1
|
Kusterer M, Lahnalampi M, Voutilainen M, Brand A, Pennisi S, Norona J, Gentile G, Herzog H, Greve G, Lübbert M, Sipola M, Kaartinen E, Sankowski R, Prinz M, Killmer S, Lago MS, Bengsch B, Cysar SR, Aumann K, Werner M, Duyster J, Lohi O, Heinäniemi M, Duque‐Afonso J. Dynamic evolution of TCF3-PBX1 leukemias at the single-cell level under chemotherapy pressure. Hemasphere 2025; 9:e70071. [PMID: 39901941 PMCID: PMC11788586 DOI: 10.1002/hem3.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 02/05/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. The translocation t(1;19), encoding the TCF3-PBX1 fusion, is associated with intermediate risk and central nervous system (CNS) infiltration at relapse. Using our previously generated TCF3-PBX1 conditional knock-in mice, we established a model to study relapsed clones after in vivo chemotherapy treatment, CNS infiltration, and clonal dynamic evolution of phenotypic diversity at the single cell-level using next-generation sequencing technologies and mass cytometry. Mice transplanted with TCF3-PBX1 + leukemia cells and treated with vehicle succumbed to disease, whereas 40% of treated mice with prednisolone or daunorubicin survived. Bulk and single-cell RNA sequencing of FACS-sorted GFP+ cells from TCF3-PBX1 + leukemias arising after chemotherapy treatment revealed that apoptosis, interleukin-, and TGFβ-signaling pathways were regulated in CNS-infiltrating leukemic cells. Across tissues, upregulation of the MYC signaling pathway was detected in persisting leukemic cells and its downregulation by BRD3/4 inhibition increased sensitivity to chemotherapy. In TCF3-PBX1+ leukemia cells collected after chemotherapy treatment, mass cytometry identified increased phosphorylation of STAT3/5 upon preBCR stimulation, which was susceptible to inhibition by the proteasome inhibitor bortezomib. In summary, we developed a TCF3-PBX1+ ALL mouse model and characterized relapsed disease after in vivo chemotherapy and cell phenotype dependence on microenvironment. Transcriptomics and phospho-proteomics revealed distinct pathways that may underlie chemotherapy resistance and might be suitable for pharmacological interventions in human ALL.
Collapse
Affiliation(s)
- Mira Kusterer
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Mari Lahnalampi
- Institute of BiomedicineSchool of Medicine, University of Eastern FinlandKuopioFinland
| | - Minna Voutilainen
- Institute of BiomedicineSchool of Medicine, University of Eastern FinlandKuopioFinland
| | - Alexandra Brand
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Sandra Pennisi
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Johana Norona
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Gaia Gentile
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Heike Herzog
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Gabriele Greve
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
- Institute of Genetic EpidemiologyFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Michael Lübbert
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Mikko Sipola
- Institute of BiomedicineSchool of Medicine, University of Eastern FinlandKuopioFinland
| | - Emma Kaartinen
- Institute of BiomedicineSchool of Medicine, University of Eastern FinlandKuopioFinland
| | - Roman Sankowski
- Department of NeuropathologyFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Marco Prinz
- Department of NeuropathologyFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
- Center for NeuroModulationFaculty of Medicine, University of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Saskia Killmer
- Department of Gastroenterology, Hepatology, Endocrinology, and Infectious DiseaseFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Marilyn S. Lago
- Department of Gastroenterology, Hepatology, Endocrinology, and Infectious DiseaseFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Bertram Bengsch
- Center for NeuroModulationFaculty of Medicine, University of FreiburgFreiburgGermany
- Department of Gastroenterology, Hepatology, Endocrinology, and Infectious DiseaseFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Stepan R. Cysar
- Department of PathologyFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Konrad Aumann
- Department of PathologyFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Martin Werner
- Department of PathologyFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Justus Duyster
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health ResearchFaculty of Medicine and Health Technology, Tampere University, and Tays Cancer Centre Tampere University Hospital TampereTampereFinland
| | - Merja Heinäniemi
- Institute of BiomedicineSchool of Medicine, University of Eastern FinlandKuopioFinland
| | - Jesús Duque‐Afonso
- Department of Hematology, Oncology, Stem Cell TransplantationFaculty of Medicine, University of Freiburg Medical CenterFreiburgGermany
| |
Collapse
|
2
|
Koduru P, Chen W, Fuda F, Kaur G, Awan F, John S, Garcia R, Gagan J. RNASeq Analysis for Accurate Identification of Fusion Partners in Tumor Specific Translocations Detected by Standard FISH Probes in Hematologic Malignancies. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241230262. [PMID: 38371338 PMCID: PMC10874141 DOI: 10.1177/2632010x241230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Background Fluorescence labeled DNA probes and in situ hybridization methods had shorter turn round time for results revolutionized their clinical application. Signals obtained from these probes are highly specific, yet they can produce fusion signals not necessarily representing fusion of actual genes due to other genes included in the probe design. In this study we evaluated discordance between cytogenetic, FISH and RNAseq results in 3 different patients with hematologic malignancies and illustrated the need to perform next generation sequencing (NGS) or RNASeq to accurately interpret FISH results. Methods Bone marrow or peripheral blood karyotypes and FISH were performed to detect recurring translocations associated with hematologic malignancies in clinical samples routinely referred to our clinical cytogenetics laboratory. When required, NGS was performed on DNA and RNA libraries to detect somatic alterations and gene fusions in some of these specimens. Discordance in results between these methods is further evaluated. Results For a patient with plasma cell leukemia standard FGFR3 / IGH dual fusion FISH assay detected fusion that was interpreted as FGFR3-positive leukemia, whereas NGS/RNASeq detected NSD2::IGH. For a pediatric acute lymphoblastic leukemia patient, a genetic diagnosis of PDGFRB-positive ALL was rendered because the PDGFRB break-apart probe detected clonal rearrangement, whereas NGS detected MEF2D::CSF1R. A MYC-positive B-prolymphocytic leukemia was rendered for another patient with a cytogenetically identified t(8;14) and MYC::IGH by FISH, whereas NGS detected a novel PVT1::RCOR1 not previously reported. Conclusions These are 3 cases in a series of several other concordant results, nevertheless, elucidate limitations when interpreting FISH results in clinical applications, particularly when other genes are included in probe design. In addition, when the observed FISH signals are atypical, this study illustrates the necessity to perform complementary laboratory assays, such as NGS and/or RNASeq, to accurately identify fusion genes in tumorigenic translocations.
