L.D.R.)
| | - Lucia Da Ros
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (L.D.R.)
| | - Lara Della Puppa
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
3
|
Peltomäki P, Nyström M, Mecklin JP, Seppälä TT. Lynch Syndrome Genetics and Clinical Implications. Gastroenterology 2023; 164:783-799. [PMID: 36706841 DOI: 10.1053/j.gastro.2022.08.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Lynch syndrome (LS) is one of the most prevalent hereditary cancer syndromes in humans and accounts for some 3% of unselected patients with colorectal or endometrial cancer and 10%-15% of those with DNA mismatch repair-deficient tumors. Previous studies have established the genetic basis of LS predisposition, but there have been significant advances recently in the understanding of the molecular pathogenesis of LS tumors, which has important implications in clinical management. At the same time, immunotherapy has revolutionized the treatment of advanced cancers with DNA mismatch repair defects. We aim to review the recent progress in the LS field and discuss how the accumulating epidemiologic, clinical, and molecular information has contributed to a more accurate and complete picture of LS, resulting in genotype- and immunologic subtype-specific strategies for surveillance, cancer prevention, and treatment.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Toni T Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumor Genomics Research Programs Unit, University of Helsinki, Helsinki, Finland; Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Huang J, Stinnett V, Jiang L, Chen S, Rodriguez F, Gocke CD, Zou YS. Lynch syndrome caused by a novel deletion of the promoter and exons 1-13 of MLH1 gene. Cancer Genet 2022; 262-263:91-94. [PMID: 35149321 DOI: 10.1016/j.cancergen.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/26/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022]
Abstract
Lynch syndrome (LS) is the most common hereditary cancer syndrome involving multiple organ systems. The mutation patterns of the involved major DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6, and PMS2, have not been fully elucidated. Herein, we report a case of LS caused by a novel large deletion in the promoter and exons 1-13 of MLH1 gene. A 30 year-old male was admitted for dull abdominal pain for 5 months with family history significant for dominant familial colon cancer. Abdominal computed tomography (CT) revealed masses in colon, lung and liver. His-plasma CA19-9 was 1250 units/ml and CEA 133 ng/ml. Targeted liver biopsy showed metastatic adenocarcinoma. Immunocytochemically, the tumor cells were positive for CK20 and CDX2, and displayed loss of MLH1 and PMS2 expression but with intact MSH2 and MSH6 proteins. Next-generation sequencing of the liver metastasis demonstrated copy loss of MLH1 gene spanning exons 1 to 13. Further SNP array detected copy neutral loss of heterozygosity (CN-LOH) expanding the short arm of chromosome 3p21.3 to 3pter regions and a 219 kb deletion involving the promoter and first 13 exons of MLH1 gene (arr[GRCh37] 3p22.2(36,856,328_37075457)x1). Germline sequencing using a blood sample confirmed the deletion of the MLH gene including the promoter and this first 13 exons (NG_007109.2(NM_000249.3:c.(?_-198)_(1558+1_1559-1)del). In summary, we identified a novel MLH1 mutation pattern of partial deletion and CN-LOH causing LS.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA; Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Victoria Stinnett
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Liqun Jiang
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Supin Chen
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Fausto Rodriguez
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ying S Zou
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
5
|
Yamaguchi K, Kasajima R, Takane K, Hatakeyama S, Shimizu E, Yamaguchi R, Katayama K, Arai M, Ishioka C, Iwama T, Kaneko S, Matsubara N, Moriya Y, Nomizu T, Sugano K, Tamura K, Tomita N, Yoshida T, Sugihara K, Nakamura Y, Miyano S, Imoto S, Furukawa Y, Ikenoue T. Application of targeted nanopore sequencing for the screening and determination of structural variants in patients with Lynch syndrome. J Hum Genet 2021; 66:1053-1060. [PMID: 33958709 DOI: 10.1038/s10038-021-00927-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022]
Abstract
Lynch syndrome is a hereditary disease characterized by an increased risk of colorectal and other cancers. Germline variants in the mismatch repair (MMR) genes are responsible for this disease. Previously, we screened the MMR genes in colorectal cancer patients who fulfilled modified Amsterdam II criteria, and multiplex ligation-dependent probe amplification (MPLA) identified 11 structural variants (SVs) of MLH1 and MSH2 in 17 patients. In this study, we have tested the efficacy of long read-sequencing coupled with target enrichment for the determination of SVs and their breakpoints. DNA was captured by array probes designed to hybridize with target regions including four MMR genes and then sequenced using MinION, a nanopore sequencing platform. Approximately, 1000-fold coverage was obtained in the target regions compared with other regions. Application of this system to four test cases among the 17 patients correctly mapped the breakpoints. In addition, we newly found a deletion across an 84 kb region of MSH2 in a case without the pathogenic single nucleotide variants. These data suggest that long read-sequencing combined with hybridization-based enrichment is an efficient method to identify both SVs and their breakpoints. This strategy might replace MLPA for the screening of SVs in hereditary diseases.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Rika Kasajima
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa, 241-8518, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Rui Yamaguchi
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Aichi, 464-8681, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masami Arai
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Chikashi Ishioka
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Takeo Iwama
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Satoshi Kaneko
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Nagahide Matsubara
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Yoshihiro Moriya
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Tadashi Nomizu
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Kokichi Sugano
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Kazuo Tamura
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Naohiro Tomita
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Teruhiko Yoshida
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Kenichi Sugihara
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Satoru Miyano
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Systems Biology for Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan.
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
6
|
Levine MD, Pearlman R, Hampel H, Cosgrove C, Cohn D, Chassen A, Suarez A, Barrington DA, McElroy JP, Waggoner S, Nakayama J, Billingsley C, Resnick K, Andrews S, Singh S, Jenison E, Clements A, Neff R, Goodfellow PJ. Up-Front Multigene Panel Testing for Cancer Susceptibility in Patients With Newly Diagnosed Endometrial Cancer: A Multicenter Prospective Study. JCO Precis Oncol 2021; 5:1588-1602. [PMID: 34994648 PMCID: PMC9848552 DOI: 10.1200/po.21.00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Clinical utility of up-front multigene panel testing (MGPT) is directly related to the frequency of pathogenic variants (PVs) in the population screened and how genetic findings can be used to guide treatment decision making and cancer prevention efforts. The benefit of MGPT for many common malignancies remains to be determined. In this study, we evaluated up-front MGPT in unselected patients with endometrial cancer (EC) to determine the frequency of PVs in cancer susceptibility genes. METHODS Patients with EC were prospectively enrolled at nine Ohio institutions from October 1, 2017, to December 31, 2020. Nine hundred and sixty-one patients with newly diagnosed EC underwent clinical germline MGPT for 47 cancer susceptibility genes. In addition to estimating the prevalence of germline PVs, the number of individuals identified with Lynch syndrome (LS) was compared between MGPT and tumor-based screening. RESULTS Likely pathogenic variants or PVs were identified in 97 of 961 women (10.1%). LS was diagnosed in 29 of 961 patients (3%; 95% CI, 2.1 to 4.3), with PVs in PMS2 most frequent. MGPT revealed nine patients with LS in addition to the 20 identified through routine tumor-based screening. BRCA1 and BRCA2 PVs were found in 1% (10 of 961; 95% CI, 0.6 to 1.9) of patients and that group was significantly enriched for type II ECs. CONCLUSION This prospective, multicenter study revealed potentially actionable germline variants in 10% of unselected women with newly diagnosed EC, supporting the use of up-front MGPT for all EC patients. The discovery that BRCA1 or BRCA2 heterozygotes frequently had type II cancers points to therapeutic opportunities for women with aggressive histologic EC subtypes.
Collapse
Affiliation(s)
- Monica D. Levine
- Division of Gynecologic Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, OH
| | - Rachel Pearlman
- Division of Human Genetics, The Ohio State
University Comprehensive Cancer Center, Columbus, OH
| | - Heather Hampel
- Division of Human Genetics, The Ohio State
University Comprehensive Cancer Center, Columbus, OH
| | - Casey Cosgrove
- Division of Gynecologic Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, OH
| | - David Cohn
- Division of Gynecologic Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, OH
| | - Alexis Chassen
- Division of Gynecologic Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, OH
| | - Adrian Suarez
- Department of Pathology, The Ohio State
University Comprehensive Cancer Center, Columbus, OH
| | - David A. Barrington
- Division of Gynecologic Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, OH
| | - Joseph P. McElroy
- Center for Biostatistics, Department of
Biomedical Informatics, The Ohio State University College of Medicine, Columbus,
OH
| | - Steven Waggoner
- Division of Gynecologic Oncology,
University Hospitals Seidman Cancer Center, Cleveland, OH
| | - John Nakayama
- Division of Gynecologic Oncology,
University Hospitals Seidman Cancer Center, Cleveland, OH
| | | | - Kim Resnick
- Division of Gynecologic Oncology,
MetroHealth, Cleveland, OH
| | | | - Sareena Singh
- Division of Gynecologic Oncology, Aultman
Hospital, Canton, OH
| | - Eric Jenison
- Division of Gynecologic Oncology, Mercy
Toledo, Toledo, OH
| | - Aine Clements
- Division of Gynecologic Oncology,
OhioHealth, Columbus, OH
| | - Robert Neff
- Division of Gynecologic Oncology,
TriHealth, Cincinnati, OH
| | - Paul J. Goodfellow
- Division of Gynecologic Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
7
|
Natsume S, Yamaguchi T, Eguchi H, Okazaki Y, Horiguchi SI, Ishida H. Germline deletion of chromosome 2p16-21 associated with Lynch syndrome. Hum Genome Var 2021; 8:19. [PMID: 34012011 PMCID: PMC8134480 DOI: 10.1038/s41439-021-00152-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
We identified a Japanese patient with Lynch syndrome with a novel large germline deletion of chromosome 2p16-21, including the EPCAM, MSH2, and KCNK12 genes. The proband was a 46-year-old man with ascending colon cancer. The clinical significance of germline KCNK12 gene deletion, which encodes one of the subfamilies of two-pore-domain potassium channels, is still unknown.
