1
|
Zamani N, Szymiczek A, Shakeri R, Poustchi H, Pourshams A, Narod S, Malekzadeh R, Akbari MR. A Single nucleotide polymorphism in the ALDH2 gene modifies the risk of esophageal squamous cell carcinoma in BRCA2 p.K3326* carriers. PLoS One 2023; 18:e0292611. [PMID: 37943872 PMCID: PMC10635553 DOI: 10.1371/journal.pone.0292611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a very high incidence rate in northeastern Iran. Our team previously reported the BReast CAncer gene 2 (BRCA2) p.K3326* mutation as a moderately penetrant ESCC susceptibility variant in northern Iran (odds ratio (OR) = 3.64, 95% confidence interval (CI) = 1.74-7.59, P = 0.0003). Recently, it has been reported that aldehydes can induce BRCA2 haploinsufficiency in cells with a heterozygous pathogenic BRCA2 mutation and predispose them to carcinogenic effects. Based on this observation, we speculate that dysfunctional variants in Aldehyde Dehydrogenase 2 Family Member (ALDH2) may result in aldehyde-induced BRCA2 haploinsufficiency and increase cancer risk in BRCA2 mutation carriers. In support of this hypothesis, our team recently reported the breast cancer risk modifying effect of an ALDH2 common polymorphism, rs10744777, among Polish carriers of the BRCA2 p.K3326* mutation. In the current case-control study, we aimed to investigate the ESCC risk modifying effect of this ALDH2 polymorphism among BRCA2 p.K3326* mutation carriers. We assessed the interaction between the ALDH2 rs10744777 polymorphism and BRCA2 p.K3326* mutation in ESCC risk by genotyping this ALDH2 variant in the germline DNA of 746 ESCC cases and 1,373 controls from northern Iran who were previously genotyped for the BRCA2 p.K3326* mutation. Among a total of 464 individuals with TT genotype of the ALDH2 rs10744777 polymorphism, which is associated with lower ALDH2 expression, we found 9 of 164 cases versus 3 of 300 controls who carried the BRCA2 p.K3326* variant (OR = 5.66, 95% CI = 1.22-26.2, P = 0.018). This finding supports our hypothesis that the ALDH2-rs10744777 TT genotype may be a significant risk modifier of ESCC in individuals with a BRCA2 p.K3326* mutation.
Collapse
Affiliation(s)
- Neda Zamani
- Women’s College Research Institute, University of Toronto, Toronto, Canada
- Faculty of Medicine, Institite of Medical Science, University of Toronto, Toronto, Canada
| | - Agata Szymiczek
- Women’s College Research Institute, University of Toronto, Toronto, Canada
| | - Ramin Shakeri
- Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Akram Pourshams
- Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Steven Narod
- Women’s College Research Institute, University of Toronto, Toronto, Canada
- Faculty of Medicine, Institite of Medical Science, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad R. Akbari
- Women’s College Research Institute, University of Toronto, Toronto, Canada
- Faculty of Medicine, Institite of Medical Science, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
3
|
Paul MW, Sidhu A, Liang Y, van Rossum-Fikkert SE, Odijk H, Zelensky AN, Kanaar R, Wyman C. Role of BRCA2 DNA-binding and C-terminal domain in its mobility and conformation in DNA repair. eLife 2021; 10:e67926. [PMID: 34254584 PMCID: PMC8324294 DOI: 10.7554/elife.67926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Breast cancer type two susceptibility protein (BRCA2) is an essential protein in genome maintenance, homologous recombination (HR), and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA-binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse embryonic stem (ES) cells and defined their contribution in HR function and dynamic localization in the nucleus, by single-particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 were determined by scanning force microscopy. BRCA2 mobility and DNA-damage-induced increase in the immobile fraction were largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced HR function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.