Collapse
Affiliation(s)
- Prasad Koduru
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weina Chen
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Franklin Fuda
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gurbakhash Kaur
- Internal Medicine (Division of Oncology), UT Southwestern Medical Center, Dallas, TX, USA
| | - Farrukh Awan
- Internal Medicine (Division of Oncology), UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel John
- Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rolando Garcia
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Gagan
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Wang H, Sun H, Liang B, Zhang F, Yang F, Cui B, Ding L, Wang X, Wang R, Cai J, Tang Y, Rao J, Hu W, Zhao S, Wu W, Chen X, Wu K, Lai J, Xie Y, Li B, Tang J, Shen S, Liu Y. Chromatin accessibility landscape of relapsed pediatric B-lineage acute lymphoblastic leukemia. Nat Commun 2023; 14:6792. [PMID: 37880218 PMCID: PMC10600232 DOI: 10.1038/s41467-023-42565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
For around half of the pediatric B-lineage acute lymphoblastic leukemia (B-ALL) patients, the molecular mechanism of relapse remains unclear. To fill this gap in knowledge, here we characterize the chromatin accessibility landscape in pediatric relapsed B-ALL. We observe rewired accessible chromatin regions (ACRs) associated with transcription dysregulation in leukemia cells as compared with normal B-cell progenitors. We show that over a quarter of the ACRs in B-ALL are in quiescent regions with high heterogeneity among B-ALLs. We identify subtype-specific and allele-imbalanced chromatin accessibility by integrating multi-omics data. By characterizing the differential ACRs between diagnosis and relapse in B-ALL, we identify alterations in chromatin accessibility during drug treatment. Further analysis of ACRs associated with relapse free survival leads to the identification of a subgroup of B-ALL which show early relapse. These data provide an advanced and integrative portrait of the importance of chromatin accessibility alterations in tumorigenesis and drug responses.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bilin Liang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Wu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junchen Lai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyan Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| |
Collapse
|
4
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
5
|
Davis K, Sheikh T, Aggarwal N. Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol 2023; 40:202-215. [PMID: 37120350 DOI: 10.1053/j.semdp.2023.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
Tremendous strides have been made in the molecular and cytogenetic classification of acute lymphoblastic leukemia based on gene expression profiling data, leading to an expansion of entities in the recent International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias and 2022 WHO Classification of Tumours: Haematolymphoid Tumors, 5th edition. This increased diagnostic and therapeutic complexity can be overwhelming, and this review compares nomenclature differences between the ICC and WHO 5th edition publications, compiles key features of each entity, and provides a diagnostic algorithmic approach. In covering B-lymphoblastic leukemia (B-ALL), we divided the entities into established (those present in the revised 4th edition WHO) and novel (those added to either the ICC or WHO 5th edition) groups. The established B-ALL entities include B-ALL with BCR::ABL1 fusion, BCR::ABL1-like features, KMT2A rearrangement, ETV6::RUNX1 rearrangement, high hyperdiploidy, hypodiploidy (focusing on near haploid and low hypodiploid), IGH::IL3 rearrangement, TCF3::PBX1 rearrangement, and iAMP21. The novel B-ALL entities include B-ALL with MYC rearrangement; DUX4 rearrangement; MEF2D rearrangement; ZNF384 or ZNF362 rearrangement, NUTM1 rearrangement; HLF rearrangement; UBTF::ATXN7L3/PAN3,CDX2; mutated IKZF1 N159Y; mutated PAX5 P80R; ETV6::RUNX1-like features; PAX5 alteration; mutated ZEB2 (p.H1038R)/IGH::CEBPE; ZNF384 rearranged-like; KMT2A-rearranged-like; and CRLF2 rearrangement (non-Ph-like). Classification of T-ALL is complex with some variability in how the subtypes are defined in recent literature. It was classified as early T-precursor lymphoblastic leukemia/lymphoma and T-ALL, NOS in the WHO revised 4th edition and WHO 5th edition. The ICC added an entity into early T-cell precursor ALL, BCL11B-activated, and also added provisional entities subclassified based on transcription factor families that are aberrantly activated.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA
| | | | - Nidhi Aggarwal
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA.
| |
Collapse
|
6
|
Wu Z, Zhang F, Liu C, Shen S, Chu J, Yang L, Xie Z, Liu Y, Liu K, Wang N. Whole transcriptome sequencing reveals a TCF4-ZNF384 fusion in acute lymphoblastic leukemia. Front Oncol 2022; 12:900054. [PMID: 36052266 PMCID: PMC9425772 DOI: 10.3389/fonc.2022.900054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that, the clinical features and prognosis of ZNF384-rearranged pediatric acute lymphoblastic leukemia (ALL) depend on its translocation partners. We report two cases of TCF4-ZNF384 fusion, one 6-year-old girl and one 10-year-old boy, both diagnosed by whole-transcriptome sequencing, and TCF4 is the newest fusion partner of ZNF384. As illustrated in this first report of TCF4-ZNF384 fusion in ALL patients, the identification of patients with ZNF384 rearrangement in ALL patients is critical to elucidate outcomes associated with a specific rearrangement and to develop appropriate treatment strategies. In addition, the development of other methods to detect ZNF384 specific translocation partners and leukemia specific targeting agents is of great significance to further improve the prognosis of ALL with ZNF384-rearrangement.
Collapse
Affiliation(s)
- Zhengyu Wu
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Zhang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengzhu Liu
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Chu
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Linhai Yang
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiwei Xie
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Liu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangkang Liu
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ningling Wang
- Pediatrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ningling Wang,
| |
Collapse
|
7
|
GÖKKAYA B, ATASOY S, ÇIRAKOĞLU A, TARKAN ARGÜDEN Y, KURU RD, YILMAZ Ş, ÖNGÖREN Ş, DEVİREN A. A Preliminary Investigation on the Chromosome Aberrations in Acute Lymphoblastic Leukaemia Using Multiprobe Fluorescence In Situ Hybridization Panel. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.5638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
Lin N, Yan X, Cai D, Wang L. Leukemia With TCF3-ZNF384 Rearrangement as a Distinct Subtype of Disease With Distinct Treatments: Perspectives From A Case Report and Literature Review. Front Oncol 2021; 11:709036. [PMID: 34395283 PMCID: PMC8357369 DOI: 10.3389/fonc.2021.709036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background ZNF384 rearrangements are found in 5-10% of B-cell acute lymphoblastic leukemia (B-ALL) and 48% of B cell/myeloid mixed phenotype acute leukemia (B/M MPAL). ZNF384-rearranged B-ALL is prone to lineage conversion after chemotherapy. TCF3 is the second most common rearrangement partner of ZNF384 in B-ALL (27.5%) and the most common partner in B/M MPAL (53.3%). TCF3-ZNF384 fusion is related to a poor steroid response and a high frequency of relapse. It is mostly reported in children and adolescents but rarely seen in adults. Patients and Methods Here, we report a rare case of adult common B-ALL with TCF3-ZNF384 fusion in which the patient relapsed after one cycle of consolidation chemotherapy. Relapsed leukemia cells from the bone marrow were cultured for 72 hours ex vivo, and a panel of 156 kinds of cytotoxic drugs, targeted therapy drugs, combination chemotherapy drugs, etc., was used for sensitivity screening. The literature on TCF3-ZNF384 fusion was reviewed, and reported cases with TCF3-ZNF384 fusion were summarized. Clinical characteristics were compared between B-ALL and MPAL with TCF3-ZNF384 fusion. Results The relapsed lymphoblasts showed moderate sensitivity to both acute myelocytic leukemia (AML) - and acute lymphoblastic leukemia (ALL)-directed combination chemotherapy schemes, as well as to multiple targeted therapeutic drugs. The hyper-CVAD (B) scheme showed synergistic effects with multiple targeted compounds and had the highest sensitivity. The patient chose the hyper-CVAD (B) scheme combined with sorafenib and achieved complete remission (CR), then consolidated with myeloid-directed homoharringtonine+cytarabine+daunorubicin (HAD) scheme and gained molecular CR. By reviewing the literature, we found that both the genomic landscapes and gene expression profiles of ZNF384-rearranged B-ALL and MPAL are similar and that both diseases have lineage plasticity. The gene expression profile in TCF3-ZNF384-positive patients shows enrichment of hematopoietic stem cell features. No significant differences in clinical characteristics were found between TCF3-ZNF384-positive ALL and MPAL. Conclusion TCF3-ZNF384-positive leukemia may be a distinct subtype of leukemia regardless of immunophenotype. Considering the frequent lineage switches and sensitivity to both ALL- and AML-directed schemes, a uniform strategy directed at both lymphoid and myeloid lineages or at hematopoietic stem cells may be better for TCF3-ZNF384-positive leukemia. Small molecule targeted therapies may be promising treatment options and deserve further investigation.