Collapse
Affiliation(s)
- Soichiro Natsume
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan. .,Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.
| | - Hidetaka Eguchi
- Diagnosis and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnosis and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
8
|
Pócza T, Grolmusz VK, Papp J, Butz H, Patócs A, Bozsik A. Germline Structural Variations in Cancer Predisposition Genes. Front Genet 2021; 12:634217. [PMID: 33936164 PMCID: PMC8081352 DOI: 10.3389/fgene.2021.634217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to single nucleotide variations and small-scale indels, structural variations (SVs) also contribute to the genetic diversity of the genome. SVs, such as deletions, duplications, amplifications, or inversions may also affect coding regions of cancer-predisposing genes. These rearrangements may abrogate the open reading frame of these genes or adversely affect their expression and may thus act as germline mutations in hereditary cancer syndromes. With the capacity of disrupting the function of tumor suppressors, structural variations confer an increased risk of cancer and account for a remarkable fraction of heritability. The development of sequencing techniques enables the discovery of a constantly growing number of SVs of various types in cancer predisposition genes (CPGs). Here, we provide a comprehensive review of the landscape of germline SV types, detection methods, pathomechanisms, and frequency in CPGs, focusing on the two most common cancer syndromes: hereditary breast- and ovarian cancer and gastrointestinal cancers. Current knowledge about the possible molecular mechanisms driving to SVs is also summarized.
Collapse
Affiliation(s)
- Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Zheng H, Yuan M, Wu H, Chen R, Gao Y. Case Report: Double Germline Mutations in BRCA1 and MSH2 in a Patient With Mixed Serous-Endometrioid Endometrial Carcinoma. Front Med (Lausanne) 2020; 7:581982. [PMID: 33224963 PMCID: PMC7670051 DOI: 10.3389/fmed.2020.581982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Mixed serous-endometrioid endometrial carcinoma is a type of endometrial cancer with relatively low incidence. The genetic factors contributing to the tumorigenesis of mixed carcinoma remains to be explored. Here, we report the first identification of two germline mutations in BRCA1 and MSH2 in a woman with mixed serous papillary adenocarcinoma and endometrioid carcinoma. Immunohistochemistry analysis showed loss of MSH2 and MSH6 protein expression in the endometrioid component. The patient showed partial response to tislelizumab treatment following progression on chemotherapy. Two germline mutations in BRCA1 and MSH2 may collectively promote the tumorigenesis of uterine endometrium with two distinct histological components.
Collapse
Affiliation(s)
- Hong Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gynecology, Peking University Cancer Hospital & Institute, Beijing, China
| | | | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yunong Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gynecology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
10
|
Blesa S, Olivares MD, Alic AS, Serrano A, Lendinez V, González-Albert V, Olivares L, Martínez-Hervás S, Juanes JM, Marín P, Real JT, Navarro B, García-García AB, Chaves FJ, Ivorra C. Easy One-Step Amplification and Labeling Procedure for Copy Number Variation Detection. Clin Chem 2020; 66:463-473. [PMID: 32068788 DOI: 10.1093/clinchem/hvaa002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The specific characteristics of copy number variations (CNVs) require specific methods of detection and characterization. We developed the Easy One-Step Amplification and Labeling procedure for CNV detection (EOSAL-CNV), a new method based on proportional amplification and labeling of amplicons in 1 PCR. METHODS We used tailed primers for specific amplification and a pair of labeling probes (only 1 labeled) for amplification and labeling of all amplicons in just 1 reaction. Products were loaded directly onto a capillary DNA sequencer for fragment sizing and quantification. Data obtained could be analyzed by Microsoft Excel spreadsheet or EOSAL-CNV analysis software. We developed the protocol using the LDLR (low density lipoprotein receptor) gene including 23 samples with 8 different CNVs. After optimizing the protocol, it was used for genes in the following multiplexes: BRCA1 (BRCA1 DNA repair associated), BRCA2 (BRCA2 DNA repair associated), CHEK2 (checkpoint kinase 2), MLH1 (mutL homolog 1) plus MSH6 (mutS homolog 6), MSH2 (mutS homolog 2) plus EPCAM (epithelial cell adhesion molecule) and chromosome 17 (especially the TP53 [tumor protein 53] gene). We compared our procedure with multiplex ligation-dependent probe amplification (MLPA). RESULTS The simple procedure for CNV detection required 150 min, with <10 min of handwork. After analyzing >240 samples, EOSAL-CNV excluded the presence of CNVs in all controls, and in all cases, results were identical using MLPA and EOSAL-CNV. Analysis of the 17p region in tumor samples showed 100% similarity between fluorescent in situ hybridization and EOSAL-CNV. CONCLUSIONS EOSAL-CNV allowed reliable, fast, easy detection and characterization of CNVs. It provides an alternative to targeted analysis methods such as MLPA.
Collapse
Affiliation(s)
- Sebastián Blesa
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - María D Olivares
- I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain
| | - Andy S Alic
- I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain
| | - Alicia Serrano
- Hematology Department, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain.,Physiology Department, University of Valencia (FD, UV), Valencia, Valencian Community, Spain
| | - Verónica Lendinez
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Verónica González-Albert
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Laura Olivares
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Sergio Martínez-Hervás
- Endocrinology Service, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain
| | - José M Juanes
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Pablo Marín
- Computational and Clinical Genomics Department, Kanteron Systems SLU (CCGD, Kanteron), Valencia, Valencian Community, Spain
| | - Jose T Real
- Endocrinology Service, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain.,Department of Medicine, University of Valencia (DM; UV), Valencia, Valencian Community, Spain
| | - Blanca Navarro
- Hematology Department, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain.,Physiology Department, University of Valencia (FD, UV), Valencia, Valencian Community, Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Autonomous Community of Madrid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain.,I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Autonomous Community of Madrid, Spain
| | - Carmen Ivorra
- I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain
| |
Collapse
|
11
|
Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation. Eur J Hum Genet 2020; 29:99-109. [PMID: 32591635 DOI: 10.1038/s41431-020-0672-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow .
Collapse
|
12
|
Mohd Yunos RI, Ab Mutalib NS, Tieng FYF, Abu N, Jamal R. Actionable Potentials of Less Frequently Mutated Genes in Colorectal Cancer and Their Roles in Precision Medicine. Biomolecules 2020; 10:biom10030476. [PMID: 32245111 PMCID: PMC7175115 DOI: 10.3390/biom10030476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Global statistics have placed colorectal cancer (CRC) as the third most frequently diagnosed cancer and the fourth principal cause of cancer-related deaths worldwide. Improving survival for CRC is as important as early detection. Personalized medicine is important in maximizing an individual's treatment success and minimizing the risk of adverse reactions. Approaches in achieving personalized therapy in CRC have included analyses of specific genes with its clinical implications. Tumour genotyping via next-generation sequencing has become a standard practice to guide clinicians into predicting tumor behaviour, disease prognosis, and treatment response. Nevertheless, better prognostic markers are necessary to further stratify patients for personalized treatment plans. The discovery of new markers remains indispensable in providing the most effective chemotherapy in order to improve the outcomes of treatment and survival in CRC patients. This review aims to compile and discuss newly discovered, less frequently mutated genes in CRC. We also discuss how these mutations are being used to assist therapeutic decisions and their potential prospective clinical utilities. In addition, we will summarize the importance of profiling the large genomic rearrangements, gene amplification, and large deletions and how these alterations may assist in determining the best treatment option for CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Rahman Jamal
- Correspondence: (N.S.A.M.); (R.J.); Tel.: +60-3-91459073 (N.S.A.M.); +60-3-91459000 (R.J.)
| |
Collapse
|
13
|
Machnik M, Oleksiewicz U. Dynamic Signatures of the Epigenome: Friend or Foe? Cells 2020; 9:cells9030653. [PMID: 32156057 PMCID: PMC7140607 DOI: 10.3390/cells9030653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Highly dynamic epigenetic signaling is influenced mainly by (micro)environmental stimuli and genetic factors. The exact mechanisms affecting particular epigenomic patterns differ dependently on the context. In the current review, we focus on the causes and effects of the dynamic signatures of the human epigenome as evaluated with the high-throughput profiling data and single-gene approaches. We will discuss three different aspects of phenotypic outcomes occurring as a consequence of epigenetics interplaying with genotype and environment. The first issue is related to the cases of environmental impacts on epigenetic profile, and its adverse and advantageous effects related to human health and evolutionary adaptation. The next topic will present a model of the interwoven co-evolution of genetic and epigenetic patterns exemplified with transposable elements (TEs) and their epigenetic repressors Krüppel-associated box zinc finger proteins (KRAB–ZNFs). The third aspect concentrates on the mitosis-based microevolution that takes place during carcinogenesis, leading to clonal diversity and expansion of tumor cells. The whole picture of epigenome plasticity and its role in distinct biological processes is still incomplete. However, accumulating data define epigenomic dynamics as an essential co-factor driving adaptation at the cellular and inter-species levels with a benefit or disadvantage to the host.
