1
|
Wise JTF, Yin X, Ma X, Zhang X, Hein DW. Stable Isotope Tracing Reveals an Altered Fate of Glucose in N-Acetyltransferase 1 Knockout Breast Cancer Cells. Genes (Basel) 2023; 14:genes14040843. [PMID: 37107601 PMCID: PMC10137864 DOI: 10.3390/genes14040843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer death. Recent studies found that arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer, further suggesting NAT1 could be a potential therapeutic target for breast cancer. Previous publications have established that NAT1 knockout (KO) in breast cancer cell lines leads to growth reduction both in vitro and in vivo and metabolic changes. These reports suggest that NAT1 contributes to the energy metabolism of breast cancer cells. Proteomic analysis and non-targeted metabolomics suggested that NAT1 KO may change the fate of glucose as it relates to the TCA/KREB cycle of the mitochondria of breast cancer cells. In this current study, we used [U-13C]-glucose stable isotope resolved metabolomics to determine the effect of NAT1 KO on the metabolic profile of MDA-MB-231 breast cancer cells. We incubated breast cancer cells (MDA-MB-231 cells) and NAT1 Crispr KO cells (KO#2 and KO#5) with [U-13C]-glucose for 24 h. Tracer incubation polar metabolites from the cells were extracted and analyzed by 2DLC-MS, and metabolite differences were compared between the parental and NAT1 KO cells. Differences consistent between the two KO cells were considered changes due to the loss of NAT1. The data revealed decreases in the 13C enrichment of TCA/Krebs cycle intermediates in NAT1 KO cells compared to the MDA-MB-231 cells. Specifically, 13C-labeled citrate, isocitrate, a-ketoglutarate, fumarate, and malate were all decreased in NAT1 KO cells. We also detected increased 13C-labeled L-lactate levels in the NAT1 KO cells and decreased 13C enrichment in some nucleotides. Pathway analysis showed that arginine biosynthesis, alanine, aspartate and glutamate metabolism, and the TCA cycle were most affected. These data provide additional evidence supporting the impacts of NAT1 knockout on cellular energy metabolism. The data suggest that NAT1 expression is important for the proper functioning of mitochondria and the flux of glucose through the TCA/Krebs cycle in breast cancer cells. The metabolism changes in the fate of glucose in NAT1 KO breast cancer cells offer more insight into the role of NAT1 in energy metabolism and the growth of breast cancer cells. These data provide additional evidence that NAT1 may be a useful therapeutic target for breast cancer.
Collapse
Affiliation(s)
- James T. F. Wise
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, USA
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, USA
| | - David W. Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Hong KU, Gardner JQ, Doll MA, Stepp MW, Wilkey DW, Benz FW, Cai J, Merchant ML, Hein DW. Proteomic analysis of arylamine N-acetyltransferase 1 knockout breast cancer cells: Implications in immune evasion and mitochondrial biogenesis. Toxicol Rep 2022; 9:1566-1573. [PMID: 36158865 PMCID: PMC9500399 DOI: 10.1016/j.toxrep.2022.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023] Open
Abstract
Previous studies have shown that inhibition or depletion of N-acetyltransferase 1 (NAT1) in breast cancer cell lines leads to growth retardation both in vitro and in vivo, suggesting that NAT1 contributes to rapid growth of breast cancer cells. To understand molecular and cellular processes that NAT1 contributes to and generate novel hypotheses in regard to NAT1's role in breast cancer, we performed an unbiased analysis of proteomes of parental MDA-MB-231 breast cancer cells and two separate NAT1 knockout (KO) cell lines. Among 4890 proteins identified, 737 proteins were found significantly (p < 0.01) upregulated, and 651 proteins were significantly (p < 0.01) downregulated in both NAT1 KO cell lines. We performed enrichment analyses to identify Gene Ontology biological processes, molecular functions, and cellular components that were enriched in each data set. Among the proteins upregulated in NAT1 KO cells, pathways associated with MHC (major histocompatibility complex) I-mediated antigen presentation were significantly enriched. This raises an interesting and new hypothesis that upregulation of NAT1 in breast cancer cells may aid them evade immune detection. Multiple pathways involved in mitochondrial functions were collectively downregulated in NAT1 KO cells, including multiple subunits of mitochondrial ATP synthase (Complex V of the electron transport chain). This was accompanied by a reduction in cell cycle-associated proteins and an increase in pro-apoptotic pathways in NAT1 KO cells, consistent with reported observations that NAT1 KO cells exhibit a slower growth rate both in vitro and in vivo. Thus, mitochondrial dysfunction in NAT1 KO cells likely contributes to growth retardation.