Collapse
Affiliation(s)
- Na Lin
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dali Cai
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Chen WP, Chiang WF, Chen HM, Chan JS, Hsiao PJ. Preventive Healthcare and Management for Acute Lymphoblastic Leukaemia in Adults: Case Report and Literature Review. Healthcare (Basel) 2021; 9:healthcare9050531. [PMID: 34063253 PMCID: PMC8147493 DOI: 10.3390/healthcare9050531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is diagnosed by the presence of at least 20% lymphoblasts in the bone marrow. ALL may be aggressive and include the lymph nodes, liver, spleen, central nervous system (CNS), and other organs. Without early recognition and timely treatment, ALL will progress quickly and may have poor prognosis in clinical scenarios. ALL is a rare type of leukaemia in adults but is the most common type in children. Precipitating factors such as environmental radiation or chemical exposure, viral infection, and genetic factors can be associated with ALL. We report a rare case of ALL with symptomatic hypercalcaemia in an adult woman. The patient presented with general weakness, poor appetite, bilateral lower limbs oedema, consciousness disturbance, and lower back pain for 3 weeks. She had a history of cervical cancer and had undergone total hysterectomy, chemotherapy, and radiation therapy. Her serum calcium level was markedly increased, at 14.1 mg/dl at admission. Neck magnetic resonance imaging, abdominal sonography, abdominal computed tomography, and bone marrow examination were performed. Laboratory data, including intact parathyroid hormone (i-PTH), peripheral blood smear, and 25-(OH) D3, were checked. Bone marrow biopsy showed B cell lymphoblastic leukaemia. Chemotherapy was initiated to be administered but was discontinued due to severe sepsis. Finally, the patient died due to septic shock. This was a rare case of B cell ALL in an adult complicated by hypercalcaemic crisis, which could be a life-threatening emergency in clinical practice. Physicians should pay attention to the associated risk factors. Early recognition and appropriate treatment may improve clinical outcomes.
Collapse
Affiliation(s)
- Wei-Ping Chen
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Fang Chiang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Ming Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-S.C.); or (P.-J.H.); Tel.: +88-63-479-9595 (P.-J.H.)
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan
- Correspondence: (J.-S.C.); or (P.-J.H.); Tel.: +88-63-479-9595 (P.-J.H.)
| |
Collapse
|
10
|
Huang S, Huang Z, Chen P, Feng C. Aberrant Chloride Intracellular Channel 4 Expression Is Associated With Adverse Outcome in Cytogenetically Normal Acute Myeloid Leukemia. Front Oncol 2020; 10:1648. [PMID: 33014825 PMCID: PMC7507859 DOI: 10.3389/fonc.2020.01648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Methods: Acute myeloid leukemia (AML), which starts in the bone marrow, is a group of hematopoietic stem cell disorders. Chloride intracellular channel 4 (CLIC4) is regulated by p53, c-Myc, and TGF-β. It induces the NF-κB-dependent activation of HIF (hypoxia-inducible factor) and participates in tumor growth through its microenvironmental function. However, its prognostic value in AML remains unclear, as well as its co-expression biomarkers. In this study, we evaluated the prognostic significance of CLIC4 expression using two independent large cohorts of cytogenetically normal AML (CN-AML) patients. Multivariable analysis and multi-omics analysis with weighted correlation network analysis (WGCNA) in the CN-AML group were also presented. Based on CLIC4 and its related genes, microRNA-target gene interaction network analysis and downstream gene ontology analysis were performed to unveil the complex functions behind CLIC4. Results: We demonstrated that the overexpression of CLIC4 was notably associated with unfavorable outcome in the two independent cohorts of CN-AML patients [overall survival (OS) and event-free survival (EFS): P < 0.0001, n = 185; OS: P = 0.016, n = 232], as well as in the European LeukemiaNet (ELN) Intermediate-I group (OS: P = 0.015, EFS: P = 0.012, n = 115), the National Comprehensive Cancer Network Intermediate Risk AML group (OS and EFS: P < 0.0001, n = 225), and the non-M3 AML group (OS and EFS: P < 0.0001, n = 435). Multivariable analysis further validated CLIC4 as a high-risk factor in the CN-AML group. Multi-omics analysis presented the overexpression of CLIC4 as associated with the co-expression of the different gene sets in leukemia, up/downregulation of the immune-related pathways, dysregulation of microRNAs, and hypermethylation around the CpG islands, in open sea regions, and in different gene structural fragments including TSS1500, gene body, 5'UTR region, 3'UTR region, and the first exon. By further performing WGCNA on multi-omics data, certain biomarkers that are co-expressed with CLIC4 were also unveiled. Conclusion: We demonstrated that CLIC4 is a novel, potential unfavorable prognosticator and therapeutic target for CN-AML. As having a key role in CN-AML, the interactions between CLIC4 and other genomics and transcriptomics data were confirmed by performing microRNA-target gene interaction network analysis and gene ontology enrichment analysis. The experimental result provides evidence for the clinical strategy selection of CN-AML patients.
Collapse
Affiliation(s)
- Sai Huang
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Ping Chen
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cong Feng
- Department of Emergency, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Abstract
Genomic analyses have revolutionized our understanding of the biology of B-progenitor acute lymphoblastic leukemia (ALL). Studies of thousands of cases across the age spectrum have revised the taxonomy of B-ALL by identifying multiple new subgroups with diverse sequence and structural initiating events that vary substantially by age at diagnosis and prognostic significance. There is a growing appreciation of the role of inherited genetic variation in predisposition to ALL and drug responsiveness and of the nature of genetic variegation and clonal evolution that may be targeted for improved diagnostic, risk stratification, disease monitoring, and therapeutic intervention. This review provides an overview of the current state of knowledge of the genetic basis of B-ALL, with an emphasis on recent discoveries that have changed our approach to diagnosis and monitoring.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
12
|
van de Ven C, Boeree A, Stalpers F, Zwaan CM, Den Boer ML. Ibrutinib is not an effective drug in primografts of TCF3-PBX1. Transl Oncol 2020; 13:100817. [PMID: 32563910 PMCID: PMC7306596 DOI: 10.1016/j.tranon.2020.100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
AIM The Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib (PCI-32765) is effective in patients with multiple myeloma, non-Hodgkin lymphoma and chronic lymphoblastic leukemia. We previously showed that primary cells of children with TCF3-PBX1 positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL) express BTK and are sensitive to ibrutinib in vitro. However, preclinical studies in mice are lacking that justify clinical implementation. METHODS Immunocompromised NSG mice were engrafted with a luciferase-positive TCF3-PBX1 leukemic cell line or primary leukemic cells and treated with ibrutinib or placebo. Additionally, primary cells were exposed in vitro to 4 main induction drugs as monotherapy and in combination with ibrutinib. RESULTS Treatment with ibrutinib of mice engrafted with a TCF3-PBX1 cell line, TCF3-PBX1 positive or TCF3-PBX1 negative primary leukemic cells did not result in prolonged life span compared to placebo treated mice. In vitro sensitivity to ibrutinib was unaltered in leukemic cells obtained from engrafted mice compared to the original material. However, ibrutinib treatment did not affect leukemic cell viability and tumor outgrowth, nor could lymphocytosis be detected. Ibrutinib was biologically active, since hCD19+ cells harvested from ibrutinib treated mice had no detectable levels of phospho-BTK at tyrosine 223 (pBTK Y223), whereas pBTK Y223 was still detectable in placebo treated cases. In combination tests, we noticed an antagonistic effect of ibrutinib on vincristine sensitivity, which was not observed for prednisolone, L-asparaginase and daunorubicin. CONCLUSIONS We conclude that ibrutinib is not the precision medicine of choice for TCF3-PBX1 positive BCP-ALL.
Collapse
Affiliation(s)
- Cesca van de Ven
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Femke Stalpers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Monique L Den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Abstract
Acute lymphoblastic leukaemia develops in both children and adults, with a peak incidence between 1 year and 4 years. Most acute lymphoblastic leukaemia arises in healthy individuals, and predisposing factors such as inherited genetic susceptibility or environmental exposure have been identified in only a few patients. It is characterised by chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells. Along with response to treatment, these abnormalities are important prognostic factors. Disease-risk stratification and the development of intensified chemotherapy protocols substantially improves the outcome of patients with acute lymphoblastic leukaemia, particularly in children (1-14 years), but also in adolescents and young adults (15-39 years). However, the outcome of older adults (≥40 years) and patients with relapsed or refractory acute lymphoblastic leukaemia remains poor. New immunotherapeutic strategies, such as monoclonal antibodies and chimeric antigen receptor (CAR) T cells, are being developed and over the next few years could change the options for acute lymphoblastic leukaemia treatment.