Collapse
Affiliation(s)
- Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence:
| |
Collapse
|
14
|
Picó MD, Castillejo A, Murcia Ó, Giner-Calabuig M, Alustiza M, Sánchez A, Moreira L, Pellise M, Castells A, Carrillo-Palau M, Ramon Y Cajal T, Gisbert-Beamud A, Llort G, Yagüe C, López-Fernández A, Alvarez-Urturi C, Cubiella J, Rivas L, Rodríguez-Alcalde D, Herraiz M, Garau C, Dolz C, Bujanda L, Cid L, Povés C, Garzon M, Salces I, Ponce M, Hernández-Villalba L, Alenda C, Balaguer F, Soto JL, Jover R. Clinical and Pathological Characterization of Lynch-Like Syndrome. Clin Gastroenterol Hepatol 2020; 18:368-374.e1. [PMID: 31220642 DOI: 10.1016/j.cgh.2019.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Lynch syndrome is characterized by DNA mismatch repair (MMR) deficiency. Some patients with suspected Lynch syndrome have DNA MMR deficiencies but no detectable mutations in genes that encode MMR proteins-this is called Lynch-like syndrome (LLS). There is no consensus on management of patients with LLS. We collected data from a large series of patients with LLS to identify clinical and pathology features. METHODS We collected data from a nationwide-registry of patients with colorectal cancer (CRC) in Spain. We identified patients whose colorectal tumors had loss of MSH2, MSH6, PMS2, or MLH1 (based on immunohistochemistry), without the mutation encoding V600E in BRAF (detected by real-time PCR), and/or no methylation at MLH1 (determined by methylation-specific multiplex ligation-dependent probe amplification), and no pathogenic mutations in MMR genes, BRAF, or EPCAM (determined by DNA sequencing). These patients were considered to have LLS. We collected data on demographic, clinical, and pathology features and family history of neoplasms. The χ2 test was used to analyze the association between qualitative variables, followed by the Fisher exact test and the Student t test or the Mann-Whitney test for quantitative variables. RESULTS We identified 160 patients with LLS; their mean age at diagnosis of CRC was 55 years and 66 patients were female (41%). The Amsterdam I and II criteria for Lynch syndrome were fulfilled by 11% of cases and the revised Bethesda guideline criteria by 65% of cases. Of the patients with LLS, 24% were identified in universal screening. There were no proportional differences in sex, indication for colonoscopy, immunohistochemistry, pathology findings, or personal history of CRC or other Lynch syndrome-related tumors between patients who met the Amsterdam and/or Bethesda criteria for Lynch syndrome and patients identified in universal screening for Lynch syndrome, without a family history of CRC. CONCLUSIONS Patients with LLS have homogeneous clinical, demographic, and pathology characteristics, regardless of family history of CRC.
Collapse
Affiliation(s)
- María Dolores Picó
- Servicio de Medicina Digestiva, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - Adela Castillejo
- Unidad de Genética Molecular, Hospital General Universitario de Elche, Alicante, Spain
| | - Óscar Murcia
- Servicio de Medicina Digestiva. Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria ISABIAL, Alicante, Spain
| | - Mar Giner-Calabuig
- Servicio de Medicina Digestiva. Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria ISABIAL, Alicante, Spain
| | - Miren Alustiza
- Servicio de Medicina Digestiva. Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria ISABIAL, Alicante, Spain
| | - Ariadna Sánchez
- Unidad de Gastroenterología, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Unidad de Gastroenterología, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - María Pellise
- Unidad de Gastroenterología, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Antoni Castells
- Unidad de Gastroenterología, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Marta Carrillo-Palau
- Servicio de Medicina Digestiva, Hospital Universitario de Canarias, Tenerife, Spain
| | - Teresa Ramon Y Cajal
- Servicio de Medicina Digestiva, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Gemma Llort
- Servicio de Oncología Médica, Parc Taulí, Hospital Universitari Parc Taulí, Sabadell, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| | - Carmen Yagüe
- Servicio de Oncología Médica, Parc Taulí, Hospital Universitari Parc Taulí, Sabadell, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| | - Adriá López-Fernández
- Unidad de Alto Riesgo y Prevención del Cáncer, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Cristina Alvarez-Urturi
- Servicio de Medicina Digestiva, Hospital del Mar, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joaquin Cubiella
- Departamento de Gastroenterología, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, CIBERehd, Ourense, Spain
| | - Laura Rivas
- Departamento de Gastroenterología, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, CIBERehd, Ourense, Spain
| | | | - Maite Herraiz
- Departamento de Digestivo, Clínica Universitaria de Navarra, Navarra, Spain
| | - Catalina Garau
- Servicio de Medicina Digestiva, Hospital de Son Llàtzer, Palma de Mallorca, Spain
| | - Carlos Dolz
- Servicio de Medicina Digestiva, Hospital de Son Llàtzer, Palma de Mallorca, Spain
| | - Luis Bujanda
- Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd). Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Lucia Cid
- Servicio de Medicina Digestiva, Hospital Álvaro Cunqueiro de Vigo, Vigo, Spain
| | - Carmen Povés
- Servicio de Medicina Digestiva, Hospital Clínico de San Carlos, Madrid, Spain
| | - Marta Garzon
- Servicio de Medicina Digestiva, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Inmaculada Salces
- Servicio de Medicina Digestiva, Hospital 12 de Octubre, Madrid, Spain
| | - Marta Ponce
- Servicio de Medicina Digestiva, Hospital Universitari i Politècnic de la Fe, Valencia, Spain
| | | | - Cristina Alenda
- Servicio de Anatomía Patológica, Hospital General Universitario de Alicante, Alicante, Spain
| | - Francesc Balaguer
- Unidad de Gastroenterología, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Jose-Luis Soto
- Unidad de Genética Molecular, Hospital General Universitario de Elche, Alicante, Spain
| | - Rodrigo Jover
- Servicio de Medicina Digestiva. Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria ISABIAL, Alicante, Spain.
| |
Collapse
|
15
|
Liccardo R, Della Ragione C, Mitilini N, De Rosa M, Izzo P, Duraturo F. Novel variants of unknown significance in the PMS2 gene identified in patients with hereditary colon cancer. Cancer Manag Res 2019; 11:6719-6725. [PMID: 31410062 PMCID: PMC6645597 DOI: 10.2147/cmar.s167348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Lynch syndrome is associated with genetic variants in mismatch repair (MMR) genes. Pathogenic variants in the MLH1 and MSH2 genes occur in most families in which the phenotype is highly penetrant. These testing criteria are likely to miss individuals with Lynch syndrome due to the less penetrant MMR genes, such as MSH6, MLH3, MSH3, and PMS2. So far, several mutations in the PMS2 gene have been described as responsible for the clinical manifestation of Lynch syndrome. Recent data have reported that families with atypical Lynch phenotype were found to have primarily monoallelic mutations in the PMS2 gene. Methods: We analyzed the PMS2 gene to detect mutations in members of 64 Lynch syndrome families by direct sequencing. Results: We report the identification of several genetic variants in patients with LS, of which three are novel variants. The carriers of these novel variants were also carried of other variants in PMS2 gene and/or in other MMR genes. Conclusion: Therefore, we think that these novel PMS2 variants may act in additive manner to manifestation LS phenotype.
Collapse
Affiliation(s)
- Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Nunzio Mitilini
- UOC Pathological Anatomy, AORN "A. Cardarelli", Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
16
|
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, Cole T, Pinsk V, Yerushalmi B, Gurkan OE, Yourshaw M, Hernandez E, Oesterreicher S, Naik S, Sanderson IR, Axelsson I, Agardh D, Boland CR, Martin MG, Putnam CD, Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 2019; 40:142-161. [PMID: 30461124 PMCID: PMC6328345 DOI: 10.1002/humu.23688] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022]
Abstract
The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane-bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3' end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556-14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype-phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.