Collapse
Affiliation(s)
- Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Arshdeep Sidhu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
- Department of Radiation Oncology, Erasmus University Medical CenterRotterdamNetherlands
| | - Yongxin Liang
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Sarah E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
- Department of Radiation Oncology, Erasmus University Medical CenterRotterdamNetherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
- Department of Radiation Oncology, Erasmus University Medical CenterRotterdamNetherlands
| |
Collapse
|
4
|
Cao J, Liu Z, Wang C, Wang J, Pan B, Qie S. Cell Models for Birth Defects Caused by Chloroethyl Nitrosourea-Induced DNA Lesions. J Craniofac Surg 2021; 32:778-782. [PMID: 33705035 DOI: 10.1097/scs.0000000000006850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Birth defects have been linked to administration of alkylating agents during pregnancy. The anti-tumor efficacy of alkylating agents correlate with their ability to induce DNA lesions, especially interstrand crosslinks (ICLs). Yet the role of DNA damages in birth defects remains to be clarified, owing, in part, to a lack of cell models. Here we generate DNA lesions in NIH/3T3 cells to mimic defects in fetus triggered by 3-Bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine). CCK-8 assay suggests that BCNU-induced cell death was dose-dependent. Alkaline comet tests and γ-H2AX staining confirm DNA ICLs and other forms of DNA damages caused by BCNUs. The cell cycle analysis shows cells arrest in G2/M phase until crosslinks repair is complete. Taken together, all these experiments demonstrate we have successfully established normal cell models for birth defects caused by BCNU-mediated DNA damages. The model can not only guide the development of effective and low-toxicity anticancer drugs, but also be of great significance for the study of neonatal malformation triggered by BCNUs.
Collapse
Affiliation(s)
- Jiankun Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| | - Congxiao Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Liu Y, Lusk CM, Cho MH, Silverman EK, Qiao D, Zhang R, Scheurer ME, Kheradmand F, Wheeler DA, Tsavachidis S, Armstrong G, Zhu D, Wistuba II, Chow CWB, Behrens C, Pikielny CW, Neslund-Dudas C, Pinney SM, Anderson M, Kupert E, Bailey-Wilson J, Gaba C, Mandal D, You M, de Andrade M, Yang P, Field JK, Liloglou T, Davies M, Lissowska J, Swiatkowska B, Zaridze D, Mukeriya A, Janout V, Holcatova I, Mates D, Milosavljevic S, Scelo G, Brennan P, McKay J, Liu G, Hung RJ, The COPDGene Investigators, Christiani DC, Schwartz AG, Amos CI, Spitz MR. Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer. J Thorac Oncol 2018; 13:1483-1495. [PMID: 29981437 PMCID: PMC6366341 DOI: 10.1016/j.jtho.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior. METHODS Germline DNA from 260 case patients with LC and 318 controls were sequenced by utilizing VCRome 2.1 exome capture. Filtering was based on enrichment of rare and potential deleterious variants in cases (risk alleles) or controls (protective alleles). Allelic association analyses of single-variant and gene-based burden tests of multiple variants were performed. Promising candidates were tested in two independent validation studies with a total of 1773 case patients and 1123 controls. RESULTS We identified 48 rare variants with deleterious effects in the discovery analysis and validated 12 of the 43 candidates that were covered in the validation platforms. The top validated candidates included one well-established truncating variant, namely, BRCA2, DNA repair associated gene (BRCA2) K3326X (OR = 2.36, 95% confidence interval [CI]: 1.38-3.99), and three newly identified variations, namely, lymphotoxin beta gene (LTB) p.Leu87Phe (OR = 7.52, 95% CI: 1.01-16.56), prolyl 3-hydroxylase 2 gene (P3H2) p.Gln185His (OR = 5.39, 95% CI: 0.75-15.43), and dishevelled associated activator of morphogenesis 2 gene (DAAM2) p.Asp762Gly (OR = 0.25, 95% CI: 0.10-0.79). Burden tests revealed strong associations between zinc finger protein 93 gene (ZNF93), DAAM2, bromodomain containing 9 gene (BRD9), and the gene LTB and LC susceptibility. CONCLUSION Our results extend the catalogue of regions associated with LC and highlight the importance of germline rare coding variants in LC susceptibility.