Collapse
Affiliation(s)
- Florent Malard
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France
| | - Mohamad Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France.
| |
Collapse
|
14
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
15
|
Abstract
Despite high cure rates in children, acute lymphoblastic leukemia (ALL) remains a leading cause of cancer death in the young, and the likelihood of treatment failure increases with age. With the exception of tyrosine kinase inhibitors, there have been few advances in repurposing or developing new therapeutic approaches tailored to vulnerabilities of ALL subtypes or individual cases. Large-scale genome profiling studies conducted over the last decade promise to improve ALL outcomes by refining risk stratification and modulation of therapeutic intensity, and by identifying new targets and pathways for immunotherapy. Many of these approaches have been validated in preclinical models and now merit testing in clinical trials. This review discusses the advances in our understanding of the genomic taxonomy and ontogeny of B-progenitor ALL, with an emphasis on those discoveries of clinical importance.
Collapse
|
16
|
Rowsey RA, Smoley SA, Williamson CM, Vasmatzis G, Smadbeck JB, Ning Y, Greipp PT, Hoppman NL, Baughn LB, Ketterling RP, Peterson JF. Characterization of TCF3 rearrangements in pediatric B-lymphoblastic leukemia/lymphoma by mate-pair sequencing (MPseq) identifies complex genomic rearrangements and a novel TCF3/TEF gene fusion. Blood Cancer J 2019; 9:81. [PMID: 31575852 PMCID: PMC6773761 DOI: 10.1038/s41408-019-0239-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
The TCF3/PBX1 gene fusion is a recurrent genetic abnormality in pediatric B-lymphoblastic leukemia/lymphoma (B-ALL/LBL). While dual-color, dual-fusion fluorescence in situ hybridization (D-FISH) probes can detect TCF3/PBX1 fusions, further characterization of atypical TCF3 FISH patterns as indicated by additional or diminished TCF3 signals is currently limited. Herein we describe the use of a next-generation sequencing assay, mate-pair sequencing (MPseq), to characterize typical and cryptic TCF3/PBX1 fusions and to identify TCF3 translocation partners based on results obtained from our laboratory-developed TCF3/PBX1 D-FISH probe set. MPseq was performed on 21 cases of pediatric B-ALL/LBL with either TCF3/PBX1 fusion, or no TCF3/PBX1 fusion but with additional or diminished TCF3 signals obtained by our PBX1/TCF3 D-FISH probe set. In addition, MPseq was performed on one pediatric B-ALL/LBL case with an apparently normal karyotype and abnormal TCF3 break-apart probe results. Of 22 specimens successfully evaluated by MPseq, 13 cases (59%) demonstrated TCF3/PBX1 fusion, including three cases with previously undescribed insertional rearrangements. The remaining nine cases (41%) harbored various TCF3 partners, including six cases with TCF3/ZNF384, and one case each with TCF3/HLF, TCF3/FLI1 and TCF3/TEF. Our results illustrate the power of MPseq to characterize TCF3 rearrangements with increased precision and accuracy over traditional cytogenetic methodologies.
Collapse
Affiliation(s)
- Ross A Rowsey
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stephanie A Smoley
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cynthia M Williamson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Mayo Clinic, Rochester, MN, USA
| | - Yi Ning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Mitrakos A, Kattamis A, Katsibardi K, Papadhimitriou S, Kitsiou-Tzeli S, Kanavakis E, Tzetis M. High resolution Chromosomal Microarray Analysis (CMA) enhances the genetic profile of pediatric B-cell Acute Lymphoblastic Leukemia patients. Leuk Res 2019; 83:106177. [PMID: 31261022 DOI: 10.1016/j.leukres.2019.106177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/26/2022]
Abstract
Acute Lymphoblastic Leukemia (ALL) is a malignancy of the immature lymphoid cells mainly associated with numerical and structural chromosomal aberrations. The current standard for profiling the diverse genetic background comprises a combination of conventional karyotype and FISH analysis for the most common translocations, albeit with many limitations. Chromosomal Microarray Analysis (CMA) is a high throughput whole genome method that is gradually implemented in routine clinical practice, but not many studies have compared the two methods. Here we aim to investigate the added benefits of utilizing the high resolution 2 x 400 K G3 CGH + SNP CMA platform in routine diagnostics of pediatric ALL. From the 29 bone marrow samples that were analyzed, CMA identified clinically relevant findings in 83%, while detecting chromosomal aberrations in 75% of the patients with normal conventional karyotype. The most common finding was hyperdiploidy (20%), and the most common submicroscopic aberration involved CDKN2A/B genes. The smallest aberration detected was a 9 kb partial NF1 gene duplication. The prognosis of the patients when combining conventional cytogenetics and CMA was either changed or enhanced in 66% of the cases. A rare duplication possibly indicative of a cryptic ABL1-NUP214 fusion gene was found in one patient. We conclude that CMA, when combined with conventional cytogenetic analysis, can significantly enhance the genetic profiling of patients with pediatric ALL in a routine clinical setting.
Collapse
Affiliation(s)
- Anastasios Mitrakos
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Antonis Kattamis
- Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Katerina Katsibardi
- Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Stefanos Papadhimitriou
- Department of Laboratory Hematology, Athens Regional General Hospital "G. Gennimatas", Athens, Greece
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Emmanuel Kanavakis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
18
|
Roberts KG. Genetics and prognosis of ALL in children vs adults. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:137-145. [PMID: 30504302 PMCID: PMC6245970 DOI: 10.1182/asheducation-2018.1.137] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by genetic alterations that block differentiation, promote proliferation of lymphoid precursor cells, and are important for risk stratification. Although ALL is less common in adolescents and young adults (AYAs) and adults than children, survival rates are inferior, and long-term prognosis for adults is poor. Thus, ALL remains a challenging disease to treat in the AYA and adult populations. A major contributing factor that influences prognosis in this population is the reduced prevalence of genetic subtypes associated with favorable outcome and a concomitant increase in subtypes associated with poor outcome. Recent advances in genomic profiling across the age spectrum continue to enhance our knowledge of the differences in disease biology between children and adults and are providing important insights into novel therapeutic targets. Philadelphia chromosome-like (Ph-like) ALL is one such subtype characterized by alterations that deregulate cytokine receptor or tyrosine kinase signaling and are amenable to inhibition with approved tyrosine kinase inhibitors. One of the greatest challenges now remaining is determining how to implement this breadth of genomic information into rapid and accurate diagnostic testing to facilitate the development of novel clinical trials that improve the outcome of AYAs and adults with ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
19
|
Advances in B-cell Precursor Acute Lymphoblastic Leukemia Genomics. Hemasphere 2018; 2:e53. [PMID: 31723781 PMCID: PMC6746003 DOI: 10.1097/hs9.0000000000000053] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/07/2023] Open
Abstract
In childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), cytogenetic abnormalities remain important diagnostic and prognostic tools. A number of well-established abnormalities are routinely used in risk stratification for treatment. These include high hyperdiploidy and ETV6-RUNX1 fusion, classified as good risk, while Philadelphia chromosome (Ph) positive ALL and rearrangements of the KMT2A (MLL) gene define poor risk. A poor risk subgroup of intrachromosomal amplification of chromosome 21 (iAMP21-ALL) has been described, in which intensification of therapy has greatly improved outcome. Until recently, no consistent molecular features were defined in around 30% of BCP-ALL (known as B-other-ALL). Recent studies are classifying them into distinct subgroups, some with clear potential for novel therapeutic approaches. For example, in 1 poor risk subtype, known as Ph-like/BCR-ABL1-like ALL, approximately 10% have rearrangements of ABL-class tyrosine kinases: including ABL1, ABL2, PDGFRB, PDGFRA, and CSF1R. Notably, they show a poor response to standard chemotherapy, while they respond to treatment with tyrosine kinase inhibitors, such as imatinib. In other Ph-like-ALL patients, deregulation of the cytokine receptor, CRLF2, and JAK2 rearrangements lead to activation of the JAK-STAT signaling pathway, implicating a specific role for JAK inhibitors in their treatment. Other novel subgroups within B-other-ALL are defined by the IGH-DUX4 translocation, related to deletions of the ERG gene and a good outcome, while fusions involving ZNF384, MEF2D, and intragenic PAX5 amplification (PAX5AMP) are linked to a poor outcome. Continued genetic screening will eventually lead to complete genomic classification of BCP-ALL and define more molecular targets for less toxic therapies.