Collapse
Affiliation(s)
- Sagar J. Pathak
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Rady Children's HospitalSan DiegoCalifornia
| | - James L. Mueller
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Kevin Okamoto
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Barun Das
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Jozef Hertecant
- Genetics/Metabolics ServiceTawam HospitalAl AinUnited Arab Emirates
| | | | - Trevor Cole
- West Midlands Regional Genetics Service and Birmingham Health PartnersBirmingham Women's HospitalBirminghamUK
| | - Vered Pinsk
- Division of Pediatrics, Pediatric Gastroenterology UnitSoroka University Medical Center and Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Baruch Yerushalmi
- Division of Pediatrics, Pediatric Gastroenterology UnitSoroka University Medical Center and Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Odul E. Gurkan
- Department of PediatricsGazi University School of MedicineAnkaraTurkey
| | - Michael Yourshaw
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesCalifornia
| | - Erick Hernandez
- Pediatric GastroenterologyMiami Children's Health SystemMiamiFlorida
| | | | - Sandhia Naik
- Paediatric GastroenterologyBarts and the London School of MedicineLondonUK
| | - Ian R. Sanderson
- Paediatric GastroenterologyBarts and the London School of MedicineLondonUK
| | - Irene Axelsson
- Department of PediatricsSkane University HospitalMalmoSweden
| | - Daniel Agardh
- Department of Clinical SciencesLund University, Skane University HospitalMalmoSweden
| | - C. Richard Boland
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Martin G. Martin
- Department of PediatricsUniversity of California, Los AngelesLos AngelesCalifornia
| | - Christopher D. Putnam
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
- San Diego BranchLudwig Institute for Cancer ResearchLa JollaCalifornia
| | - Mamata Sivagnanam
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Rady Children's HospitalSan DiegoCalifornia
| |
Collapse
|
17
|
Two-stain immunohistochemical screening for Lynch syndrome in colorectal cancer may fail to detect mismatch repair deficiency. Mod Pathol 2018; 31:1891-1900. [PMID: 29967423 PMCID: PMC6800091 DOI: 10.1038/s41379-018-0058-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Universal screening for Lynch syndrome in colorectal cancer is recommended, and immunohistochemistry for the mismatch repair proteins is commonly used. To reduce cost, some screen using only MSH6 and PMS2, with reflex to the partner stain if either are absent (two-stain method). An expression pattern revealing absent MSH2 and intact MSH6 is not expected, but could result in failed Lynch syndrome detection. We analyzed tumors with absent MSH2 but any degree of MSH6 expression to determine if the two-stain method could miss MSH2 mutations. One-thousand seven-hundred thirty colorectal cancer patients from the Ohio Colorectal Cancer Prevention Initiative underwent tumor screening using microsatellite instability and immunohistochemistry. The two-stain method was used for 1235 cases; staining for all four proteins was completed for 495 cases. The proportion of positive cells and staining intensity were reviewed for MSH6, as well as MSH2 when available. Patients with mismatch repair deficiency underwent next-generation sequencing of germline DNA for mismatch repair genes. If negative, tumor next-generation sequencing was performed to assess for somatic mutations. Overall, thirty-three (1.9%, 33/1730) MSH2-absent cases were identified. Of those, fourteen had no MSH6 expression but eight (0.5%, 8/1730) had ambiguous and eleven (0.6%, 11/1730) had convincing MSH6 expression that could have been interpreted as intact. Germline next-generation sequencing identified MSH2 mutations in 11/14 cases with absence of both stains, 7/8 cases with ambiguous MSH6 expression, and 9/11 cases with convincing MSH6 expression. All remaining cases, except one, had double somatic mutations. The two-stain method fails to detect some patients with Lynch syndrome: (1) significant staining weaker than the control may be incorrectly interpreted as intact MSH6, or (2) Weak or focal/patchy MSH6 can be retained with the absence of MSH2. Accordingly, we recommend the four-stain method be used for optimal Lynch syndrome screening detection.
Collapse
|
18
|
Diversity of genetic events associated with MLH1 promoter methylation in Lynch syndrome families with heritable constitutional epimutation. Genet Med 2018; 20:1589-1599. [DOI: 10.1038/gim.2018.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
|
19
|
Schneider NB, Pastor T, de Paula AE, Achatz MI, dos Santos ÂR, Vianna FSL, Rosset C, Pinheiro M, Ashton‐Prolla P, Moreira MÂM, Palmero EI, Brazilian Lynch Syndrome Study Group SilvaPatrícia SantosKoehler‐SantosPatríciaCossioSilvia LilianaNettoCristinada SilvaGustavo StumpfVargasFernando Reglade LimaMaria AngélicaScapulatempo‐NetoCristovamReisRui ManuelCarvalhoAndré LopesPintoCarlaTeixeiraManuel RuiVianaDanilo VilelaRossiBenedito MauroOliveiraJunea CarisGalvãoHenrique CamposAssumpçãoPauloIshakGeraldoLima JúniorSérgio. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome. Cancer Med 2018; 7:2078-2088. [PMID: 29575718 PMCID: PMC5943474 DOI: 10.1002/cam4.1316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome, caused by germline mutations in one of the major genes involved in mismatch repair (MMR): MLH1,MSH2,MSH6 and more rarely, PMS2. Recently, germline deletions in EPCAM have been also associated to the syndrome. Most of the pathogenic MMR mutations found in LS families occur in MLH1 or MSH2. Gene variants include missense, nonsense, frameshift mutations, large genomic rearrangements and splice‐site variants and most of the studies reporting the molecular characterization of LS families have been conducted outside South America. In this study, we analyzed 60 unrelated probands diagnosed with colorectal cancer and LS criteria. Testing for germline mutations and/or rearrangements in the most commonly affected MMR genes (MLH1, MSH2, EPCAM and MSH6) was done by Sanger sequencing and MLPA. Pathogenic or likely pathogenic variants were identified in MLH1 or MSH2 in 21 probands (35.0%). Of these, approximately one‐third were gene rearrangements. In addition, nine variants of uncertain significance (VUS) were identified in 10 (16.6%) of the sixty probands analyzed. Other four novel variants were identified, only in MLH1. Our results suggest that MSH6 pathogenic variants are not common among Brazilian LS probands diagnosed with CRC and that MMR gene rearrangements account for a significant proportion of the germline variants in this population underscoring the need to include rearrangement analysis in the molecular testing of Brazilian individuals with suspected Lynch syndrome.
Collapse
Affiliation(s)
- Nayê Balzan Schneider
- Laboratório de Medicina GenômicaCentro de Pesquisa ExperimentalHospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós Graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Tatiane Pastor
- Genetics ProgramInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | - Maria Isabel Achatz
- AC Camargo Cancer CenterSão PauloBrazil
- Clinical Genetics BranchDivision of Cancer Epidemiology and GeneticsDepartment of Health and Human ServicesNational Cancer InstituteNational Institutes of HealthBethesdaMaryland
| | - Ândrea Ribeiro dos Santos
- Núcleo de Pesquisas Oncológicas and Laboratório de Genética Humana e MédicaUniversidade Federal do Pará Universidade Federal do Pará (UFPA)BelémBrazil
| | - Fernanda Sales Luiz Vianna
- Laboratório de Pesquisa em Bioética e Ética na Ciência‐ LAPEBEC ‐ Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Clévia Rosset
- Laboratório de Medicina GenômicaCentro de Pesquisa ExperimentalHospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós Graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Manuela Pinheiro
- Serviço de GenéticaInstituto Português de Oncologia do Porto (IPO Porto)PortoPortugal
| | - Patricia Ashton‐Prolla
- Laboratório de Medicina GenômicaCentro de Pesquisa ExperimentalHospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós Graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | | | - Edenir Inêz Palmero
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Barretos School of Health SciencesDr. Paulo Prata – FACISBBarretosBrazil
| | | |
Collapse
|
20
|
Zheng J, Huang B, Nie X, Zhu Y, Han N, Li Y. The clinicopathological features and prognosis of tumor MSI in East Asian colorectal cancer patients using NCI panel. Future Oncol 2018; 14:1355-1364. [PMID: 29366338 DOI: 10.2217/fon-2017-0662] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM To compare test results obtained from a PCR assay for the National Cancer Institute (NCI) five loci criteria for detecting microsatellite instability (MSI) with those obtained from immunohistochemistry of mismatch repair and a five-mononucleotide site amplification system in East Asian patients with colorectal cancer. PATIENTS & METHODS A total of 245 East Asian patients with colorectal cancer were studied retrospectively at our institution. RESULTS The consistency of the NCI panel PCR method compared with detection of mismatch repair protein expression by immunohistochemistry was 0.898. High level MSI (MSI-H) status was correlated with the Tumor, Node, Metastasis stage, tumor location site, metastasis, tumor grade, mucinous histological type and BRAF-type mutations. CONCLUSION The NCI panel PCR assay has excellent sensitivity and specificity for detecting MSI in an East Asian population.
