1
|
Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood 2021; 139:15-33. [PMID: 34570882 DOI: 10.1182/blood.2019004256] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Primary cutaneous T-cell lymphomas (CTCL) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. In recent years significant progress has been made in the understanding of the pathogenesis of CTCL. Progress in CTCL classifications combined with technical advances, in particular next generation sequencing (NGS), enabled a more detailed analysis of the genetic and epigenetic landscape and transcriptional changes in clearly defined diagnostic entities. These studies not only demonstrated extensive heterogeneity between different CTCL subtypes but also identified recurrent alterations that are highly characteristic for diagnostic subgroups of CTCL. The identified alterations in particular involve epigenetic remodelling, cell cycle regulation, and the constitutive activation of targetable, oncogenic pathways. In this respect, aberrant JAK-STAT signaling is a recurrent theme, however not universal for all CTCL and with seemingly different underlaying causes in different entities. A number of the mutated genes identified are potentially actionable targets for the development of novel therapeutic strategies. Moreover, these studies have produced an enormous amount of information that will be critically important for the further development of improved diagnostic and prognostic biomarkers that can assist in the clinical management of CTCL patients. In the present review the main findings of these studies in relation to their functional impact on the malignant transformation process are discussed for different subtypes of CTCL.
Collapse
|
2
|
King RL, Tan B, Craig FE, George TI, Horny HP, Kelemen K, Orazi A, Reichard KK, Rimsza LM, Wang SA, Zamo A, Quintanilla-Martinez L. Reactive Eosinophil Proliferations in Tissue and the Lymphocytic Variant of Hypereosinophilic Syndrome. Am J Clin Pathol 2021; 155:211-238. [PMID: 33367482 DOI: 10.1093/ajcp/aqaa227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2019 Society for Hematopathology and European Association for Haematopathology Workshop reviewed the spectrum of neoplastic, nonneoplastic, and borderline entities associated with reactive eosinophilia in tissue. METHODS The workshop panel reviewed 46 cases covered in 2 workshop sessions. RESULTS The 46 cases were presented with their consensus diagnoses during the workshop. Reactive eosinophilia in lymph nodes and other tissues may be accompanied by or be distinct from peripheral blood eosinophilia. Reactive etiologies included inflammatory disorders such as Kimura disease and IgG4-related disease, which may show overlapping pathologic features and reactions to infectious agents and hypersensitivity (covered in a separate review). Hodgkin, T-cell, and B-cell lymphomas and histiocytic neoplasms can result in reactive eosinophilia. The spectrum of these diseases is discussed and illustrated through representative cases. CONCLUSIONS Reactive eosinophilia in lymph nodes and tissues may be related to both nonneoplastic and neoplastic lymphoid proliferations and histiocytic and nonhematolymphoid processes. Understanding the differential diagnosis of reactive eosinophilia and the potential for overlapping clinical and pathologic findings is critical in reaching the correct diagnosis so that patients can be treated appropriately.
Collapse
Affiliation(s)
| | - Brent Tan
- Division of Hematopathology, Stanford University, Stanford, CA
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | - Hans-Peter Horny
- Institute of Pathology, University of Munich (LMU), Munich, Germany
| | | | - Attilio Orazi
- Department of Pathology, TexasTech University Health Sciences Center, P.L. Foster School of Medicine, El Paso
| | | | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Alberto Zamo
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
3
|
Hu T, Krejsgaard T, Nastasi C, Buus TB, Nansen A, Hald A, Spee P, Nielsen PR, Blümel E, Gluud M, Willerslev-Olsen A, Woetmann A, Bzorek M, Eriksen JO, Ødum N, Rahbek Gjerdrum LM. Expression of the Voltage-Gated Potassium Channel Kv1.3 in Lesional Skin from Patients with Cutaneous T-Cell Lymphoma and Benign Dermatitis. Dermatology 2019; 236:123-132. [PMID: 31536992 DOI: 10.1159/000502137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by effector memory T cells (TEM) and plays an important role in their activation and proliferation. Mycosis fungoides (MF), the most common subtype of cutaneous T-cell lymphoma (CTCL), was recently proposed to be a malignancy of skin-resident TEM. However, the expression of Kv1.3 in CTCL has not been investigated. OBJECTIVES This study aims to examine the expression of Kv1.3 in situ and in vitro in CTCL. METHODS The expression of Kv1.3 was examined by immunohistochemistry in skin lesions from 38 patients with MF, 4 patients with Sézary syndrome (SS), and 27 patients with benign dermatosis. In 4 malignant T-cell lines of CTCL (Myla2059, PB2B, SeAx, and Mac2a) and a non-malignant T-cell line (MyLa1850), the expression of Kv1.3 was determined by flow cytometry. The proliferation of those cell lines treated with various concentrations of Kv1.3 inhibitor ShK was measured by 3H-thymdine incorporation. RESULTS Half of the MF patients (19/38) displayed partial Kv1.3 expression including 1 patient with moderate Kv1.3 positivity, while the other half (19/38) exhibited Kv1.3 negativity. An almost identical distribution was observed in patients with benign conditions, that is, 44.4% (12/27) were partially positive for Kv1.3 including 1 patient with moderate Kv1.3 positivity, while 55.6% (15/27) were Kv1.3 negative. In contrast, 3 in 4 SS patients displayed partial Kv1.3 positivity including 2 patients with weak staining and 1 with moderate staining, while 1 in 4 SS patients was Kv1.3 negative. In addition, all malignant T-cell lines, and a non-malignant T-cell line, displayed low Kv1.3 surface expression with a similar pattern. Whereas 2 cell lines (PB2B and Mac2a) were sensitive to Kv1.3 blockade, the other 2 (Myla2059 and SeAx) were completely resistant. CONCLUSIONS We provide the first evidence of a heterogeneous Kv1.3 expression in situ in CTCL lesions.