Collapse
Affiliation(s)
- Yanhong Liu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M. Lusk
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruyang Zhang
- Harvard University School of Public Health, Boston, MA 02115, USA
| | - Michael E. Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX 77030, USA
| | - David A. Wheeler
- Department of Molecular and Human Genetics, Human Genome Sequence Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Spiridon Tsavachidis
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Georgina Armstrong
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dakai Zhu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi-Wan B. Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Claudio W. Pikielny
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03755, USA
| | | | - Susan M. Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Marshall Anderson
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Elena Kupert
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ming You
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Ping Yang
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - John K. Field
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Michael Davies
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Jolanta Lissowska
- The M. Sklodowska-Curie Institute of Oncology Center, Warsaw 02781, Poland
| | - Beata Swiatkowska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz 91348, Poland
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russian Federation
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russian Federation
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc 77515, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, Prague 12800, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest 050463, Romania
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research (IOCPR), Belgrade, Serbia
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, M5G 2M9, Canada
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5 Canada
| | | | | | - Ann G. Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Christopher I Amos
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret R. Spitz
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Quiroz-Zárate A, Harshfield BJ, Hu R, Knoblauch N, Beck AH, Hankinson SE, Carey V, Tamimi RM, Hunter DJ, Quackenbush J, Hazra A. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue. PLoS One 2017; 12:e0170181. [PMID: 28152060 PMCID: PMC5289428 DOI: 10.1371/journal.pone.0170181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 12/31/2022] Open
Abstract
We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic studies of genome-wide association studies (GWAS) of breast cancer, the majority of which are located in intergenic or intronic regions. To explore regulatory impacts of these variants we conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive postmenopausal breast cancer cases in the Nurses' Health Study (NHS) diagnosed from 1990-2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded (FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human Transcriptome Array. Significance and ranking of associations between tumor receptor status and expression variation was preserved between NHS FFPE and TCGA fresh-frozen sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signature genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with expression variation in 217 distinct genes. SNP-gene associations can be explored using an open-source interactive browser distributed in a Bioconductor package. Using a new a procedure for testing hypotheses relating SNP content to expression patterns in gene sets, defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpretation of the GWAS-identified variants remains to be uncovered, this study validates the utility of expression analysis of this FFPE expression set for more detailed integrative analyses.
Collapse
Affiliation(s)
| | - Benjamin J. Harshfield
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rong Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Nick Knoblauch
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew H. Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Vincent Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rulla M. Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - John Quackenbush
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics and Computational Biology and Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Aditi Hazra