Collapse
Affiliation(s)
- Jianmin Zheng
- Department of Pathology, Changhai Hospital of Shanghai, 168 Changhai Road, Shanghai 200433, PR China
| | - Bangxing Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China
| | - Yan Zhu
- Department of Pathology, Changhai Hospital of Shanghai, 168 Changhai Road, Shanghai 200433, PR China
| | - Ningning Han
- Department of Clinical Medicine, Shanghai Tongshu Biotech Co. Ltd, Shanghai 200120, PR China
| | - Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China
| |
Collapse
|
21
|
First description of mutational analysis of MLH1, MSH2 and MSH6 in Algerian families with suspected Lynch syndrome. Fam Cancer 2017; 16:57-66. [PMID: 27468915 DOI: 10.1007/s10689-016-9917-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disorder characterized by the early onset of colorectal cancer (CRC) linked to germline defects in Mismatch Repair (MMR) genes. We present here, the first molecular study of the correlation between CRC and mutations occurring in these genes performed in twenty-one unrelated Algerian families. The presence of germline mutations in MMR genes, MLH1, MSH2 and MSH6 genes was tested by sequencing all exons plus adjacent intronic sequences and Multiplex ligand-dependent probe amplification (MLPA) for testing large genomic rearrangements. Pathogenic mutations were identified in 20 % of families with clinical suspicion on HNPCC. Two novel variants described for the first time in Algerian families were identified in MLH1, c.881_884delTCAGinsCATTCCT and a large deletion in MSH6 gene from a young onset of CRC. Moreover, the variants of MSH2 gene: c.942+3A>T, c.1030C>T, the most described ones, were also detected in Algerian families. Furthermore, the families HNPCC caused by MSH6 germline mutation may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations. In this study, we confirmed that MSH2, MLH1, and MSH6 contribute to CRC susceptibility. This work represents the implementation of a diagnostic algorithm for the identification of Lynch syndrome patients in Algerian families.
Collapse
|
22
|
Abstract
Four main DNA mismatch repair (MMR) genes have been identified, MLH1, MSH2, MSH6, and PMS2, which when mutated cause susceptibility to Lynch syndrome (LS). LS is one of the most prevalent hereditary cancer syndromes in man and accounts for 1–3 % of unselected colorectal carcinomas and some 15 % of those with microsatellite instability and/or absent MMR protein. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) maintains a database for LS-associated mutations since 1996. The database was recently reorganized to efficiently gather published and unpublished data and to classify the variants according to a five-tiered scheme linked to clinical recommendations. This review provides an update of germline mutations causing susceptibility to LS based on information available in the InSiGHT database and the latest literature. MMR gene mutation profiles, correlations between genotype and phenotype, and possible mechanisms leading to the characteristic spectrum of tumors in LS are discussed in light of the different functions of MMR proteins, many of which directly serve cancer avoidance.
Collapse
|
23
|
The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol 2017; 116:38-57. [PMID: 28693799 DOI: 10.1016/j.critrevonc.2017.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/02/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal Cancer (CRC) is the third most prevalent cancer in men and women. Up to 15% of CRCs display microsatellite instability (MSI). MSI is reflective of a deficient mismatch repair (MMR) system and is most commonly caused by hypermethylation of the MLH1 promoter. However, it may also be due to autosomal dominant constitutional mutations in DNA MMR, termed Lynch Syndrome. MSI may be diagnosed via polymerase chain reaction (PCR) or alternatively, immunohistochemistry (IHC) can identify MMR deficiency (dMMR). Many institutions now advocate universal tumor screening of CRC via either PCR for MSI or IHC for dMMR to guide Lynch Syndrome testing. The association of sporadic MSI with methylation of the MLH1 promoter and an activating BRAF mutation may offer further exclusion criteria for genetic testing. Aside from screening for Lynch syndrome, MMR testing is important because of its prognostic and therapeutic implications. Several studies have shown MSI CRCs exhibit different clinicopathological features and prognosis compared to microsatellite-stable (MSS) CRCs. For example, response to conventional chemotherapy has been reported to be less in MSI tumours. More recently, MSI tumours have been shown to be responsive to immune-checkpoint inhibition providing a novel therapeutic strategy. This provides a rationale for routine testing for MSI or dMMR in CRC.
Collapse
|
24
|
van der Klift HM, Mensenkamp AR, Drost M, Bik EC, Vos YJ, Gille HJJP, Redeker BEJW, Tiersma Y, Zonneveld JBM, García EG, Letteboer TGW, Olderode-Berends MJW, van Hest LP, van Os TA, Verhoef S, Wagner A, van Asperen CJ, Ten Broeke SW, Hes FJ, de Wind N, Nielsen M, Devilee P, Ligtenberg MJL, Wijnen JT, Tops CMJ. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome. Hum Mutat 2016; 37:1162-1179. [PMID: 27435373 DOI: 10.1002/humu.23052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers.
Collapse
Affiliation(s)
- Heleen M van der Klift
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Drost
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Elsa C Bik
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yvonne J Vos
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans J J P Gille
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Bert E J W Redeker
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Yvonne Tiersma
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - José B M Zonneveld
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Encarna Gómez García
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tom G W Letteboer
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maran J W Olderode-Berends
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liselotte P van Hest
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Theo A van Os
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Senno Verhoef
- Netherlands Cancer Institute, Amsterdam, The Netherlands.,Clinical Genetics Service, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sanne W Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juul T Wijnen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Carli M J Tops
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
25
|
Li J, Dai H, Feng Y, Tang J, Chen S, Tian X, Gorman E, Schmitt ES, Hansen TAA, Wang J, Plon SE, Zhang VW, Wong LJC. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2. J Mol Diagn 2016; 17:545-53. [PMID: 26320870 DOI: 10.1016/j.jmoldx.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/07/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022] Open
Abstract
Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome.
Collapse
Affiliation(s)
- Jianli Li
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | | | - Yanming Feng
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Jia Tang
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Stella Chen
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Xia Tian
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | | | | | - Terah A A Hansen
- Central Washington Genetics Program, Yakima Valley Memorial Hospital, Yakima, Washington
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sharon E Plon
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
26
|
Liu Q, Thompson BA, Ward RL, Hesson LB, Sloane MA. Understanding the Pathogenicity of Noncoding Mismatch Repair Gene Promoter Variants in Lynch Syndrome. Hum Mutat 2016; 37:417-26. [DOI: 10.1002/humu.22971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Qing Liu
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
| | - Bryony A. Thompson
- Huntsman Cancer Institute; University of Utah; Salt Lake City Utah
- Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; University of Melbourne; Melbourne Victoria Australia
| | - Robyn L. Ward
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
- Level 3 Brian Wilson Chancellery; The University of Queensland; Brisbane Queensland Australia
| | - Luke B. Hesson
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
| | - Mathew A. Sloane
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
| |
Collapse
|
27
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
28
|
Azrak S. upQMPSF, a Method for the Detection of BRCA1 Exon Copy Number Variants. Biochem Genet 2015; 53:141-57. [PMID: 25991562 DOI: 10.1007/s10528-015-9681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 05/12/2015] [Indexed: 11/27/2022]
Abstract
Large insertions/deletions mutations are frequently found in genes associated with certain diseases such as hereditary cancers. These mutations are mostly overlooked by current classical screening techniques due to their certain limitations. This justifies the need to improve the existing techniques or design novel ones. A modified version of quantitative multiplex PCR short fluorescent fragment (QMPSF), termed universally primed QMPSF (upQMPSF), was developed. The modifications enhance multiplexing capacity, reduce cost, and improve the mutation detection spectrum. upQMPSF was used to screen germline mutations in 88 familial ovarian cancer patients negative for point mutations. upQMPSF successfully detected a 2.8 kb copy number gain spanning exon 15 of BRCA1 gene mediated by Alu-Alu homologous-based recombination. upQMPSF is a cost-efficient, versatile method, and demonstrated efficiency in detecting structural variations as a potential method for genetic testing in clinical and research laboratories.
Collapse
Affiliation(s)
- Sami Azrak
- Department of Human Genetics, School of Medicine, Al-Andalus University for Medical Sciences, Al-Qadmous, Tartus, Syria,
| |
Collapse
|
29
|
Aygun N. Correlations between long inverted repeat (LIR) features, deletion size and distance from breakpoint in human gross gene deletions. Sci Rep 2015; 5:8300. [PMID: 25657065 PMCID: PMC4319165 DOI: 10.1038/srep08300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 11/09/2022] Open
Abstract
Long inverted repeats (LIRs) have been shown to induce genomic deletions in yeast. In this study, LIRs were investigated within ±10 kb spanning each breakpoint from 109 human gross deletions, using Inverted Repeat Finder (IRF) software. LIR number was significantly higher at the breakpoint regions, than in control segments (P < 0.001). In addition, it was found that strong correlation between 5' and 3' LIR numbers, suggesting contribution to DNA sequence evolution (r = 0.85, P < 0.001). 138 LIR features at ±3 kb breakpoints in 89 (81%) of 109 gross deletions were evaluated. Significant correlations were found between distance from breakpoint and loop length (r = -0.18, P < 0.05) and stem length (r = -0.18, P < 0.05), suggesting DNA strands are potentially broken in locations closer to bigger LIRs. In addition, bigger loops cause larger deletions (r = 0.19, P < 0.05). Moreover, loop length (r = 0.29, P < 0.02) and identity between stem copies (r = 0.30, P < 0.05) of 3' LIRs were more important in larger deletions. Consequently, DNA breaks may form via LIR-induced cruciform structure during replication. DNA ends may be later repaired by non-homologous end-joining (NHEJ), with following deletion.