Collapse
Affiliation(s)
- Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anneline Nansen
- Department of in vivo Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | - Andreas Hald
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens O Eriksen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Gug G, Huang Q, Chiticariu E, Solovan C, Baudis M. DNA copy number imbalances in primary cutaneous lymphomas. J Eur Acad Dermatol Venereol 2019; 33:1062-1075. [PMID: 30659659 DOI: 10.1111/jdv.15442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cutaneous lymphomas (CL) represent a clinically defined group of extranodal non-Hodgkin lymphomas harbouring heterogeneous and incompletely delineated molecular aberrations. Over the past decades, molecular studies have identified several chromosomal aberrations, but the interpretation of individual genomic studies can be challenging. OBJECTIVE With a comprehensive meta-analysis, we aim to delineate genomic alterations for different types of CL and propose a more accurate classification in line with their various pathogenicity. METHODS We searched PubMed and ISI Web of Knowledge for publications from 1996 to 2016 reporting the investigation of CL for genome-wide copy number alterations, by means of comparative genomic hybridization techniques and whole-genome sequencing and whole-exome sequencing. We then extracted and remapped the available copy number variation (CNV) data from these publications with the same pipeline and performed clustering and visualisation to aggregate samples of similar CNV profiles. RESULTS For 449 samples from 22 publications, CNV data were accessible for sample based meta-analysis. Our findings illustrate structural and numerical chromosomal imbalance patterns. Most frequent CNAs were linked to oncogenes or tumour suppressor genes with important roles in the course of the disease. CONCLUSION Summary profiles for genomic imbalances, generated from case-specific data, identified complex genomic imbalances, which could discriminate between different subtypes of CL and promise a more accurate classification. The collected data presented in this study are publicly available through the 'Progenetix' online repository.
Collapse
Affiliation(s)
- G Gug
- University of Medicine and Pharmacy "Victor Babeș", Timișoara, România
| | - Q Huang
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - E Chiticariu
- University of Medicine and Pharmacy "Victor Babeș", Timișoara, România
| | - C Solovan
- University of Medicine and Pharmacy "Victor Babeș", Timișoara, România.,Emergency City Hospital, University Clinic of Dermatology and Venereology, Timișoara, România
| | - M Baudis
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
5
|
Genomic imbalances and microRNA transcriptional profiles in patients with mycosis fungoides. Tumour Biol 2016; 37:13637-13647. [DOI: 10.1007/s13277-016-5259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/15/2016] [Indexed: 01/12/2023] Open
|
6
|
Wilcox RA. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 2016; 91:151-65. [PMID: 26607183 PMCID: PMC4715621 DOI: 10.1002/ajh.24233] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral, or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors before escalating therapy to include systemic, single-agent chemotherapy. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology, University of Michigan Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948
| |
Collapse
|
7
|
Molecular genetic and cytogenetic analysis of a primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma. Int J Hematol 2015; 103:196-201. [PMID: 26676804 DOI: 10.1007/s12185-015-1895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
We performed cytogenetic and molecular cytogenetic analyses of a primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma, a rare type of primary cutaneous T-cell lymphoma. G-banded analysis at initial diagnosis and recurrence revealed complex karyotype and clonal evolution reflecting genomic instability that parallels the aggressive clinical course observed. Spectral karyotyping revealed numerous structural abnormalities. SNP array-based analysis of an initial diagnostic sample revealed numerous gains and losses of chromosomal material, including loss of short arm of the chromosome 17, to which TP53 is mapped. The molecular cytogenetics and array data of this case suggest genomic instability, particularly chromosomal instability and haploinsufficiency for TP53, the latter possibly giving rise to alteration of p14ARF-Mdm2-p53 tumor suppressor protein pathway, likely to be associated with unfavorable clinical course.