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Meeks HD, Song H, Michailidou K, Bolla MK, Dennis J, Wang Q, Barrowdale D, Frost D, McGuffog L, Ellis S, Feng B, Buys SS, Hopper JL, Southey MC, Tesoriero A, James PA, Bruinsma F, Campbell IG, Broeks A, Schmidt MK, Hogervorst FBL, Beckman MW, Fasching PA, Fletcher O, Johnson N, Sawyer EJ, Riboli E, Banerjee S, Menon U, Tomlinson I, Burwinkel B, Hamann U, Marme F, Rudolph A, Janavicius R, Tihomirova L, Tung N, Garber J, Cramer D, Terry KL, Poole EM, Tworoger SS, Dorfling CM, van Rensburg EJ, Godwin AK, Guénel P, Truong T, Stoppa-Lyonnet D, Damiola F, Mazoyer S, Sinilnikova OM, Isaacs C, Maugard C, Bojesen SE, Flyger H, Gerdes AM, Hansen TVO, Jensen A, Kjaer SK, Hogdall C, Hogdall E, Pedersen IS, Thomassen M, Benitez J, González-Neira A, Osorio A, Hoya MDL, Segura PP, Diez O, Lazaro C, Brunet J, Anton-Culver H, Eunjung L, John EM, Neuhausen SL, Ding YC, Castillo D, Weitzel JN, Ganz PA, Nussbaum RL, Chan SB, Karlan BY, Lester J, Wu A, Gayther S, Ramus SJ, Sieh W, Whittermore AS, Monteiro ANA, Phelan CM, Terry MB, Piedmonte M, Offit K, Robson M, Levine D, Moysich KB, Cannioto R, Olson SH, Daly MB, Nathanson KL, et alMeeks HD, Song H, Michailidou K, Bolla MK, Dennis J, Wang Q, Barrowdale D, Frost D, McGuffog L, Ellis S, Feng B, Buys SS, Hopper JL, Southey MC, Tesoriero A, James PA, Bruinsma F, Campbell IG, Broeks A, Schmidt MK, Hogervorst FBL, Beckman MW, Fasching PA, Fletcher O, Johnson N, Sawyer EJ, Riboli E, Banerjee S, Menon U, Tomlinson I, Burwinkel B, Hamann U, Marme F, Rudolph A, Janavicius R, Tihomirova L, Tung N, Garber J, Cramer D, Terry KL, Poole EM, Tworoger SS, Dorfling CM, van Rensburg EJ, Godwin AK, Guénel P, Truong T, Stoppa-Lyonnet D, Damiola F, Mazoyer S, Sinilnikova OM, Isaacs C, Maugard C, Bojesen SE, Flyger H, Gerdes AM, Hansen TVO, Jensen A, Kjaer SK, Hogdall C, Hogdall E, Pedersen IS, Thomassen M, Benitez J, González-Neira A, Osorio A, Hoya MDL, Segura PP, Diez O, Lazaro C, Brunet J, Anton-Culver H, Eunjung L, John EM, Neuhausen SL, Ding YC, Castillo D, Weitzel JN, Ganz PA, Nussbaum RL, Chan SB, Karlan BY, Lester J, Wu A, Gayther S, Ramus SJ, Sieh W, Whittermore AS, Monteiro ANA, Phelan CM, Terry MB, Piedmonte M, Offit K, Robson M, Levine D, Moysich KB, Cannioto R, Olson SH, Daly MB, Nathanson KL, Domchek SM, Lu KH, Liang D, Hildebrant MAT, Ness R, Modugno F, Pearce L, Goodman MT, Thompson PJ, Brenner H, Butterbach K, Meindl A, Hahnen E, Wappenschmidt B, Brauch H, Brüning T, Blomqvist C, Khan S, Nevanlinna H, Pelttari LM, Aittomäki K, Butzow R, Bogdanova NV, Dörk T, Lindblom A, Margolin S, Rantala J, Kosma VM, Mannermaa A, Lambrechts D, Neven P, Claes KBM, Maerken TV, Chang-Claude J, Flesch-Janys D, Heitz F, Varon-Mateeva R, Peterlongo P, Radice P, Viel A, Barile M, Peissel B, Manoukian S, Montagna M, Oliani C, Peixoto A, Teixeira MR, Collavoli A, Hallberg E, Olson JE, Goode EL, Hart SN, Shimelis H, Cunningham JM, Giles GG, Milne RL, Healey S, Tucker K, Haiman CA, Henderson BE, Goldberg MS, Tischkowitz M, Simard J, Soucy P, Eccles DM, Le N, Borresen-Dale AL, Kristensen V, Salvesen HB, Bjorge L, Bandera EV, Risch H, Zheng W, Beeghly-Fadiel A, Cai H, Pylkäs K, Tollenaar RAEM, Ouweland AMWVD, Andrulis IL, Knight JA, Narod S, Devilee P, Winqvist R, Figueroa J, Greene MH, Mai PL, Loud JT, García-Closas M, Schoemaker MJ, Czene K, Darabi H, McNeish I, Siddiquil N, Glasspool R, Kwong A, Park SK, Teo SH, Yoon SY, Matsuo K, Hosono S, Woo YL, Gao YT, Foretova L, Singer CF, Rappaport-Feurhauser C, Friedman E, Laitman Y, Rennert G, Imyanitov EN, Hulick PJ, Olopade OI, Senter L, Olah E, Doherty JA, Schildkraut J, Koppert LB, Kiemeney LA, Massuger LFAG, Cook LS, Pejovic T, Li J, Borg A, Öfverholm A, Rossing MA, Wentzensen N, Henriksson K, Cox A, Cross SS, Pasini BJ, Shah M, Kabisch M, Torres D, Jakubowska A, Lubinski J, Gronwald J, Agnarsson BA, Kupryjanczyk J, Moes-Sosnowska J, Fostira F, Konstantopoulou I, Slager S, Jones M, Antoniou AC, Berchuck A, Swerdlow A, Chenevix-Trench G, Dunning AM, Pharoah PDP, Hall P, Easton DF, Couch FJ, Spurdle AB, Goldgar DE. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. J Natl Cancer Inst 2016; 108:djv315. [PMID: 26586665 PMCID: PMC4907358 DOI: 10.1093/jnci/djv315] [Show More Authors] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/13/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. METHODS Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. RESULTS The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. CONCLUSIONS Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.