Collapse
|
20
|
Wafa A, As'sad M, Liehr T, Aljapawe A, Al Achkar W. Childhood pre-B cell acute lymphoblastic leukemia with translocation t(1;19)(q21.1;p13.3) and two additional chromosomal aberrations involving chromosomes 1, 6, and 13: a case report. J Med Case Rep 2017; 11:94. [PMID: 28385156 PMCID: PMC5383952 DOI: 10.1186/s13256-017-1251-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/26/2017] [Indexed: 11/21/2022] Open
Abstract
Background The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. Case presentation We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. Conclusions To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.
Collapse
Affiliation(s)
- Abdulsamad Wafa
- Molecular Biology and Biotechnology Department, Human Genetics Div., Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Manar As'sad
- Molecular Biology and Biotechnology Department, Human Genetics Div., Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany
| | - Abdulmunim Aljapawe
- Molecular Biology and Biotechnology Department, Mammalians Biology Div., Flow-cytometry Lab., Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Walid Al Achkar
- Molecular Biology and Biotechnology Department, Human Genetics Div., Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
21
|
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, and despite cure rates exceeding 90% in children, it remains an important cause of morbidity and mortality in children and adults. The past decade has been marked by extraordinary advances into the genetic basis of leukemogenesis and treatment responsiveness in ALL. Both B-cell and T-cell ALL comprise multiple subtypes harboring distinct constellations of somatic structural DNA rearrangements and sequence mutations that commonly perturb lymphoid development, cytokine receptors, kinase and Ras signaling, tumor suppression, and chromatin modification. Recent studies have helped to understand the genetic basis of clonal evolution and relapse and the role of inherited genetic variants in leukemogenesis. Many of these findings are of clinical importance, and ongoing studies implementing clinical sequencing in the management of leukemia are expected to improve diagnosis, monitoring of residual disease, and early detection of relapse and to guide precise therapies. Here, we provide a concise review of genomic studies in ALL and discuss the role of genomic testing in clinical management.
Collapse
|
22
|
Abstract
Both B-cell and T-cell acute lymphoblastic leukemia (ALL) exhibit recurrent cytogenetic alterations, many with prognostic implications. This chapter overviews the major recurrent categories of cytogenetic abnormalities associated with ALL, with an emphasis on the detection and characterization of these cases by G-band and FISH analyses.
Collapse
|
23
|
Jacobson S, Tedder M, Eggert J. Adult Acute Lymphoblastic Leukemia: A Genetic Overview and Application to Clinical Practice. Clin J Oncol Nurs 2016; 20:E147-E154. [DOI: 10.1188/16.cjon.e147-e154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Shago M, Abla O, Hitzler J, Weitzman S, Abdelhaleem M. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr Blood Cancer 2016; 63:1915-21. [PMID: 27392123 DOI: 10.1002/pbc.26116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND ZNF384 gene rearrangements with multiple partner genes are recurrent in acute leukemia and are most often associated with a precursor B cell immunophenotype. The overall incidence of this genetic category of leukemia is uncertain. PROCEDURE Patients with ZNF384 gene rearrangements from a cohort of 240 precursor B cell acute lymphoblastic leukemia (ALL) pediatric patients over a 3.5-year time period were characterized with detailed cytogenetic, FISH, genomic, and clinical analyses. RESULTS Seven of the 240 patients were identified to have ZNF384 gene rearrangements including partner genes TCF3 (four patients), EWSR1 (one patient), EP300 (one patient), and the novel gene partner ARID1B (one patient). The translocations were confirmed by FISH analysis and with RNA sequencing for the EP300 and ARID1B partner genes. Genomic microarray analysis showed an average of 2.7 copy number alterations in each case with no evidence of imbalance at the translocation breakpoints. Six of the patients with ZNF384 gene rearrangements had precursor B cell ALL with a CD10- immunophenotype and myeloid-associated antigens. One of the patients also had myeloperoxidase expression and was diagnosed as mixed phenotype B/myeloid acute leukemia. None of the patients have relapsed with event-free survival ranging from 6 years 2 months to 9 years 2 months. CONCLUSIONS This study suggests that the frequency of ZNF384 gene rearrangement in pediatric precursor B cell ALL is approximately 3%. The ARID1B gene, commonly mutated in multiple types of cancer, was identified as an additional ZNF384 gene fusion partner.
Collapse
Affiliation(s)
- Mary Shago
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Oussama Abla
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Johann Hitzler
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Sheila Weitzman
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Mohamed Abdelhaleem
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y, Okamura K, Yaguchi A, Terada K, Saito Y, Yoshimi A, Ogata-Kawata H, Sakamoto H, Kato M, Fujimura J, Hino M, Kinoshita A, Kakuda H, Kurosawa H, Kato K, Kajiwara R, Moriwaki K, Morimoto T, Nakamura K, Noguchi Y, Osumi T, Sakashita K, Takita J, Yuza Y, Matsuda K, Yoshida T, Matsumoto K, Hata K, Kubo M, Matsubara Y, Fukushima T, Koh K, Manabe A, Ohara A, Kiyokawa N. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 2016; 102:118-129. [PMID: 27634205 DOI: 10.3324/haematol.2016.151035] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023] Open
Abstract
Fusion genes involving ZNF384 have recently been identified in B-cell precursor acute lymphoblastic leukemia, and 7 fusion partners have been reported. We further characterized this type of fusion gene by whole transcriptome sequencing and/or polymerase chain reaction. In addition to previously reported genes, we identified BMP2K as a novel fusion partner for ZNF384 Including the EP300-ZNF384 that we reported recently, the total frequency of ZNF384-related fusion genes was 4.1% in 291 B-cell precursor acute lymphoblastic leukemia patients enrolled in a single clinical trial, and TCF3-ZNF384 was the most recurrent, with a frequency of 2.4%. The characteristic immunophenotype of weak CD10 and aberrant CD13 and/or CD33 expression was revealed to be a common feature of the leukemic cells harboring ZNF384-related fusion genes. The signature gene expression profile in TCF3-ZNF384-positive patients was enriched in hematopoietic stem cell features and related to that of EP300-ZNF384-positive patients, but was significantly distinct from that of TCF3-PBX1-positive and ZNF384-fusion-negative patients. However, clinical features of TCF3-ZNF384-positive patients are markedly different from those of EP300-ZNF384-positive patients, exhibiting higher cell counts and a younger age at presentation. TCF3-ZNF384-positive patients revealed a significantly poorer steroid response and a higher frequency of relapse, and the additional activating mutations in RAS signaling pathway genes were detected by whole exome analysis in some of the cases. Our observations indicate that ZNF384-related fusion genes consist of a distinct subgroup of B-cell precursor acute lymphoblastic leukemia with a characteristic immunophenotype, while the clinical features depend on the functional properties of individual fusion partners.