Collapse
|
8
|
Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, Xi L, Meng Q, Langridge T, Drummond J, Donehower LA, Doddapaneni H, Muzny DM, Gibbs RA, Wheeler DA, Duvic M. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet 2015; 47:1426-34. [PMID: 26551670 PMCID: PMC4829974 DOI: 10.1038/ng.3444] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/16/2015] [Indexed: 12/16/2022]
Abstract
Sézary syndrome is a rare leukemic form of cutaneous T cell lymphoma characterized by generalized redness, scaling, itching and increased numbers of circulating atypical T lymphocytes. It is rarely curable, with poor prognosis. Here we present a multiplatform genomic analysis of 37 patients with Sézary syndrome that implicates dysregulation of cell cycle checkpoint and T cell signaling. Frequent somatic alterations were identified in TP53, CARD11, CCR4, PLCG1, CDKN2A, ARID1A, RPS6KA1 and ZEB1. Activating CCR4 and CARD11 mutations were detected in nearly one-third of patients. ZEB1, encoding a transcription repressor essential for T cell differentiation, was deleted in over one-half of patients. IL32 and IL2RG were overexpressed in nearly all cases. Our results demonstrate profound disruption of key signaling pathways in Sézary syndrome and suggest potential targets for new therapies.
Collapse
Affiliation(s)
- Linghua Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao Ni
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kyle R. Covington
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Betty Y. Yang
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jessica Shiu
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiang Zhang
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liu Xi
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Langridge
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jennifer Drummond
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A. Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Madeleine Duvic
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Şahin B, Fife J, Parmar MB, Valencia-Serna J, Gul-Uludağ H, Jiang X, Weinfeld M, Lavasanifar A, Uludağ H. siRNA therapy in cutaneous T-cell lymphoma cells using polymeric carriers. Biomaterials 2014; 35:9382-94. [DOI: 10.1016/j.biomaterials.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
|
10
|
Wilcox RA. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol 2014; 89:837-51. [PMID: 25042790 DOI: 10.1002/ajh.23756] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, and blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic, single-agent chemotherapy. Multiagent chemotherapy (e.g., CHOP) may be employed for those patients with extensive visceral involvement requiring rapid disease control. In highly selected patients, allogeneic stem-cell transplantation may be considered.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology; University of Michigan Cancer Center; Ann Arbor Michigan
| |
Collapse
|
11
|
Abstract
Telomere erosion may be counteracted by telomerase. Here we explored telomere length (TL) and telomerase activity (TA) in primary cutaneous T-cell lymphoma (CTCL) by using quantitative polymerase chain reaction and interphase quantitative fluorescence in situ hybridization assays. Samples from patients with Sézary syndrome (SS), transformed mycosis fungoides (T-MF), and cutaneous anaplastic large cell lymphoma were studied in parallel with corresponding cell lines to evaluate the relevance of TL and TA as target candidates for diagnostic and therapeutic purposes. Compared with controls, short telomeres were observed in aggressive CTCL subtypes such as SS and T-MF and were restricted to neoplastic cells in SS. While no genomic alteration of the hTERT (human telomerase catalytic subunit) locus was observed in patients' tumor cells, TA was detected. To understand the role of telomerase in CTCL, we manipulated its expression in CTCL cell lines. Telomerase inhibition rapidly impeded in vitro cell proliferation and led to cell death, while telomerase overexpression stimulated in vitro proliferation and clonogenicity properties and favored tumor development in immunodeficient mice. Our data indicate that, besides maintenance of TL, telomerase exerts additional functions in CTCL. Therefore, targeting these functions might represent an attractive therapeutic strategy, especially in aggressive CTCL.
Collapse
|
12
|
Hassler MR, Schiefer AI, Egger G. Combating the epigenome: epigenetic drugs against non-Hodgkin's lymphoma. Epigenomics 2013; 5:397-415. [PMID: 23895653 DOI: 10.2217/epi.13.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a large and diverse group of neoplasms of lymphocyte origin with heterogeneous molecular features and clinical manifestations. Current therapies are based on standard chemotherapy, immunotherapy, radiation or stem cell transplantation. The discovery of recurrent mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases, has provided researchers with a rationale to develop novel inhibitors targeting these enzymes. Several clinical and preclinical studies have demonstrated the efficacy of epigenetic drugs in NHL therapy and a few specific inhibitors have already been approved for clinical use. Here, we provide an overview of current NHL classification and a review of the present literature describing epigenetic alterations in NHL, including a summary of different epigenetic drugs, and their use in preclinical and clinical studies.