Collapse
|
8
|
Spitz MR, Liu Y, Amos CI. BRCA2-branching out too? J Natl Cancer Inst 2015; 107:djv066. [PMID: 25838449 DOI: 10.1093/jnci/djv066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Margaret R Spitz
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX (MRS, YL); Dartmouth-Hitchcock Norris Cotton Cancer Center, Manchester, NH (CIA).
| | - Yanhong Liu
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX (MRS, YL); Dartmouth-Hitchcock Norris Cotton Cancer Center, Manchester, NH (CIA)
| | - Christopher I Amos
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX (MRS, YL); Dartmouth-Hitchcock Norris Cotton Cancer Center, Manchester, NH (CIA)
| |
Collapse
|
9
|
Richardson C, Yan S, Vestal CG. Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells. Int J Mol Sci 2015; 16:2366-85. [PMID: 25622253 PMCID: PMC4346841 DOI: 10.3390/ijms16022366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - Shan Yan
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| |
Collapse
|
10
|
Seeliger K, Dukowic-Schulze S, Wurz-Wildersinn R, Pacher M, Puchta H. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:364-75. [PMID: 22077663 DOI: 10.1111/j.1469-8137.2011.03947.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.
Collapse
Affiliation(s)
- Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
11
|
Parmar K, D'Andrea A, Niedernhofer LJ. Mouse models of Fanconi anemia. Mutat Res 2009; 668:133-40. [PMID: 19427003 PMCID: PMC2778466 DOI: 10.1016/j.mrfmmm.2009.03.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/18/2009] [Accepted: 03/30/2009] [Indexed: 12/18/2022]
Abstract
Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.
Collapse
Affiliation(s)
- Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Alan D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Laura J. Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213-1863, USA
| |
Collapse
|
12
|
Liu H, Jin G, Wang H, Wu W, Liu Y, Qian J, Fan W, Ma H, Miao R, Hu Z, Sun W, Wang Y, Jin L, Wei Q, Shen H, Huang W, Lu D. Methyl-CpG binding domain 1 gene polymorphisms and lung cancer risk in a Chinese population. Biomarkers 2008; 13:607-17. [PMID: 18668384 DOI: 10.1080/13547500802168031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Polymorphisms of the methyl-CpG binding domain 1 (MBD1) gene may influence MBD1 activity on gene expression profiles, thereby modulating individual susceptibility to lung cancer. To test this hypothesis, we investigated the associations of four MBD1 polymorphisms and lung cancer risk in a Chinese population. Single locus analysis revealed significant associations between two polymorphisms (rs125555 and rs140689) and lung cancer risk (p=0.011 and p=0.005, respectively). Since the two polymorphisms were in linkage disequilibrium, further haplotype analyses were performed and revealed a significant association with lung cancer (global test p-value=0.0041). Our results suggested that MBD1 polymorphisms might be involved in the development of lung cancer. Validation of these findings in larger studies of other populations is needed.