Collapse
Affiliation(s)
- Nevim Aygun
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir, Turkey
| |
Collapse
|
30
|
Bashyam MD, Kotapalli V, Raman R, Chaudhary AK, Yadav BK, Gowrishankar S, Uppin SG, Kongara R, Sastry RA, Vamsy M, Patnaik S, Rao S, Dsouza S, Desai D, Tester A. Evidence for presence of mismatch repair gene expression positive Lynch syndrome cases in India. Mol Carcinog 2014; 54:1807-14. [PMID: 25420488 DOI: 10.1002/mc.22244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023]
Abstract
Lynch syndrome (LS), the most common form of familial CRC predisposition that causes tumor onset at a young age, is characterized by the presence of microsatellite instability (MSI) in tumors due to germline inactivation of mismatch repair (MMR) system. Two MMR genes namely MLH1 and MSH2 account for majority of LS cases while MSH6 and PMS2 may account for a minor proportion. In order to identify MMR genes causing LS in India, we analyzed MSI and determined expression status of the four MMR genes in forty eight suspected LS patient colorectal tumor samples. Though a majority exhibited MSI, only 58% exhibited loss of MMR expression, a significantly low proportion compared to reports from other populations. PCR-DNA sequencing and MLPA-based mutation and exonic deletion/duplication screening respectively, revealed genetic lesions in samples with and without MMR gene expression. Interestingly, tumor samples with and without MMR expression exhibited significant differences with respect to histological (mucin content) and molecular (instability exhibited by mononucleotide microsatellites) features. The study has revealed for the first time a significant proportion of LS tumors not exhibiting loss of MMR expression.
Collapse
Affiliation(s)
- Murali D Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ratheesh Raman
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ajay K Chaudhary
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Brijesh K Yadav
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | | | | | | | - Mohana Vamsy
- Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India
| | - Sujit Patnaik
- Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India
| | - Satish Rao
- Krishna Institute of Medical Sciences, Hyderabad, India
| | | | | | | |
Collapse
|
31
|
Song H, Cicek MS, Dicks E, Harrington P, Ramus SJ, Cunningham JM, Fridley BL, Tyrer JP, Alsop J, Jimenez-Linan M, Gayther SA, Goode EL, Pharoah PDP. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet 2014; 23:4703-9. [PMID: 24728189 PMCID: PMC4119409 DOI: 10.1093/hmg/ddu172] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to estimate the contribution of deleterious mutations in BRCA1, BRCA2, MLH1, MSH2, MSH6 and PMS2 to invasive epithelial ovarian cancer (EOC) in the population. The coding sequence and splice site boundaries of all six genes were amplified in germline DNA from 2240 invasive EOC cases and 1535 controls. Barcoded fragment libraries were sequenced using the Illumina GAII or HiSeq and sequence data for each subject de-multiplexed prior to interpretation. GATK and Annovar were used for variant detection and annotation. After quality control 2222 cases (99.2%) and 1528 controls (99.5%) were included in the final analysis. We identified 193 EOC cases (8.7%) carrying a deleterious mutation in at least one gene compared with 10 controls (0.65%). Mutations were most frequent in BRCA1 and BRCA2, with 84 EOC cases (3.8%) carrying a BRCA1 mutation and 94 EOC cases (4.2%) carrying a BRCA2 mutation. The combined BRCA1 and BRCA2 mutation prevalence was 11% in high-grade serous disease. Seventeen EOC cases carried a mutation in a mismatch repair gene, including 10 MSH6 mutation carriers (0.45%) and 4 MSH2 mutation carriers (0.18%). At least 1 in 10 women with high-grade serous EOC has a BRCA1 or BRCA2 mutation. The development of next generation sequencing technologies enables rapid mutation screening for multiple susceptibility genes at once, suggesting that routine clinical testing of all incidence cases should be considered.
Collapse
Affiliation(s)
- Honglin Song
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK,
| | - Mine S Cicek
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ed Dicks
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Patricia Harrington
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Susan J Ramus
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, CA, USA
| | | | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas, USA and
| | - Jonathan P Tyrer
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Jennifer Alsop
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | | | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, CA, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Paul D P Pharoah
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| |
Collapse
|
32
|
Clendenning M, Walsh MD, Gelpi JB, Thibodeau SN, Lindor N, Potter JD, Newcomb P, LeMarchand L, Haile R, Gallinger S, Hopper JL, Jenkins MA, Rosty C, Young JP, Buchanan DD. Detection of large scale 3' deletions in the PMS2 gene amongst Colon-CFR participants: have we been missing anything? Fam Cancer 2014; 12:563-6. [PMID: 23288611 DOI: 10.1007/s10689-012-9597-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Current screening practices have been able to identify PMS2 mutations in 78 % of cases of colorectal cancer from the Colorectal Cancer Family Registry (Colon CFR) which showed solitary loss of the PMS2 protein. However the detection of large-scale deletions in the 3' end of the PMS2 gene has not been possible due to technical difficulties associated with pseudogene sequences. Here, we utilised a recently described MLPA/long-range PCR-based approach to screen the remaining 22 % (n = 16) of CRC-affected probands for mutations in the 3' end of the PMS2 gene. No deletions encompassing any or all of exons 12 through 15 were identified; therefore, our results suggest that 3' deletions in PMS2 are not a frequent occurrence in such families.
Collapse
Affiliation(s)
- Mark Clendenning
- Cancer and Population Studies, Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD, 4006, Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Lynch syndrome, one of the most common cancer susceptibility syndromes, is caused by germline mutations of genes affecting the mismatch repair proteins MLH1, MSH2, MSH6 or PMS2. Most of these mutations disrupt the open reading frame of the genes involved and, as such, lead to constitutive inactivation of the mutated allele. In a subset of Lynch syndrome patients MSH2 was found to be specifically inactivated in cell lineages exhibiting EPCAM expression. These patients carry deletions of the 3' end of the EPCAM gene, including its polyadenylation signal. Due to concomitant transcriptional read-through of EPCAM, the promoter of MSH2 15 kb further downstream becomes inactivated through hypermethylation. As these 3' EPCAM deletions occur in the germline, this MSH2 promoter methylation ('epimutation') is heritable. Worldwide, numerous EPCAM 3' end deletions that differ in size and location have been detected. The risk of colorectal cancer in carriers of such EPCAM deletions is comparable to that of MSH2 mutation carriers, and is in accordance with a high expression of EPCAM in colorectal cancer stem cells. The risk of endometrial cancer in the entire group of EPCAM deletion carriers is significantly lower than that in MSH2 mutation carriers, but the actual risk appears to be dependent on the size and location of the EPCAM deletion. These observations may have important implications for the surveillance of EPCAM deletion carriers and, thus, calls for an in-depth assessment of clinically relevant genotype-phenotype correlations and its underlying molecular mechanism(s).
Collapse
|
34
|
Frequency and variability of genomic rearrangements on MSH2 in Spanish Lynch Syndrome families. PLoS One 2013; 8:e72195. [PMID: 24039744 PMCID: PMC3770653 DOI: 10.1371/journal.pone.0072195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Large genomic rearrangements (LGRs) in DNA-mismatch-repair (MMR) genes, particularly among MSH2 gene, are frequently involved in the etiology of Lynch syndrome (LS). The Multiplex Ligation and Probe Amplification assay (MLPA) is commonly used to identify such alterations. However, in most cases, the MLPA-identified alteration is not characterized at the molecular level, which might be important to identify recurrent alterations and to analyze the molecular mechanisms underlying these mutational events. Probands from a cohort of Lynch Syndrome families were screened for point mutation in MMR genes, subsequently the MLPA assay was used for LGR screening. The identified MLPA alteration was confirmed by cDNA, CGH-microarrays or massive parallel sequencing. In this study, we have delimited the region of 11 LGRs variants on MSH2 locus. Six of them were fully characterized the breakpoints and 9 of them were considered pathogenic. According to our data, LGR on MSH2 locus constituted the 10.8% (9 out of 83) of pathogenic germline alterations found in LS. The frequency of colorectal cancer (CRC) and endometrial cancer (EC) in LGR carriers was 55% and 11% respectively. Analysis of the breakpoint sequences revealed that in 3 cases, deletions appeared to originate from Alu-mediated recombination events. In the remaining cases, sequence alignment failed to detect microhomology around the breakpoints. The present study provides knowledge on the molecular characterization of MSH2 LGRs, which may have important implications in LS diagnosis and Genetic Counseling. In addition, our data suggests that nonhomologous events would be more frequently involved in the etiology of MSH2 LGRs than expected.
Collapse
|
35
|
Tutlewska K, Lubinski J, Kurzawski G. Germline deletions in the EPCAM gene as a cause of Lynch syndrome - literature review. Hered Cancer Clin Pract 2013; 11:9. [PMID: 23938213 PMCID: PMC3765447 DOI: 10.1186/1897-4287-11-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
Lynch syndrome (clinically referred to as HNPCC – Hereditary Non-Polyposis Colorectal Cancer) is a frequent, autosomal, dominantly-inherited cancer predisposition syndrome caused by various germline alterations that affect DNA mismatch repair genes, mainly MLH1 and MSH2. Patients inheriting this predisposition are susceptible to colorectal, endometrial and other extracolonic tumors. It has recently been shown that germline deletions of the last few exons of the EPCAM gene are involved in the etiology of Lynch syndrome. Such constitutional mutations lead to subsequent epigenetic silencing of a neighbouring gene, here, MSH2, causing Lynch syndrome. Thus, deletions of the last few exons of EPCAM constitute a distinct class of mutations associated with HNPCC. Worldwide, several investigators have reported families with EPCAM 3’end deletions. The risk of colorectal cancer in carriers of EPCAM deletions is comparable to situations when patients are MSH2 mutation carriers, and is associated with high expression levels of EPCAM in colorectal cancer stem cells. A lower risk of endometrial cancer was also reported. Until now the standard diagnostic tests for Lynch syndrome have contained analyses such as immunohistochemistry and tests for microsatellite instability of mismatch repair genes. The identification of EPCAM deletions or larger EPCAM-MSH2 deletions should be included in routine mutation screening, as this has implications for cancer predisposition.