Collapse
Affiliation(s)
- Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | |
Collapse
|
13
|
Sarojam S, Raveendran S, Narayanan G, Sreedharan H. Novel t(7;10)(p22;p24) along with NPM1 mutation in patient with relapsed acute myeloid leukemia. Ann Saudi Med 2013; 33:619-22. [PMID: 24413869 PMCID: PMC6074915 DOI: 10.5144/0256-4947.2013.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromosomal abnormalities/genetic mutations associated with hematological malignancies alter the structure and function of genes controlling cell proliferation and differentiation through multiple and complex pathways, resulting different clinical outcomes. This is a case study of a lady presented with acute myeloid leukemia (AML M1) at our center who relapsed 10 years after the induction therapy. Cytogenetic and molecular analyses were performed in this case at the time of relapse to find out the chromosomal abnormalities and genetic abnormalities like FMS-like tyrosine kinase (FLT3) and nucleophosmin (NPM1) mutation. The cytogenetic analysis of bone marrow established a novel translocation t(7;10) (p22;q24) in 100% of the cells analyzed. Phytohaemagglutinin (PHA)-stimulated blood culture also revealed the same abnormality. Apart from this, the molecular analysis showed NPM1 exon 12 (hot-spot) mutation in this patient. This was the first report of novel chromosomal translocation in this subset of AML in which a new translocation along with NPM1 mutation was discussed.
Collapse
Affiliation(s)
- Santhi Sarojam
- Mrs. Sarojam Santhi, Regional Cancer Centre,, Division of Cancer Research,, Medical College Campus,, Thiruvananthapuram,, Kerala 695011, India, T-0471-2522204, ,
| | | | | | | |
Collapse
|
14
|
Iżykowska K, Zawada M, Nowicka K, Grabarczyk P, Braun FC, Delin M, Möbs M, Beyer M, Sterry W, Schmidt CA, Przybylski GK. Identification of Multiple Complex Rearrangements Associated with Deletions in the 6q23-27 Region in Sézary Syndrome. J Invest Dermatol 2013; 133:2617-2625. [DOI: 10.1038/jid.2013.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/24/2013] [Accepted: 03/29/2013] [Indexed: 11/09/2022]
|
15
|
Maliniemi P, Vincendeau M, Mayer J, Frank O, Hahtola S, Karenko L, Carlsson E, Mallet F, Seifarth W, Leib-Mösch C, Ranki A. Expression of human endogenous retrovirus-w including syncytin-1 in cutaneous T-cell lymphoma. PLoS One 2013; 8:e76281. [PMID: 24098463 PMCID: PMC3788054 DOI: 10.1371/journal.pone.0076281] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/22/2013] [Indexed: 12/03/2022] Open
Abstract
The pathomechanism of mycosis fungoides (MF), the most common type of primary cutaneous T-cell lymphomas (CTCLs) and a malignancy of non-recirculating, skin-resident T-cells, is unknown albeit underlying viral infections have been sought for. Human endogenous retroviruses (HERVs) are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancers. We explored the transcriptional activity of HERV sequences in a total of 34 samples comprising MF and psoriasis skin lesions, as well as corresponding non-malignant skin using a retrovirus-specific microarray and quantitative RT-PCR. To identify active HERV-W loci, we cloned the HERV-W specific RT-PCR products, sequenced the cDNA clones and assigned the sequences to HERV-W loci. Finally, we used immunohistochemistry on MF patient and non-malignant inflammatory skin samples to confirm specific HERV-encoded protein expression. Firstly, a distinct, skin-specific transcription profile consisting of five constitutively active HERV groups was established. Although individual variability was common, HERV-W showed significantly increased transcription in MF lesions compared to clinically intact skin from the same patient. Predominantly transcribed HERV-W loci were found to be located in chromosomes 6q21 and 7q21.2, chromosomal regions typically altered in CTCL. Surprisingly, we also found the expression of 7q21.2/ERVWE1-encoded Syncytin-1 (Env) protein in MF biopsies and expression of Syncytin-1 was seen in malignant lymphocytes, especially in the epidermotropic ones, in 15 of 30 cases studied. Most importantly, no Syncytin-1 expression was detected in inflammatory dermatosis (Lichen ruber planus) with skin-homing, non-malignant T lymphocytes. The expression of ERVWE1 mRNA was further confirmed in 3/7 MF lesions analyzed. Our observations strengthen the association between activated HERVs and cancer. The study offers a new perspective into the pathogenesis of CTCL since we demonstrate that differences in HERV-W transcription levels between lesional MF and non-malignant skin are significant, and that ERVWE1-encoded Syncytin-1 is expressed in MF lymphoma cells.