Collapse
Affiliation(s)
- Hongliang Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Philip S, Swaminathan S, Kuznetsov SG, Kanugula S, Biswas K, Chang S, Loktionova NA, Haines DC, Kaldis P, Pegg AE, Sharan SK. Degradation of BRCA2 in alkyltransferase-mediated DNA repair and its clinical implications. Cancer Res 2008; 68:9973-81. [PMID: 19047179 PMCID: PMC2729200 DOI: 10.1158/0008-5472.can-08-1179] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Germ-line mutations in BRCA2 have been linked to early-onset familial breast cancer. BRCA2 is known to play a key role in repairing double-strand breaks. Here, we describe the involvement of BRCA2 in O6-alkylguanine DNA alkyltransferase (AGT)-mediated repair of O6-methylguanine adducts. We show that BRCA2 physically associates and undergoes repair-mediated degradation with AGT. In contrast, BRCA2 with a 29-amino-acid deletion in an evolutionarily conserved domain does not bind to alkylated AGT; the two proteins are not degraded; and mouse embryonic fibroblasts are specifically sensitive to alkylating agents that result in O6-methylguanine adducts. We show that O6-benzylguanine (O6BG), a nontoxic inhibitor of AGT, can also induce BRCA2 degradation. BRCA2 is a viable target for cancer therapy because BRCA2-deficient cells are hypersensitive to chemotherapeutic DNA-damaging agents. We show a marked effect of O6BG pretreatment on cell sensitivity to cisplatin. We also show the efficacy of this approach on a wide range of human tumor cell lines, which suggests that chemosensitization of tumors by targeted degradation of BRCA2 may be an important consideration when devising cancer therapeutics.
Collapse
Affiliation(s)
- Subha Philip
- Mouse Cancer Genetics Program, Center for Cancer Research, and Pathology Histotechnology Laboratory, Science Applications International Corporation-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuznetsov SG, Liu P, Sharan SK. Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2. Nat Med 2008; 14:875-81. [PMID: 18607349 PMCID: PMC2640324 DOI: 10.1038/nm.1719] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 01/02/2008] [Indexed: 11/09/2022]
Abstract
Individuals with mutations in breast cancer susceptibility genes BRCA1 and BRCA2 have up to an 80% risk of developing breast cancer by the age of 70. Sequencing-based genetic tests are now available to identify mutation carriers in an effort to reduce mortality through prevention and early diagnosis. However, lack of a suitable functional assay hinders the risk assessment of more than 1,900 BRCA1 and BRCA2 variants in the Breast Cancer Information Core database that do not clearly disrupt the gene product. We have established a simple, versatile and reliable assay to test for the functional significance of mutations in BRCA2 using mouse embryonic stem cells (ES cells) and bacterial artificial chromosomes and have used it to classify 17 sequence variants. The assay is based on the ability of human BRCA2 to complement the loss of endogenous Brca2 in mouse ES cells. This technique may also serve as a paradigm for functional analysis of mutations found in other genes linked to human diseases.
Collapse
Affiliation(s)
- Sergey G. Kuznetsov
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, U.S.A
| | | | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, U.S.A
| |
Collapse
|
15
|
Yamamoto K, Nihrane A, Aglipay J, Sironi J, Arkin S, Lipton JM, Ouchi T, Liu JM. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis. Mol Med 2008; 14:167-74. [PMID: 18224251 DOI: 10.2119/2007-00122.yamamoto] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/02/2008] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Davies OR, Pellegrini L. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 2008; 14:475-83. [PMID: 17515903 PMCID: PMC2096194 DOI: 10.1038/nsmb1251] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/11/2007] [Indexed: 11/09/2022]
Abstract
BRCA2 has an essential function in DNA repair by homologous recombination, interacting with RAD51 via short motifs in the middle and at the C terminus of BRCA2. Here, we report that a conserved 36-residue sequence of human BRCA2 encoded by exon 27 (BRCA2Exon27) interacts with RAD51 through the specific recognition of oligomerized RAD51 ATPase domains. BRCA2Exon27 binding stabilizes the RAD51 nucleoprotein filament against disassembly by BRC repeat 4. The protection is specific for RAD51 filaments formed on single-stranded DNA and is lost when BRCA2Exon27 is phosphorylated on Ser3291. We propose that productive recombination results from the functional balance between the different RAD51-binding modes [corrected] of the BRC repeat and exon 27 regions of BRCA2. Our results further suggest a mechanism in which CDK phosphorylation of BRCA2Exon27 at the G2-M transition alters the balance in favor of RAD51 filament disassembly, thus terminating recombination.