Collapse
Affiliation(s)
- Shinsuke Hirabayashi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hitoshi Ichikawa
- Division of Genetics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama-shi, Kanagawa, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Akinori Yaguchi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kazuki Terada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Yuya Saito
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu-shi, Tokyo, Japan
| | - Ai Yoshimi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito-shi, Ibaraki, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Division of Stem Cell Transplant and Cellular Therapy, Children's Cancer Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Moeko Hino
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba-shi, Chiba, Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Harumi Kakuda
- Department of Haematology/Oncology, Chiba Children's Hospital, Chiba-shi, Chiba, Japan
| | - Hidemitsu Kurosawa
- Department of Pediatrics, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Keisuke Kato
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito-shi, Ibaraki, Japan
| | - Ryosuke Kajiwara
- Department of Pediatrics, Yokohama City University Hospital, Yokohama-shi, Kanagawa, Japan
| | - Koichi Moriwaki
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe-shi, Saitama, Japan
| | - Tsuyoshi Morimoto
- Department of Pediatrics, Tokai University School of Medicine, Isehara-shi, Kanagawa, Japan
| | - Kozue Nakamura
- Department of Pediatrics, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yasushi Noguchi
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Narita-shi, Chiba, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Kazuo Sakashita
- Department of Hematology/Oncology, Nagano Children's Hospital, Azumino-shi, Nagano, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu-shi, Tokyo, Japan
| | - Koich Matsuda
- Laboratory of Clinical Sequence, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama-shi, Kanagawa, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama-shi, Saitama, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | - Akira Ohara
- Department of Pediatrics, Toho University Omori Medical Center, Ohta-ku, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | | |
Collapse
|
26
|
Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 2016; 101:407-16. [PMID: 27033238 PMCID: PMC5004393 DOI: 10.3324/haematol.2015.141101] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A(MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes -ABL1,ABL2,PDGFRB,CSF1R,CRLF2,JAK2 and EPOR in-vitro and in-vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- Dasatinib/therapeutic use
- Gene Expression
- Humans
- Imatinib Mesylate/therapeutic use
- Nitriles
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Prognosis
- Pyrazoles/therapeutic use
- Pyrimidines
- Survival Analysis
- Translocation, Genetic
Collapse
Affiliation(s)
- Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
27
|
Duque-Afonso J, Feng J, Scherer F, Lin CH, Wong SHK, Wang Z, Iwasaki M, Cleary ML. Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic leukemia. J Clin Invest 2015; 125:3667-80. [PMID: 26301816 DOI: 10.1172/jci81158] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer; however, its genetic diversity limits investigation into the molecular pathogenesis of disease and development of therapeutic strategies. Here, we engineered mice that conditionally express the E2A-PBX1 fusion oncogene, which results from chromosomal translocation t(1;19) and is present in 5% to 7% of pediatric ALL cases. The incidence of leukemia in these mice varied from 5% to 50%, dependent on the Cre-driving promoter (Cd19, Mb1, or Mx1) used to induce E2A-PBX1 expression. Two distinct but highly similar subtypes of B cell precursor ALLs that differed by their pre-B cell receptor (pre-BCR) status were induced and displayed maturation arrest at the pro-B/large pre-B II stages of differentiation, similar to human E2A-PBX1 ALL. Somatic activation of E2A-PBX1 in B cell progenitors enhanced self-renewal and led to acquisition of multiple secondary genomic aberrations, including prominent spontaneous loss of Pax5. In preleukemic mice, conditional Pax5 deletion cooperated with E2A-PBX1 to expand progenitor B cell subpopulations, increasing penetrance and shortening leukemia latency. Recurrent secondary activating mutations were detected in key signaling pathways, most notably JAK/STAT, that leukemia cells require for proliferation. These data support conditional E2A-PBX1 mice as a model of human ALL and suggest targeting pre-BCR signaling and JAK kinases as potential therapeutic strategies.
Collapse
|
28
|
De Braekeleer M, De Braekeleer E, Douet-Guilbert N. Geographic/ethnic variability of chromosomal and molecular abnormalities in leukemia. Expert Rev Anticancer Ther 2015. [DOI: 10.1586/14737140.2015.1068123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Tirado CA, Shabsovich D, Yeh L, Pullarkat ST, Yang L, Kallen M, Rao N. A (1;19) translocation involving TCF3-PBX1 fusion within the context of a hyperdiploid karyotype in adult B-ALL: a case report and review of the literature. Biomark Res 2015; 3:4. [PMID: 25729575 PMCID: PMC4344763 DOI: 10.1186/s40364-015-0029-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
Background The t(1;19)(q23;p13), which can result in the TCF3-PBX1 chimeric gene, is one of the most frequent translocations in B-acute lymphoblastic leukemia (B-ALL) and is observed in both adult and pediatric populations at an overall frequency of 6%. It can occur in a balanced or unbalanced form and as a sole abnormality is associated with an intermediate prognosis. Additionally, this translocation is observed in the context of hyperdiploid B-ALL, in which case it is associated with a poor prognosis. However, due to different translocation partner genes at chromosomes 1 and 19, distinct subtypes of hyperdiploid B-ALL with t(1;19)/der(19)t(1;19) are recognized based on the presence or absence of the TCF3-PBX1 fusion gene, but the cytogenetic and etiologic differences between the two remain understudied. Findings We report a case of an adult with a history of relapsed precursor B-ALL whose conventional cytogenetics showed an abnormal female karyotype with both hyperdiploidy and a t(1;19)(q23;p13). Fluorescence in situ hybridization (FISH) on previously G-banded metaphases using the LSI TCF3/PBX1 Dual Color, Dual Fusion Translocation Probe confirmed the presence of the TCF3-PBX1 gene fusion. Conclusions This particular pattern with a TCF3-PBX1 fusion within the context of a hyperdiploid karyotype is seen in B-ALL and is usually associated with a poor outcome. This case is one of only a few cases with both hyperdiploidy and a confirmed TCF3-PBX1 fusion, demonstrating the importance of using FISH for proper molecular classification of these cases in order to distinguish them from those with hyperdiploidy but no TCF3-PBX1 fusion gene. Such molecular studies may provide insight into the precise differences between TCF3-PBX1 positive and negative hyperdiploid B-ALL bearing the t(1;19)(q23;p13).
Collapse
Affiliation(s)
- Carlos A Tirado
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - David Shabsovich
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Lei Yeh
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Sheeja T Pullarkat
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Lynn Yang
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Michael Kallen
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Nagesh Rao
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90024 USA
| |
Collapse
|
30
|
Oksenberg N, Haliburton GDE, Eckalbar WL, Oren I, Nishizaki S, Murphy K, Pollard KS, Birnbaum RY, Ahituv N. Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes. Transl Psychiatry 2014; 4:e431. [PMID: 25180570 PMCID: PMC4199417 DOI: 10.1038/tp.2014.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 12/16/2022] Open
Abstract
The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.
Collapse
Affiliation(s)
- N Oksenberg
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - G D E Haliburton
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA
| | - W L Eckalbar
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - I Oren
- Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel
| | - S Nishizaki
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K Murphy
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K S Pollard
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA,Division of Biostatistics, University of California
San Francisco, San Francisco, CA, USA
| | - R Y Birnbaum
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| | - N Ahituv
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| |
Collapse
|
31
|
Lockhart MM, Phelps AL, van den Hoff MJB, Wessels A. The Epicardium and the Development of the Atrioventricular Junction in the Murine Heart. J Dev Biol 2014; 2:1-17. [PMID: 24926431 PMCID: PMC4051323 DOI: 10.3390/jdb2010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insight into the role of the epicardium in cardiac development and regeneration has significantly improved over the past ten years. This is mainly due to the increasing availability of new mouse models for the study of the epicardial lineage. Here we focus on the growing understanding of the significance of the epicardium and epicardially-derived cells in the formation of the atrioventricular (AV) junction. First, through the process of epicardial epithelial-to-mesenchymal transformation (epiEMT), the subepicardial AV mesenchyme is formed. Subsequently, the AV-epicardium and epicardially-derived cells (EPDCs) form the annulus fibrosus, a structure important for the electrical separation of atrial and ventricular myocardium. Finally, the AV-EPDCs preferentially migrate into the parietal AV valve leaflets, largely replacing the endocardially-derived cell population. In this review, we provide an overview of what is currently known about the regulation of the events involved in this process.