Collapse
Affiliation(s)
- Pilvi Maliniemi
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Oliver Frank
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Sonja Hahtola
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Leena Karenko
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Emilia Carlsson
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Francois Mallet
- Joint Unit Hospices Civils de Lyon-bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Annamari Ranki
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Abstract
The development of array comparative genomic hybridization (aCGH) techniques has allowed to characterize more precisely several human neoplasms with the aim of providing prognostic markers and targets for directed therapeutic intervention. Recently, several studies applying aCGH technique have been reported in which an exhaustive genetic characterization of mycosis fungoides (MF) and Sézary syndrome (SS) has been performed. Regarding MF, a genomic profile characterized by the gains of 7q, 17q, and 8q and losses in 9p, 13q, 17p, and 10q has been described. In SS, the most common abnormalities are gains in 8q and 17q and losses at 17p and 10q. One of the main contributions of the aCGH studies in MF and SS has been the description of genetic markers associated with a poor prognosis. In MF, three specific chromosomal regions, 9p21.3 (CDKN2A, CDKN2B, and MTAP), 8q24.21 (MYC), and 10q26qter (MGMT and EBF3) have been defined as prognostic markers exhibiting a significant correlation with overall survival (P = 0.042, P = 0.017, and P = 0.022, respectively). Moreover, two MF genomic subgroups have been described, distinguishing a stable group (0-5 DNA aberrations) and an unstable group (>5 DNA aberrations), showing that the genomic unstable group had a shorter overall survival (P = 0.05).
Collapse
Affiliation(s)
- Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.
| | | |
Collapse
|
17
|
Deonizio JM, Guitart J. The Role of Molecular Analysis in Cutaneous Lymphomas. ACTA ACUST UNITED AC 2012; 31:234-40. [DOI: 10.1016/j.sder.2012.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
|
18
|
López C, Baumann T, Costa D, López-Guerra M, Navarro A, Gómez C, Arias A, Muñoz C, Rozman M, Villamor N, Colomer D, Montserrat E, Campo E, Carrió A. A new genetic abnormality leading to TP53 gene deletion in chronic lymphocytic leukaemia. Br J Haematol 2011; 156:612-8. [DOI: 10.1111/j.1365-2141.2011.08978.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Mao X, Chaplin T, Young BD. Integrated genomic analysis of sézary syndrome. GENETICS RESEARCH INTERNATIONAL 2011; 2011:980150. [PMID: 22567373 PMCID: PMC3335609 DOI: 10.4061/2011/980150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 08/07/2011] [Accepted: 08/29/2011] [Indexed: 02/05/2023]
Abstract
Sézary syndrome (SS) is a rare variant of primary cutaneous T-cell lymphoma. Little is known about the underlying pathogenesis of S. To address this issue, we used Affymetrix 10K SNP microarray to analyse 13 DNA samples isolated from 8 SS patients and qPCR with ABI TaqMan SNP genotyping assays for the validation of the SNP microarray results. In addition, we tested the impact of SNP loss of heterozygosity (LOH) identified in SS cases on the gene expression profiles of SS cases detected with Affymetrix GeneChip U133A. The results showed: (1) frequent SNP copy number change and LOH involving 1, 2p, 3, 4q, 5q, 6, 7p, 8, 9, 10, 11, 12q, 13, 14, 16q, 17, and 20, (2) reduced SNP copy number at FAT gene (4q35) in 75% of SS cases, and (3) the separation of all SS cases from normal control samples by SNP LOH gene clusters at chromosome regions of 9q31q34, 10p11q26, and 13q11q12. These findings provide some intriguing information for our current understanding of the molecular pathogenesis of this tumour and suggest the possibility of presence of functional SNP LOH in SS tumour cells.
Collapse
Affiliation(s)
- Xin Mao
- Centre for Cutaneous Research, Institute of Cell and Molecular Sciences, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | | | | |
Collapse
|
20
|
Wilcox RA. Cutaneous T-cell lymphoma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 2011; 86:928-48. [PMID: 21990092 DOI: 10.1002/ajh.22139] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis fungoides (MF) or Sézary syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY Tumor, node, metastasis, and blood (TNMB) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral, or blood involvement are generally approached with biologic-response modifiers, denileukin diftitox, and histone deacetylase inhibitors before escalating therapy to include systemic, single-agent chemotherapy. Multiagent chemotherapy may be used for those patients with extensive visceral involvement requiring rapid disease control. In highly-selected patients with disease refractory to standard treatments, allogeneic stem-cell transplantation may be considered.