Collapse
Affiliation(s)
- Katarzyna Tutlewska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Połabska 4, 70-115, Szczecin, Poland.
| | | | | |
Collapse
|
36
|
Kim YJ, Jung YD, Kim TO, Kim HS. Alu-related transcript of TJP2 gene as a marker for colorectal cancer. Gene 2013; 524:268-74. [DOI: 10.1016/j.gene.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/30/2022]
|
37
|
Spaepen M, Neven E, Sagaert X, De Hertogh G, Beert E, Wimmer K, Matthijs G, Legius E, Brems H. EPCAM germline and somatic rearrangements in Lynch syndrome: identification of a novel 3'EPCAM deletion. Genes Chromosomes Cancer 2013; 52:845-54. [PMID: 23801599 DOI: 10.1002/gcc.22080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/07/2022] Open
Abstract
3'EPCAM (Epithelial Cell Adhesion Molecule) genomic rearrangements can be a cause of mismatch repair deficiency in rare Lynch syndrome families. 3'EPCAM deletions include the polyadenylation signal and might result in promoter hypermethylation of the centromeric MSH2 gene in cis. A somatic rearrangement in trans affecting MSH2 is responsible for the final mismatch repair deficiency in the corresponding tumors but the mechanisms are not well documented. In this report two germline 3'EPCAM deletions are described together with the corresponding somatic mutations in the patient's colorectal tumors. Mutation and breakpoint analysis resulted in the identification of one novel (c.556-531_*872del) and one known EPCAM deletion (c.859-689_*14697del). Both deletions resulted from Alu mediated homologous recombination causing aberrant EPCAM-MSH2 fusion transcripts. The colorectal tumors of the deletion carriers were MSI-high. Strong hypermethylation of the MSH2 promoter was measured. Analysis of somatic genomic rearrangements showed a 4 Mb deletion including the EPCAM, MSH2 and MSH6 genes in one tumor and copy neutral loss of heterozygosity in the EPCAM-MSH2 region in the other tumor. This indicates that hemi- and homozygous hypermethylation of the MSH2 promoter and hence complete silencing of MSH2 expression was responsible for the mismatch repair deficiency in both colorectal tumors.
Collapse
Affiliation(s)
- Marijke Spaepen
- Department of Human Genetics, University Hospital Leuven, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Borràs E, Pineda M, Cadiñanos J, Del Valle J, Brieger A, Hinrichsen I, Cabanillas R, Navarro M, Brunet J, Sanjuan X, Musulen E, van der Klift H, Lázaro C, Plotz G, Blanco I, Capellá G. Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants. J Med Genet 2013; 50:552-63. [PMID: 23709753 DOI: 10.1136/jmedgenet-2012-101511] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. METHODS From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. RESULTS Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. CONCLUSIONS Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.
Collapse
Affiliation(s)
- Ester Borràs
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SHL, Pursley AN, Lalani S, Hixson P, Gambin T, Tsai CH, Bock HG, Descartes M, Probst FJ, Scaglia F, Beaudet AL, Lupski JR, Eng C, Cheung SW, Bacino C, Patel A. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 2013; 22:79-87. [PMID: 23695279 PMCID: PMC3865406 DOI: 10.1038/ejhg.2013.77] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 01/28/2013] [Accepted: 03/12/2013] [Indexed: 02/06/2023] Open
Abstract
In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner.
Collapse
Affiliation(s)
- Joanna Wiszniewska
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sung-Hae L Kang
- Allina Cytogenetics Laboratory, Abbott Northwestern Hospital, Minneapolis, MN, USA
| | - Amber N Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema Lalani
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Patricia Hixson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Chun-hui Tsai
- 1] Department of Molecular and Medical Genetics, Oregon Health and Sciences University-OHSU, Portland, OR, USA [2] Department of Pediatrics, The Children's Hospital, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hans-Georg Bock
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Maria Descartes
- Department of Genetics, University of Alabama, Birmingham, AL, USA
| | - Frank J Probst
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arthur L Beaudet
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Christine Eng
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sau Wai Cheung
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos Bacino
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Rodríguez-Soler M, Pérez-Carbonell L, Guarinos C, Zapater P, Castillejo A, Barberá VM, Juárez M, Bessa X, Xicola RM, Clofent J, Bujanda L, Balaguer F, Reñé JM, de-Castro L, Marín-Gabriel JC, Lanas A, Cubiella J, Nicolás-Pérez D, Brea-Fernández A, Castellví-Bel S, Alenda C, Ruiz-Ponte C, Carracedo A, Castells A, Andreu M, Llor X, Soto JL, Payá A, Jover R. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology 2013; 144:926-e14. [PMID: 23354017 DOI: 10.1053/j.gastro.2013.01.044] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Colorectal cancers (CRCs) with microsatellite instability (MSI) and a mismatch repair (MMR) immunohistochemical deficit without hypermethylation of the MLH1 promoter are likely to be caused by Lynch syndrome. Some patients with these cancers have not been found to have pathogenic germline mutations and are considered to have Lynch-like syndrome (LLS). The aim of this study was to determine the risk of cancer in families of patients with LLS. METHODS We studied a population-based cohort of 1705 consecutive patients, performing MSI tests and immunohistochemical analyses of MMR proteins. Patients were diagnosed with Lynch syndrome when they were found to have pathogenic germline mutations. Patients with MSI and loss of MSH2 and/or MSH6 expression, isolated loss of PMS2 or loss of MLH1 without MLH1 promoter hypermethylation, and no pathogenic mutation were considered to have LLS. The clinical characteristics of patients and the age- and sex-adjusted standardized incidence ratios (SIRs) of cancer in families were compared between groups. RESULTS The incidence of CRC was significantly lower in families of patients with LLS than in families with confirmed cases of Lynch syndrome (SIR for Lynch syndrome, 6.04; 95% confidence interval [CI], 3.58-9.54; SIR for LLS, 2.12; 95% CI, 1.16-3.56; P < .001). However, the incidence of CRC was higher in families of patients with LLS than in families with sporadic CRC (SIR for sporadic CRC, 0.48; 95% CI, 0.27-0.79; P < .001). CONCLUSIONS The risk of cancer in families with LLS is lower that of families with Lynch syndrome but higher than that of families with sporadic CRC. These results confirm the need for special screening and surveillance strategies for these patients and their relatives.
Collapse
Affiliation(s)
- María Rodríguez-Soler
- Unidad de Gastroenterología, Hospital General Universitario de Alicante, Alicante, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
hMSH2 and hMLH1 gene expression patterns differ between lung adenocarcinoma and squamous cell carcinoma: correlation with patient survival and response to adjuvant chemotherapy treatment. Int J Biol Markers 2013; 27:e400-4. [PMID: 22865300 DOI: 10.5301/jbm.2012.9420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND We recently showed that the mRNA levels of mismatch repair (MMR) proteins in non-small cell lung carcinoma (NSCLC) tissue specimens and the phenotypic translation of molecular MMR data refines the biology of the MMR system with consequent diagnostic implications in the clinical assessment of lung cancer patients. METHODS hMLH1 and hMSH2 mRNA expression was previously evaluated by qPCR for 29 NSCLC patients (13 with squamous cell carcinoma [SQC] and 16 with adenocarcinoma [ADC]) and MMR mRNA levels were converted into clinically distinct phenotypic entities. In this study, we evaluated the correlation of the hMSH2 and hMLH1 mRNA phenotypes with patient survival and their response to adjuvant chemotherapy. RESULTS hMSH2 and hMLH1 mRNA phenotypic distribution differed between SQC and ADC. The MMR phenotypes differed also between advanced and early stage SQC. SQC patients with an increased hMSH2 expression had a better outcome than patients with a reduced hMSH2 expression. However, ADC patients with an increased hMSH2 expression had a poor outcome compared to those with low hMSH2 levels. SQC patients with a high hMSH2 expression exhibited a better response to adjuvant chemotherapy, whereas ADC patients with high hMSH2 levels had a poor response. ADC patients with low hMSH2 levels showed good response to adjuvant chemotherapy compared to SQC patients bearing the same phenotypic profile. CONCLUSIONS Our findings show that MMR mRNA phenotypes may be added to the known biological differences between SQC and ADC. hMLH1 and hMSH2 phenotypes distributed differently according to the NSCLC stage. Distinct MMR mRNA phenotypes in SQC and ADC corresponded to patient response to adjuvant chemotherapy.