Collapse
Affiliation(s)
- Marie M Lockhart
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (M.M.L.); (A.L.P.)
| | - Aimee L Phelps
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (M.M.L.); (A.L.P.)
| | - Maurice J B van den Hoff
- Academic Medical Center, Heart Failure Research Center, Department of Anatomy, Embryology and Physiology, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands;
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (M.M.L.); (A.L.P.)
| |
Collapse
|
32
|
Interference with pre-B-cell receptor signaling offers a therapeutic option for TCF3-rearranged childhood acute lymphoblastic leukemia. Blood Cancer J 2014; 4:e181. [PMID: 24531445 PMCID: PMC3944663 DOI: 10.1038/bcj.2014.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Uckun FM, Qazi S, Dibirdik I, Myers DE. Rational design of an immunoconjugate for selective knock-down of leukemia-specific E2A-PBX1 fusion gene expression in human Pre-B leukemia. Integr Biol (Camb) 2013; 5:122-32. [PMID: 22990208 DOI: 10.1039/c2ib20114c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The t(1;19)(q23;p13) is one of the most common chromosomal translocations in acute lymphoblastic leukemia (ALL) and results in production of the transforming oncoprotein E2A-PBX1. Here we first report a novel, biomarker-guided biotherapy strategy for personalized treatment of t(1;19)(+) ALL. A supervised interrogation of the gene expression profiles of primary leukemic cells from a cohort of 207 children with high risk B-lineage ALL identified up-regulated CD19 gene expression as a biomarker for t(1;19)(+) ALL. A disulfide-linked immunoconjugate of a 5-amino-modified 24 mer phosphorothioate anti-sense E2A-PBX1 oligonucleotide (AON) with a mAb specific for a CD19 receptor (αCD19-AON) was prepared as a CD19-directed and leukemia-specific biotherapeutic agent against E2A-PBX1(+) B-lineage ALL. Treatment of E2A-PBX1(+) leukemia cells with low nanomolar concentrations of αCD19-AON resulted in selective depletion of E2A-PBX1 transcripts and caused apoptotic destruction and abrogation of clonogenic growth. Subcutaneously administered αCD19-AON at a total dose level of 93 nmol kg(-1) delivered over 14 days using a micro-osmotic pump more than doubled the leukemia-free survival time of SCID mice in a xenograft model of E2A-PBX1(+) human B-lineage ALL (82.0 ± 1.9 days vs. 37.0 ± 0.1 days, P < 0.0001). Both the AON moiety and the targeting CD19-specific mAb moiety were required for the in vitro as well as in vivo anti-leukemic activity of αCD19-AON. The observed in vitro and in vivo anti-leukemic potency of the αCD19-AON immunoconjugate provides the first preclinical proof-of-principle that t(1;19)(+) high risk B-lineage ALL can be treated with leukemia-specific biotherapeutic agents that knock-down E2A-PBX1 expression.
Collapse
Affiliation(s)
- Fatih M Uckun
- Developmental Therapeutics Program, Children's Hospital Los Angeles, Children's Center for Cancer and Blood Diseases, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
34
|
Paulsson K, Harrison CJ, Andersen MK, Chilton L, Nordgren A, Moorman AV, Johansson B. Distinct patterns of gained chromosomes in high hyperdiploid acute lymphoblastic leukemia with t(1;19)(q23;p13), t(9;22)(q34;q22) or MLL rearrangements. Leukemia 2012; 27:974-7. [PMID: 23032693 DOI: 10.1038/leu.2012.263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Kassambara A, Hose D, Moreaux J, Rème T, Torrent J, Rossi JF, Goldschmidt H, Klein B. Identification of pluripotent and adult stem cell genes unrelated to cell cycle and associated with poor prognosis in multiple myeloma. PLoS One 2012; 7:e42161. [PMID: 22860071 PMCID: PMC3409163 DOI: 10.1371/journal.pone.0042161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression-based scores used to predict risk in cancer frequently include genes coding for DNA replication, repair or recombination. Using two independent cohorts of 206 and 345 previously-untreated patients with Multiple Myeloma (MM), we identified 50 cell cycle-unrelated genes overexpressed in multiple myeloma cells (MMCs) compared to normal human proliferating plasmablasts and non-proliferating bone marrow plasma cells and which have prognostic value for overall survival. Thirty-seven of these 50 myeloma genes (74%) were enriched in genes overexpressed in one of 3 normal human stem cell populations--pluripotent (18), hematopoietic (10) or mesenchymal stem cells (9)--and only three genes were enriched in one of 5 populations of differentiated cells (memory B lymphocytes, T lymphocytes, polymorphonuclear cells, monocytes, osteoclasts). These 37 genes shared by MMCs and adult or pluripotent stem cells were used to build a stem cell score ((SC)score), which proved to be strongly prognostic in the 2 independent cohorts of patients compared to other gene expression-based risk scores or usual clinical scores using multivariate Cox analysis. This finding highlights cell cycle-unrelated prognostic genes shared by myeloma cells and normal stem cells, whose products might be important for normal and malignant stem cell biology.
Collapse
Affiliation(s)
| | - Dirk Hose
- Medizinische Klinik V, Universitätsklinikum Heidelberg and Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Jérôme Moreaux
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
- INSERM, U1040, Montpellier, France
| | - Thierry Rème
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
- INSERM, U1040, Montpellier, France
| | - Jennifer Torrent
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | | | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg and Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Bernard Klein
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
- INSERM, U1040, Montpellier, France
- Université MONTPELLIER1, UFR Médecine, Montpellier, France
| |
Collapse
|
36
|
Wang SL, Li XL, Fang J. Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification. BMC Bioinformatics 2012; 13:178. [PMID: 22830977 PMCID: PMC3465202 DOI: 10.1186/1471-2105-13-178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/18/2012] [Indexed: 01/03/2023] Open
Abstract
Background Previous studies on tumor classification based on gene expression profiles suggest that gene selection plays a key role in improving the classification performance. Moreover, finding important tumor-related genes with the highest accuracy is a very important task because these genes might serve as tumor biomarkers, which is of great benefit to not only tumor molecular diagnosis but also drug development. Results This paper proposes a novel gene selection method with rich biomedical meaning based on Heuristic Breadth-first Search Algorithm (HBSA) to find as many optimal gene subsets as possible. Due to the curse of dimensionality, this type of method could suffer from over-fitting and selection bias problems. To address these potential problems, a HBSA-based ensemble classifier is constructed using majority voting strategy from individual classifiers constructed by the selected gene subsets, and a novel HBSA-based gene ranking method is designed to find important tumor-related genes by measuring the significance of genes using their occurrence frequencies in the selected gene subsets. The experimental results on nine tumor datasets including three pairs of cross-platform datasets indicate that the proposed method can not only obtain better generalization performance but also find many important tumor-related genes. Conclusions It is found that the frequencies of the selected genes follow a power-law distribution, indicating that only a few top-ranked genes can be used as potential diagnosis biomarkers. Moreover, the top-ranked genes leading to very high prediction accuracy are closely related to specific tumor subtype and even hub genes. Compared with other related methods, the proposed method can achieve higher prediction accuracy with fewer genes. Moreover, they are further justified by analyzing the top-ranked genes in the context of individual gene function, biological pathway, and protein-protein interaction network.
Collapse
Affiliation(s)
- Shu-Lin Wang
- Applied Bioinformatics Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | | | | |
Collapse
|
37
|
Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev 2012; 26:123-35. [DOI: 10.1016/j.blre.2012.01.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Lim W, Kim JH, Ahn SE, Jeong W, Kim J, Bazer FW, Han JY, Song G. Avian SERPINB11 gene: a marker for ovarian endometrioid cancer in chickens. Exp Biol Med (Maywood) 2012; 237:150-9. [PMID: 22289513 DOI: 10.1258/ebm.2011.011250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As serine and cysteine proteinase inhibitors, serpins, such as SERPINB5, cause ovarian, colorectal and pancreatic adenocarcinomas. We identified SERPINB11 as a novel estrogen-induced gene in chickens during oviduct development. The chicken is a unique animal model for research on human ovarian cancer, because it spontaneously develops epithelial cell-derived ovarian cancer as in women. Therefore, this study investigated the expression pattern, CpG methylation status, and miRNA regulation of the SERPINB11 gene in normal and cancerous ovaries from chickens. Our results indicate that SERPINB11 is most abundant in the glandular epithelium of endometrioid adenocarcinoma of cancerous, but not normal, ovaries of hens. In addition, bisulfite sequencing revealed that about 30% of -110 CpG sites are methylated in ovarian cancer cells, whereas -110 CpG sites are demethylated in normal ovarian cells. Next, we determined whether miR-1582 influences SERPINB11 expression via its 3'UTR and found that it does not directly target the 3'UTR of SERPINB11 mRNA. Therefore, it is unlikely that post-transcriptional regulation influences SERPINB11 expression in the chicken ovary. On the other hand, in human ovarian cancer cells such as OVCAR-3, SKOV-3 and PA-1 cells, immunoreactive SERPINB11 protein was predominant in the cytoplasm and had a similar expression pattern to that in chicken ovarian cancer cells. Collectively, these results suggest that SERPINB11 is a biomarker for chicken ovarian endometrioid carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease in women.