Collapse
Affiliation(s)
- Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Cancer Center, Ann Arbor, 48109-5948, USA. rywilcox@med. umich.edu
| |
Collapse
|
21
|
Salgado R, Gallardo F, Servitje O, Estrach T, García-Muret MP, Romagosa V, Florensa L, Serrano S, Salido M, Solé F, Pujol RM, Espinet B. Absence of TCR loci chromosomal translocations in cutaneous T-cell lymphomas. Cancer Genet 2011; 204:405-9. [PMID: 21872828 DOI: 10.1016/j.cancergen.2011.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/05/2011] [Accepted: 05/11/2011] [Indexed: 11/26/2022]
Abstract
Chromosomal aberrations involving T-cell receptor (TCR) gene loci have been described in several T-cell malignancies. In primary cutaneous T-cell lymphomas (CTCL), the frequency of these aberrations has not yet been well established. We analyzed TCR gene loci (TCRAD, TCRB, and TCRG) status in CTCLs by fluorescence in situ hybridization (FISH). Twenty-five patients with CTCLs were included in the study: 13 Sézary syndromes (SS), six tumoral stage mycosis fungoides (MFt), and six primary cutaneous anaplastic large cell lymphomas CD30(+) (cALCL-CD30(+)). FISH was performed with three break-apart probes flanking TCRAD (14q11), TCRB (7q34), and TCRG (7p14) loci in each case. TCR gene chromosomal rearrangements were not detected in any of the analyzed cases. Gains of TCRB and TCRG genes were observed in 23% (3 of 13) of SS and 50% (3 of 6) of MFt, reflecting the presence of trisomy and/or tetrasomy of chromosome 7 already detected by conventional cytogenetics and array comparative genetic hybridization techniques. TCR loci rearrangements are not frequent in CTCLs; however, we cannot exclude a pathogenic role in these malignancies.
Collapse
Affiliation(s)
- Rocío Salgado
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar-Parc de Salut Mar, IMIM-Institut de Recerca de l'Hospital del Mar, Programa de Recerca en Càncer, GRETNHE, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pileri A, Patrizi A, Agostinelli C, Neri I, Sabattini E, Bacci F, Piccaluga PP, Pimpinelli N, Pileri SA. Primary cutaneous lymphomas: a reprisal. Semin Diagn Pathol 2011; 28:214-233. [PMID: 21850987 DOI: 10.1053/j.semdp.2011.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary cutaneous lymphomas (PCLs) are a group of lymphoid neoplasms provided with heterogeneous clinical, histological, immunohistochemical and molecular features. They can be classified in two groups: cutaneous T-cell lymphomas (CTCLs) and cutaneous B-cell lymphomas (CBCLs). Recent studies show an increase of the incidence of PCLs over the last three decades. Our aim is to evaluate the commonest types of PCL analysing the clinical characteristics, histology, phenotype, molecular biology, prognosis and therapy.
Collapse
Affiliation(s)
- Alessandro Pileri
- Department of Internal Medicine, Geriatrics, and Nephrology, Division of Dermatology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Sezary syndrome (SS) is a rare form of cutaneous T-cell lymphoma characterized by erythroderma and the presence of Sezary cells in the skin, lymph nodes, and peripheral blood. Over the past few decades, cytogenetic and molecular cytogenetic findings have revealed many genetic alterations in patients with SS. The most frequent genetic lesions include monosomy 10, losses of 10q and 17p, gains of 8q24 and 17q, and diverse structural alterations involving these regions. Expression patterns in regions of genomic imbalance show that a large number of genes in SS are deregulated, and this might have a causative role in oncogenesis. Overall, chromosomal instability is characteristic of this lymphoma and related to a poor prognosis, but no specific abnormalities that may be directly involved in development of the disease have yet been found.
Collapse
|
24
|
Caprini E, Cristofoletti C, Arcelli D, Fadda P, Citterich MH, Sampogna F, Magrelli A, Censi F, Torreri P, Frontani M, Scala E, Picchio MC, Temperani P, Monopoli A, Lombardo GA, Taruscio D, Narducci MG, Russo G. Identification of Key Regions and Genes Important in the Pathogenesis of Sézary Syndrome by Combining Genomic and Expression Microarrays. Cancer Res 2009; 69:8438-46. [DOI: 10.1158/0008-5472.can-09-2367] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Carbone A, Bernardini L, Valenzano F, Bottillo I, De Simone C, Capizzi R, Capalbo A, Romano F, Novelli A, Dallapiccola B, Amerio P. Array-based comparative genomic hybridization in early-stage mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A, SMAC/DIABLO, and RHOF. Genes Chromosomes Cancer 2008; 47:1067-75. [PMID: 18663754 DOI: 10.1002/gcc.20601] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The etiology of mycosis fungoides (MF), the most frequent form of cutaneous T cell lymphoma (CTCL), is poorly understood. No specific genetic aberration has been detected, especially in early-stage disease, possibly due to the clinical and histological heterogeneity of patient series and to the different sources of malignant cells (skin, blood, or lymph node) included in most studies. Frozen skin biopsies from 16 patients with early-stage MF were studied using array-based comparative genomic hybridization. A DNA pool from healthy donors was used as the reference. Results demonstrated recurrent loss of 19, 7p22.1-p22.3, 7q11.1-q11.23, 9q34.12, 12q24.31, and 16q22.3-q23.1, and gain of 8q22.3-q23.1 and 21q22.12. The 12q24.31 region was recurrently deleted in 7/16 patients. Real-time PCR investigation for deletion of genes BCL7A, SMAC/DIABLO, and RHOF-three tumor suppressor genes with a putative role in hematological malignancies-demonstrated that they were deleted in 9, 10, and 13 cases, respectively. The identified genomic alterations and individual genes could yield important insights into the early steps of MF pathogenesis.