Collapse
Affiliation(s)
- Kyung U. Hong
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jonathan Q. Gardner
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Mark A. Doll
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Marcus W. Stepp
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel W. Wilkey
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Frederick W. Benz
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jian Cai
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Michael L. Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - David W. Hein
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA,Correspondence to: Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Dumouchel JL, Kramlinger VM. Case Study 10: A Case to Investigate Acetyl Transferase Kinetics. Methods Mol Biol 2021; 2342:781-808. [PMID: 34272717 DOI: 10.1007/978-1-0716-1554-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Major routes of metabolism for marketed drugs are predominately driven by enzyme families such as cytochromes P450 and UDP-glucuronosyltransferases. Less studied conjugative enzymes, like N-acetyltransferases (NATs), are commonly associated with detoxification pathways. However, in the clinic, the high occurrence of NAT polymorphism that leads to slow and fast acetylator phenotypes in patient populations has been linked to toxicity for a multitude of drugs. A key example of this is the observed clinical toxicity in patients who exhibit the slow acetylator phenotype and were treated with isoniazid. Toxicity in patients has led to detailed characterization of the two NAT isoforms and their polymorphic genotypes. Investigation in recombinant enzymes, genotyped hepatocytes, and in vivo transgenic models coupled with acetylator status-driven clinical studies have helped understand the role of NATs in drug development, clinical study design and outcomes, and potential roles in human disease models. The selected case studies herein document NAT enzyme kinetics to explore substrate overlap from two human isoforms, preclinical species considerations, and clinical genotype population concerns.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Molecular Pharmacology and Physiology Graduate Training Program, Brown University, Providence, RI, USA.
| | - Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| |
Collapse
|
4
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Hong KU, Doll MA, Lykoudi A, Salazar-González RA, Habil MR, Walls KM, Bakr AF, Ghare SS, Barve SS, Arteel GE, Hein DW. Acetylator Genotype-Dependent Dyslipidemia in Rats Congenic for N-Acetyltransferase 2. Toxicol Rep 2020; 7:1319-1330. [PMID: 33083237 PMCID: PMC7553889 DOI: 10.1016/j.toxrep.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Recent reports suggest that arylamine N-acetyltransferases (NAT1 and/or NAT2) serve important roles in regulation of energy utility and insulin sensitivity. We investigated the interaction between diet (control vs. high-fat diet) and acetylator phenotype (rapid vs. slow) using previously established congenic rat lines (in F344 background) that exhibit rapid or slow Nat2 (orthologous to human NAT1) acetylator genotypes. Male and female rats of each genotype were fed control or high-fat (Western-style) diet for 26 weeks. We then examined diet- and acetylator genotype-dependent changes in body and liver weights, systemic glucose tolerance, insulin sensitivity, and plasma lipid profile. Male and female rats on the high fat diet weighed approximately 10% more than rats on the control diet and the percentage liver to body weight was consistently higher in rapid than slow acetylator rats. Rapid acetylator rats were more prone to develop dyslipidemia overall (i.e., higher triglyceride; higher LDL; and lower HDL), compared to slow acetylator rats. Total cholesterol (TC)-to-HDL ratios were significantly higher and HDL-to-LDL ratios were significantly lower in rapid acetylator rats. Our data suggest that rats with rapid systemic Nat2 (NAT1 in humans) genotype exhibited higher dyslipidemia conferring risk for metabolic syndrome and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kyung U. Hong
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A. Doll
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Angeliki Lykoudi
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Raúl A. Salazar-González
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mariam R. Habil
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kennedy M. Walls
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Alaa F. Bakr
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Smita S. Ghare
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shirish S. Barve
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gavin E. Arteel
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W. Hein
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
6
|
Carlisle SM, Trainor PJ, Hong KU, Doll MA, Hein DW. CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism. Sci Rep 2020; 10:9804. [PMID: 32555504 PMCID: PMC7299936 DOI: 10.1038/s41598-020-66863-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1), present in all tissues, is classically described as a phase-II xenobiotic metabolizing enzyme but can also catalyze the hydrolysis of acetyl-Coenzyme A (acetyl-CoA) in the absence of an arylamine substrate using folate as a cofactor. NAT1 activity varies inter-individually and has been shown to be overexpressed in estrogen receptor-positive (ER+) breast cancers. NAT1 has also been implicated in breast cancer progression however the exact role of NAT1 remains unknown. The objective of this study was to evaluate the effect of varying levels of NAT1 N-acetylation activity in MDA-MB-231 breast cancer cells on global cellular metabolism and to probe for unknown endogenous NAT1 substrates. Global, untargeted