Collapse
Affiliation(s)
| | - Luca Pellegrini
- Corresponding author. L Pellegrini, University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge CB2 1GA, UK. E-mail:
| |
Collapse
|
17
|
Abstract
Homologous recombination has a dual role in eukaryotic organisms. Firstly, it is responsible for the creation of genetic variability during meiosis by directing the formation of reciprocal crossovers that result in random combinations of alleles and traits. Secondly, in mitotic cells, it maintains the integrity of the genome by promoting the faithful repair of DNA double-strand breaks (DSBs). In vertebrates, it therefore plays a key role in tumour avoidance. Mutations in the tumour suppressor protein BRCA2 are associated with predisposition to breast and ovarian cancers, and loss of BRCA2 function leads to genetic instability. BRCA2 protein interacts directly with the RAD51 recombinase and regulates recombination-mediated DSB repair, accounting for the high levels of spontaneous chromosomal aberrations seen in BRCA2-defective cells. Recent observations indicate that BRCA2 also plays a critical role in meiotic recombination, this time through direct interactions with the meiosis-specific recombinase DMC1. The interactions of BRCA2 with RAD51 and DMC1 lead us to suggest that the BRCA2 tumour suppressor is a universal regulator of recombinase actions.
Collapse
|
18
|
Akbari MR, Malekzadeh R, Nasrollahzadeh D, Amanian D, Islami F, Li S, Zandvakili I, Shakeri R, Sotoudeh M, Aghcheli K, Salahi R, Pourshams A, Semnani S, Boffetta P, Dawsey SM, Ghadirian P, Narod SA. Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene 2007; 27:1290-6. [PMID: 17724471 DOI: 10.1038/sj.onc.1210739] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence of esophageal squamous cell carcinoma (ESCC) is very high among the Turkmen population of Iran. Family studies suggest a genetic component to the disease. Turkmen are ethnically homogenous and are well suited for genetic studies. A previous study from China suggested that BRCA2 might play a role in the etiology of ESCC. We screened for mutations in the coding region of the BRCA2 gene in the germline DNA of 197 Turkmen patients with ESCC. A nonsense variant, K3326X, was identified in 9 of 197 cases (4.6%) vs 2 of 254 controls (0.8%) (OR=6.0, 95% CI=1.3-28; P=0.01). This mutation leads to the loss of the C-terminal domain of the BRCA2 protein, a part of the region of interaction with the FANCD2 protein. We observed nine other BRCA2 variants in single cases only, including two deletions, and seven missense mutations. Six of these were judged to be pathogenic. In total, a suspicious deleterious BRCA2 variant was identified in 15 of 197 ESCC cases (7.6%).
Collapse
Affiliation(s)
- M R Akbari
- Digestive Disease Research Center, Medical Sciences/University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Thorslund T, Esashi F, West SC. Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1. EMBO J 2007; 26:2915-22. [PMID: 17541404 PMCID: PMC1894777 DOI: 10.1038/sj.emboj.7601739] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/07/2007] [Indexed: 11/09/2022] Open
Abstract
Germline mutations in BRCA2 predispose to hereditary breast cancers. BRCA2 protein regulates recombinational repair by interaction with RAD51 via a series of degenerate BRC repeat motifs encoded by exon 11 (BRCA2(996-2113)), and an unrelated C-terminal domain (BRCA2(3265-3330)). BRCA2 is also required for meiotic recombination. Here, we show that human BRCA2 binds the meiosis-specific recombinase DMC1 and define the primary DMC1 interaction site to a 26 amino-acid region (BRCA2(2386-2411)). This region is highly conserved in BRCA2 proteins from a variety of mammalian species, but is absent in BRCA2 from Arabidopsis thaliana, Caenorhabditis elegans, and other eukaryotes. We demonstrate the critical importance of Phe2406, Pro2408, and Pro2409 at the conserved motif (2404)KVFVPPFK(2411). This interaction domain, defined as the PhePP motif, promotes specific interactions between BRCA2 and DMC1, but not with RAD51. Thus, the RAD51 and DMC1 interaction domains on BRCA2 are distinct from each other, allowing coordinated interactions of the two recombinases with BRCA2 at meiosis. These results lead us to suggest that BRCA2 is a universal regulator of RAD51/DMC1 recombinase actions.
Collapse
Affiliation(s)
- Tina Thorslund
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms, Herts, UK
| | - Fumiko Esashi
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms, Herts, UK
| | - Stephen C West
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms, Herts, UK
| |
Collapse
|