Collapse
Affiliation(s)
- Angelo Carbone
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Primary Cutaneous T-Cell Lymphomas Do not Show Specific NAV3 Gene Deletion or Translocation. J Invest Dermatol 2008; 128:2458-66. [DOI: 10.1038/jid.2008.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Mao X, McElwaine S. Functional copy number changes in Sézary syndrome: toward an integrated molecular cytogenetic map III. ACTA ACUST UNITED AC 2008; 185:86-94. [DOI: 10.1016/j.cancergencyto.2008.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/22/2008] [Accepted: 05/07/2008] [Indexed: 01/13/2023]
|
28
|
Vermeer MH, van Doorn R, Dijkman R, Mao X, Whittaker S, van Voorst Vader PC, Gerritsen MJP, Geerts ML, Gellrich S, Soderberg O, Leuchowius KJ, Landegren U, Out-Luiting JJ, Knijnenburg J, IJszenga M, Szuhai K, Willemze R, Tensen CP. Novel and Highly Recurrent Chromosomal Alterations in Sezary Syndrome. Cancer Res 2008; 68:2689-98. [DOI: 10.1158/0008-5472.can-07-6398] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Karenko L, Hahtola S, Ranki A. Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res 2007; 118:353-61. [DOI: 10.1159/000108320] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 11/30/2006] [Indexed: 01/06/2023] Open
|
30
|
Padilla-Nash HM, Wu K, Just H, Ried T, Thestrup-Pedersen K. Spectral karyotyping demonstrates genetically unstable skin-homing T lymphocytes in cutaneous T-cell lymphoma. Exp Dermatol 2007; 16:98-103. [PMID: 17222222 DOI: 10.1111/j.1600-0625.2006.00507.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We initially established cell lines from skin biopsies from four patients (MF8, MF18, MF19 and MF31) in early stages of cutaneous T-cell lymphoma (CTCL) in 1999. After 3 weeks of culture, skin-homing T lymphocytes were stimulated with phytohaemagglutinin. Metaphase spreads were analysed using spectral karyotyping (SKY), a molecular cytogenetic technique. MF18 and MF19 had predominantly normal karyotypes. MF8 had recurrent numerical aberrations resulting in two T lymphocyte clones: one with trisomy 21 (12/20 cells) and the other with monosomy chromosome 22 (3/20 cells). MF8 also exhibited a clonal deletion, del(5)(p15.1), as well as multiple non-clonal structural aberrations. MF31 had a clonal deletion, del(17)(p12) and other non-clonal deletions involving chromosomes 2, 5, 10, 11. MF18 had a single abnormal cell that contained two reciprocal translocations t(1;2)(q32;p21) and t(4;10)(p15.2;q24). In 2001, three of the original patients had new skin biopsies taken and cell lines were established. SKY analysis revealed the continued presence of a T-cell clone in MF8 with trisomy 21 (4/20 cells). Additionally, a new clone was seen with a del(18)(p11.2) (17/20 cells). MF31 had only one aberrant cell with a del(17)(p12). MF18 had a clonal deletion, [del(1)(p36.1) in 3/20 cells] and non-clonal aberrations involving chromosomes 3, 4, 5, 6, 12, 13, 17 and 18. Thus, three of four patients continued to show numerous numerical and structural aberrations, both clonal and non-clonal, with only MF8 having a recurring T lymphocyte clone (+21). Our findings demonstrate high genetic instability among skin-homing T lymphocytes even in early stages of CTCL. We did not see genetic instability or evidence of clones in cell lines from a patient with atopic dermatitis and one with psoriasis.