Collapse
Affiliation(s)
- Whasun Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jung SI, Cho HS, Lee CH, Jung BC. A case of adult B lymphoblastic leukemia with ider(9)(q10)t(9;22)(q34;q11.2) and der(19)t(1;19)(q23;p13.3). Korean J Lab Med 2010; 30:585-90. [PMID: 21157143 DOI: 10.3343/kjlm.2010.30.6.585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In B lymphoblastic leukemia/lymphoma (B-ALL/LBL), t(9;22)(q34;q11.2) and t(1;19)(q23;p13.3) are recurrent cytogenetic abnormalities. The concurrent occurrence of both abnormalities is very rare, and only 3 cases have been previously reported. Here, we report a case of adult B-ALL with ider(9)(q10)t(9;22)(q34;q11.2) and der(19)t(1;19)(q23;p13.3). A literature review revealed that ider(9) (q10)t(9;22) is a rare variant of t(9;22) with a deletion of the short arm of chromosome 9. Fifteen cases of ider(9)(q10)t(9;22) have been reported. This abnormality is specific to precursor B-lymphoid neoplasms, such as B-ALL or B-lymphoid blast phase of CML, and is associated with disease progression or short survival. The cytogenetic abnormality t(1;19) is also specific to B-ALL. In most instances of t(1;19), TCF3 is fused to PBX1; however, a few cases have identical translocations but no TCF3-PBX1 fusion, as was observed in our patient. We describe the first case of ider(9)(q10)t(9;22) in combination with TCF3-PBX1 negative t(1;19). The patient underwent imatinib therapy in addition to intensive chemotherapy, but failed to achieve remission.
Collapse
Affiliation(s)
- Soon Il Jung
- Department of Laboratory Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | | | | | | |
Collapse
|
40
|
Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J, Izraeli S. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfürt-Münster study group. Br J Haematol 2010; 151:132-42. [DOI: 10.1111/j.1365-2141.2010.08314.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Chen AH, Tsau YW, Lin CH. Novel methods to identify biologically relevant genes for leukemia and prostate cancer from gene expression profiles. BMC Genomics 2010; 11:274. [PMID: 20433712 PMCID: PMC2873479 DOI: 10.1186/1471-2164-11-274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 04/30/2010] [Indexed: 11/24/2022] Open
Abstract
Background High-throughput microarray experiments now permit researchers to screen thousands of genes simultaneously and determine the different expression levels of genes in normal or cancerous tissues. In this paper, we address the challenge of selecting a relevant and manageable subset of genes from a large microarray dataset. Currently, most gene selection methods focus on identifying a set of genes that can further improve classification accuracy. Few or none of these small sets of genes, however, are biologically relevant (i.e. supported by medical evidence). To deal with this critical issue, we propose two novel methods that can identify biologically relevant genes concerning cancers. Results In this paper, we propose two novel techniques, entitled random forest gene selection (RFGS) and support vector sampling technique (SVST). Compared with results from six other methods developed in this paper, we demonstrate experimentally that RFGS and SVST can identify more biologically relevant genes in patients with leukemia or prostate cancer. Among the top 25 genes selected using SVST method, 15 genes were biologically relevant genes in patients with leukemia and 13 genes were biologically relevant genes in patients with prostate cancer. Meanwhile, the RFGS method, while less effective than SVST, still identified an average of 9 biologically relevant genes in both leukemia and prostate cancers. In contrast to traditional statistical methods, which only identify less than 8 genes in patients with leukemia and less than 8 genes in patients with prostate cancer, our methods yield significantly better results. Conclusions Our proposed SVST and RFGS methods are novel approaches that can identify a greater number of biologically relevant genes. These methods have been successfully applied to both leukemia and prostate cancers. Research in the fields of biology and medicine should benefit from the identification of biologically relevant genes by confirming recent discoveries in cancer research or suggesting new avenues for exploration.
Collapse
Affiliation(s)
- Austin H Chen
- Department of Medical Informatics, Tzu Chi University, Hualien City, Hualien County, Taiwan.
| | | | | |
Collapse
|
42
|
Wang SL, Li X, Zhang S, Gui J, Huang DS. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput Biol Med 2009; 40:179-89. [PMID: 20044083 DOI: 10.1016/j.compbiomed.2009.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/13/2009] [Accepted: 11/29/2009] [Indexed: 01/24/2023]
Abstract
Since Golub applied gene expression profiles (GEP) to the molecular classification of tumor subtypes for more accurately and reliably clinical diagnosis, a number of studies on GEP-based tumor classification have been done. However, the challenges from high dimension and small sample size of tumor dataset still exist. This paper presents a new tumor classification approach based on an ensemble of probabilistic neural network (PNN) and neighborhood rough set model based gene reduction. Informative genes were initially selected by gene ranking based on an iterative search margin algorithm and then were further refined by gene reduction to select many minimum gene subsets. Finally, the candidate base PNN classifiers trained by each of the selected gene subsets were integrated by majority voting strategy to construct an ensemble classifier. Experiments on tumor datasets showed that this approach can obtain both high and stable classification performance, which is not too sensitive to the number of initially selected genes and competitive to most existing methods. Additionally, the classification results can be cross-verified in a single biomedical experiment by the selected gene subsets, and biologically experimental results also proved that the genes included in the selected gene subsets are functionally related to carcinogenesis, indicating that the performance obtained by the proposed method is convincing.
Collapse
|
43
|
Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2009; 48:637-60. [PMID: 19415723 DOI: 10.1002/gcc.20671] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High hyperdiploidy (51-67 chromosomes) is the most common cytogenetic abnormality pattern in childhood B-cell precursor acute lymphoblastic leukemia (ALL), occurring in 25-30% of such cases. High hyperdiploid ALL is characterized cytogenetically by a nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18, and 21 and clinically by a favorable prognosis. Despite the high frequency of this karyotypic subgroup, many questions remain regarding the epidemiology, etiology, presence of other genetic changes, the time and cell of origin, and the formation and pathogenetic consequences of high hyperdiploidy. However, during the last few years, several studies have addressed some of these important issues, and these, as well as previous reports on high hyperdiploid childhood ALL, are reviewed herein.
Collapse
Affiliation(s)
- Kajsa Paulsson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
44
|
Zhong CH, Prima V, Liang X, Frye C, McGavran L, Meltesen L, Wei Q, Boomer T, Varella-Garcia M, Gump J, Hunger SP. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia 2008; 22:723-9. [PMID: 18185522 DOI: 10.1038/sj.leu.2405084] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A 5-year-old boy who initially presented with ALL and relapsed 4 months later with AML was found to have an add(19) in the leukemia cells. FISH revealed that the add(19) was really a cryptic t(l2;l9)(p13.3;p13.3) interrupting E2A (TCF3). Nucleotide sequences of cloned genomic fragments with the E2A rearrangements revealed that the der(12) contained E2A joined to an intron of the NOLI (p120) gene. Reverse transcriptase (RT)-PCR of patient lymphoblast RNA showed expression of in-frame fusion cDNAs consisting of most of NOL1 fused to the 3' portion of E2A that encoded part of the second transcriptional activation domain and the DNA binding and protein dimerization motifs. The reciprocal der(19) E2A genomic rearrangements included 5' regions of E2A joined to an intron of the ZNF384 (NMP4, CIZ) gene, located approximately 450 kb centromeric to NOL1 on chromosome 12. RT-PCR showed expression of in-frame E2A-ZNF384 fusion cDNAs. To our knowledge, this is the second report of a chromosome translocation in leukemia resulting in two different gene fusions. This is the first report of expression of E2A fusion protein that includes the DNA binding and protein dimerization domains due to a more proximal break in E2A compared to those described previously.
Collapse
Affiliation(s)
- C-h Zhong
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|