Collapse
|
42
|
Contribution of large genomic rearrangements in Italian Lynch syndrome patients: characterization of a novel alu-mediated deletion. BIOMED RESEARCH INTERNATIONAL 2012; 2013:219897. [PMID: 23484096 PMCID: PMC3591251 DOI: 10.1155/2013/219897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022]
Abstract
Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR) genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency). This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.
Collapse
|
43
|
Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br J Cancer 2012; 107:1783-90. [PMID: 23047549 PMCID: PMC3493867 DOI: 10.1038/bjc.2012.452] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Mutations in genes for hereditary non-polyposis colorectal cancer (HNPCC) in ovarian cancer patients remains poorly defined. We sought to estimate the frequency and characteristics of HNPCC gene mutations in a population-based sample of women with epithelial ovarian cancer. Methods: The analysis included 1893 women with epithelial ovarian cancer ascertained from three population-based studies. Full-germline DNA sequencing of the coding regions was performed on three HNPCC genes, MLH1, MSH2 and MSH6. Collection of demographic, clinical and family history information was attempted in all women. Results: Nine clearly pathogenic mutations were identified, including five in MSH6, two each in MLH1 and MSH2. In addition, 28 unique predicted pathogenic missense variants were identified in 55 patients. Pathogenic mutation carriers had an earlier mean age at diagnosis of ovarian cancer, overrepresentation of cancers with non-serous histologies and a higher number of relatives with HNPCC-related cancers. Conclusions: Our findings suggest that fewer than 1% of women with ovarian cancer harbour a germline mutation in the HNPCC genes, with overrepresentation of MSH6 mutations. This represents a lower-range estimate due to the large number of predicted pathogenic variants in which pathogenicity could not definitively be determined. Identification of mismatch repair gene mutations has the potential to impact screening and treatment decisions in these women.
Collapse
|
44
|
Vaughn CP, Baker CL, Samowitz WS, Swensen JJ. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene. Genes Chromosomes Cancer 2012; 52:107-12. [PMID: 23012243 DOI: 10.1002/gcc.22011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/11/2012] [Accepted: 08/16/2012] [Indexed: 12/30/2022] Open
Abstract
Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology.
Collapse
Affiliation(s)
- Cecily P Vaughn
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
45
|
Bozzao C, Lastella P, Stella A. Anticipation in lynch syndrome: where we are where we go. Curr Genomics 2012; 12:451-65. [PMID: 22547953 PMCID: PMC3219841 DOI: 10.2174/138920211797904070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/08/2011] [Accepted: 07/20/2011] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is the most common form of inherited predisposition to develop cancer mainly in the colon and endometrium but also in other organ sites. Germline mutations in DNA mismatch repair (MMR) gene cause the transmission of the syndrome in an autosomal dominant manner. The management of LS patients is complicated by the large variation in age at cancer diagnosis which requires these patients to be enrolled in surveillance protocol starting as early as in their second decade of life. Several environmental and genetic factors have been proposed to explain this phenotypic heterogeneity, but the molecular mechanisms remain unknown. Although the presence of genetic anticipation in Lynch syndrome has been suspected since 15 years, only recently the phenomenon has been increasingly reported to be present in different cancer genetic syndromes including LS. While the biological basis of earlier cancer onset in successive generations remains poorly known, recent findings point to telomere dynamics as a mechanism significantly contributing to genetic anticipation in Lynch syndrome and in other familial cancers. In this review, we summarize the clinical and molecular features of Lynch syndrome, with a particular focus on the latest studies that have investigated the molecular mechanisms of genetic anticipation.
Collapse
Affiliation(s)
- Cristina Bozzao
- Medical Genetics Unit, Department of Biomedicine in Childhood, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | | |
Collapse
|
46
|
Colas C, Coulet F, Svrcek M, Collura A, Fléjou JF, Duval A, Hamelin R. Lynch or not Lynch? Is that always a question? Adv Cancer Res 2012; 113:121-66. [PMID: 22429854 DOI: 10.1016/b978-0-12-394280-7.00004-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The familial cancer syndrome referred to as Lynch I and II was renamed hereditary nonpolyposis colorectal cancer (HNPCC) only to revert later to Lynch syndrome (LS). LS is the most frequent human predisposition for the development of colorectal cancer (CRC), and probably also for endometrial and gastric cancers, although it has yet to acquire a consensus name. Its estimated prevalence ranges widely from 2% to 7% of all CRCs due to the fact that tumors from patients with LS are difficult to recognize at both the clinical and molecular level. This review is based on two assumptions. First, all LS patients inherit a predisposition to develop CRC (without polyposis) and/or other tumors from the Lynch spectrum. Second, all LS patients have a germline defect in one of the DNA mismatch repair (MMR) genes. When a somatic second hit inactivates the relevant MMR gene, the consequence is instability of DNA repeat sequences such as microsatellites and the tumors are referred to as having the microsatellite instability (MSI) phenotype. However, some of the inherited predisposition to develop CRC without concurrent polyposis, termed HNPCC, is found in non-LS patients, while not all MSI tumors are from LS cases. LS tumors are therefore at the junction of inherited and MSI cases. We describe here the defining characteristics of LS tumors that differentiate them from inherited non-MSI tumors and from non-inherited MSI tumors.
Collapse
Affiliation(s)
- Chrystelle Colas
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Borelli I, Barberis MA, Spina F, Casalis Cavalchini GC, Vivanet C, Balestrino L, Micheletti M, Allavena A, Sala P, Carcassi C, Pasini B. A unique MSH2 exon 8 deletion accounts for a major portion of all mismatch repair gene mutations in Lynch syndrome families of Sardinian origin. Eur J Hum Genet 2012; 21:154-61. [PMID: 22781090 DOI: 10.1038/ejhg.2012.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lynch syndrome is an autosomal-dominant hereditary condition predisposing to the development of specific cancers, because of germline mutations in the DNA-mismatch repair (MMR) genes. Large genomic deletions represent a significant fraction of germline mutations, particularly among the MSH2 gene, in which they account for 20% of the mutational spectrum. In this study we analyzed 13 Italian families carrying MSH2 exon 8 deletions, 10 of which of ascertained Sardinian origin. The overrepresentation of Sardinians was unexpected, as families from Sardinia account for a small quota of MMR genes mutation tests performed in our laboratory. The hypothesis that such a result is owing to founder effects in Sardinia was tested by breakpoint junctions sequencing and haplotype analyses. Overall, five different exon eight deletions were identified, two of which recurrent in families, all apparently unrelated, of Sardinian origin (one in eight families, one in two families). The c.1277-1180_1386+2226del3516insCATTCTCTTTGAAAA deletion shares the same haplotype between all families and appears so far restricted to the population of South-West Sardinia, showing the typical features of a founder effect. The three non-Sardinian families showed three different breakpoint junctions and haplotypes, suggesting independent mutational events. This work has useful implications in genetic testing for Lynch syndrome. We developed a quick test for each of the identified deletions: this can be particularly useful in families of Sardinian origin, in which MSH2 exon 8 deletions may represent 50% of the overall mutational spectrum of the four MMR genes causing Lynch syndrome.
Collapse
Affiliation(s)
- Iolanda Borelli
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena 19, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Multidisciplinary approach to a case of Lynch syndrome with colorectal, ovarian, and metastatic liver carcinomas. Int Cancer Conf J 2012. [DOI: 10.1007/s13691-012-0040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
49
|
Tomsic J, Senter L, Liyanarachchi S, Clendenning M, Vaughn CP, Jenkins MA, Hopper JL, Young J, Samowitz W, de la Chapelle A. Recurrent and founder mutations in the PMS2 gene. Clin Genet 2012; 83:238-43. [PMID: 22577899 DOI: 10.1111/j.1399-0004.2012.01898.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2.
Collapse
Affiliation(s)
- J Tomsic
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wernstedt A, Valtorta E, Armelao F, Togni R, Girlando S, Baudis M, Heinimann K, Messiaen L, Staehli N, Zschocke J, Marra G, Wimmer K. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL. Genes Chromosomes Cancer 2012; 51:819-31. [PMID: 22585707 PMCID: PMC3398144 DOI: 10.1002/gcc.21966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/02/2012] [Indexed: 11/08/2022] Open
Abstract
Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of these mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which--owing to extensive interparalog sequence exchange--closely resembles PMS2 downstream of exon 12. A recently redesigned multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with reference DNAs containing equal numbers of PMS2- and PMS2CL-specific sequences. We selected eight such reference samples--all publicly available--and used them with this assay to study 13 patients with PMS2-defective colorectal tumors. Three presented deleterious alterations: an Alu-mediated exon deletion; a 125-kb deletion encompassing PMS2 and four additional genes (two with tumor-suppressing functions); and a novel deleterious hybrid PMS2 allele produced by recombination with crossover between PMS2 and PMS2CL, with the breakpoint in intron 10 (the most 5' breakpoint of its kind reported thus far). We discuss mechanisms that might generate this allele in different chromosomal configurations (and their diagnostic implications) and describe an allele-specific PCR assay that facilitates its detection. Our data indicate that the redesigned PMS2 MLPA assay is a valid first-line option. In our series, it identified roughly a quarter of all PMS2 mutations.
Collapse
|