Collapse
Affiliation(s)
- Hesed M Padilla-Nash
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
31
|
Ikonomou IM, Aamot HV, Heim S, Fosså A, Delabie J. Granulomatous slack skin with a translocation t(3;9)(q12;p24). Am J Surg Pathol 2007; 31:803-6. [PMID: 17460466 DOI: 10.1097/pas.0b013e31803071a4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Granulomatous slack skin is a rare cutaneous T-lymphoproliferative disease characterized by pendulous skin folds. Histology typically reveals a dermal infiltrate of T cells and multinucleated giant cells showing elastophagocytosis. Specific genetic abnormalities have not yet been identified. Currently, granulomatous slack skin is classified according to the World Health Organization classification as a variant of mycosis fungoides although supporting genetic evidence is yet lacking. We present a well-documented case of a 46-year-old man with the typical histologic and clinical findings of granulomatous slack skin. Cytogenetic analysis of a skin biopsy revealed a t(3;9)(q12;p24) as the sole chromosomal abnormality. Fluorescence in situ hybridization analysis did not reveal involvement of the JAK2 gene, located at chromosome band 9p24, and previously shown to be amplified in Hodgkin lymphoma and primary mediastinal diffuse large B-cell lymphoma. Although more cases have to be reported and the putative oncogene involved in the translocation has yet to be identified, the cytogenetic findings are unlike those described for mycosis fungoides and suggests that granulomatous slack skin is a distinct primary cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Ida Münster Ikonomou
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
32
|
Prochazkova M, Chevret E, Mainhaguiet G, Sobotka J, Vergier B, Belaud-Rotureau MA, Beylot-Barry M, Merlio JP. Common chromosomal abnormalities in mycosis fungoides transformation. Genes Chromosomes Cancer 2007; 46:828-38. [PMID: 17584911 DOI: 10.1002/gcc.20469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To identify cytogenetic features of large cell transformation in mycosis fungoides (T-MF), we selected in 11 patients, 16 samples either from skin tumors (13), lymph node (1), or peripheral blood cells (2) collected at the time of the transformation. Comparative genomic hybridization (CGH), G-banding, fluorescence in situ hybridisation (FISH), multicolour FISH (mFISH), and DNA content analysis were used. Fifteen samples displayed unbalanced CGH profiles, with gains more frequently observed than losses. Recurrent chromosomal alterations were observed for chromosomes 1, 2, 7, 9, 17, and 19. The most common imbalances were gain of chromosome regions 1p36, 7, 9q34, 17q24-qter, 19, and loss of 2q36-qter, 9p21, and 17p. In six samples 1p36-pter gain was associated with 9q34-qter gain and whole chromosome 19 gain. In five of these samples whole or partial gain of chromosome 17 was also observed. No specific pattern was seen with regard to the expression of the CD30 antigen by tumor cells. Cytogenetics and/or DNA content analysis of skin tumor cells revealed an abnormal chromosome number in all tested cases (n = 7) with DNA ploidy ranging from hyperdiploid (2.78) to hypotetraploid (3.69) (mean 3.14+/-0.38). Thus, T-MF displayed frequent chromosomal imbalances associated with hypotetraploidy.
Collapse
Affiliation(s)
- Martina Prochazkova
- Histology and Molecular Pathology Laboratory EA2406, Victor Segalen University, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Taube JM, Griffin CA, Yonescu R, Morsberger L, Argani P, Askin FB, Batista DAS. Pleuropulmonary blastoma: cytogenetic and spectral karyotype analysis. Pediatr Dev Pathol 2006; 9:453-61. [PMID: 17163790 DOI: 10.2350/06-02-0044.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/02/2006] [Indexed: 01/21/2023]
Abstract
Pleuropulmonary blastoma (PPB) is a rare neoplasm of the pleuropulmonary mesenchyme. The molecular mechanisms underlying the genesis of this tumor are of particular interest as a large number of affected patients as well as their relatives have concurrent disease including additional dysplasia or neoplasia. To date, detailed karyotypes have been published on a limited number of cases. We report clinical, pathologic, and cytogenetic data in 2 cases of PPB including spectral karyotyping in 1 of them. Additionally, we conducted a review of the literature and compiled 15 published karyotypes of this tumor. Gain of chromosome 8 material was a highly prevalent finding in PPB, most times occurring as trisomy, but tetrasomy of the long arm was also frequent. Other occurring abnormalities, in order of observed frequency, included loss of 17p, loss of chromosome 10 or 10q, rearrangement of 11p, loss of chromosome X or Xp, gain of chromosomes/arms 1q, 2, and 7q, and loss of 6q and 18p. Loss of 10q has not been previously emphasized in PPB. The significance of these chromosome findings is discussed in relation to tumorigenesis.
Collapse
Affiliation(s)
- Janis M Taube
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|