metabolomics was conducted via ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) on MDA-MB-231 breast cancer cell lines constructed with siRNA and CRISPR/Cas9 technologies to vary only in NAT1 N-acetylation activity. Many metabolites were differentially abundant in NAT1-modified cell lines compared to the Scrambled parental cell line. N-acetylasparagine and N-acetylputrescine abundances were strongly positively correlated (r = 0.986 and r = 0.944, respectively) with NAT1 N-acetylation activity whereas saccharopine abundance was strongly inversely correlated (r = −0.876). Two of the most striking observations were a reduction in de novo pyrimidine biosynthesis and defective β-oxidation of fatty acids in the absence of NAT1. We have shown that NAT1 expression differentially affects cellular metabolism dependent on the level of expression. Our results support the hypothesis that NAT1 is not just a xenobiotic metabolizing enzyme and may have a role in endogenous cellular metabolism.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Applied Statistics, EASIB Department, New Mexico State University, Las Cruces, NM, USA
| | - Kyung U Hong
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
7
|
El Kawak M, Dhaini HR, Jabbour ME, Moussa MA, El Asmar K, Aoun M. Slow N-acetylation as a possible contributor to bladder carcinogenesis. Mol Carcinog 2020; 59:1017-1027. [PMID: 32529781 DOI: 10.1002/mc.23232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Bladder cancer (BCa) is an exophytic tumor that presents as either noninvasive confined to the mucosa (NMIBC) or invading the detrusor muscle (MIBC), and was recently further subgrouped into molecular subtypes. Arylamines, major BCa environmental and occupational risk factors, are mainly metabolized by the genetically polymorphic N-acetyltransferases 1, NAT1 and NAT2. In this study, we investigated the association between N-acetyltransferases genetic polymorphism and key MIBC and NMIBC tumor biomarkers and subtypes. A cohort of 250 males with histologically confirmed urothelial BCa was identified. Tumors were genotyped for NAT1 and NAT2 using real-time polymerase chain reaction (PCR), and characterized for mutations in TP53, RB1, and FGFR3 by PCR-restriction fragment length polymorphism. Pathology data and patients' smoking status were obtained from medical records. Pearson χ2 and Fisher exact tests were used to check for associations and interactions. Results show that NAT1 G560 A polymorphism is significantly associated with higher muscle-invasiveness (MIBC vs NMIBC; P = .001), higher tumor grade (high grade vs low grade; P = .011), and higher FGFR3 mutation frequency within the MIBC subgroup (P = .042; .027). NAT2 G857 A polymorphism is also found to be significantly associated with higher muscle-invasiveness (MIBC vs NMIBC; P = .041). Our results indicate that slow N-acetylation is a contributor to bladder carcinogenesis and muscle-invasiveness. These findings highlight NAT1 as a biomarker candidate in BCa and a potential target for drug development.
Collapse
Affiliation(s)
- Michelle El Kawak
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Michel E Jabbour
- Department of Urology, St George Hospital University Medical Center, Beirut, Lebanon
| | - Mohamad A Moussa
- Division of Urology, Al Zahraa University Hospital, Beirut, Lebanon
| | - Khalil El Asmar
- Department of Epidemiology and Population Health, American University of Beirut, Beirut, Lebanon
| | - Mona Aoun
- Department of Pathology, St George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Sellami M, Bragazzi NL. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020; 12:nu12020512. [PMID: 32085420 PMCID: PMC7071273 DOI: 10.3390/nu12020512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Proper nutrition plays a major role in preventing diseases and, therefore, nutritional interventions constitute crucial strategies in the field of Public Health. Nutrigenomics and nutriproteomics are arising from the integration of nutritional, genomics and proteomics specialties in the era of postgenomics medicine. In particular, nutrigenomics and nutriproteomics focus on the interaction between nutrients and the human genome and proteome, respectively, providing insights into the role of diet in carcinogenesis. Further omics disciplines, like metabonomics, interactomics and microbiomics, are expected to provide a better understanding of nutrition and its underlying factors. These fields represent an unprecedented opportunity for the development of personalized diets in women at risk of developing breast cancer.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (CAS), Qatar University, Doha 2713, Qatar
- Correspondence: (M.S.); (N.L.B.)
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University if Genoa, 16132 Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: (M.S.); (N.L.B.)
| |
Collapse
|
9
|
Population variability of rhesus macaque (Macaca mulatta) NAT1 gene for arylamine N-acetyltransferase 1: Functional effects and comparison with human. Sci Rep 2019; 9:10937. [PMID: 31358821 PMCID: PMC6662693 DOI: 10.1038/s41598-019-47485-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human NAT1 gene for N-acetyltransferase 1 modulates xenobiotic metabolism of arylamine drugs and mutagens. Beyond pharmacogenetics, NAT1 is also relevant to breast cancer. The population history of human NAT1 suggests evolution through purifying selection, but it is unclear whether this pattern is evident in other primate lineages where population studies are scarce. We report NAT1 polymorphism in 25 rhesus macaques (Macaca mulatta) and describe the haplotypic and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified and experimentally demonstrated to compromise enzyme function, mainly through destabilization of NAT1 protein and consequent activity loss. One non-synonymous SNV (c.560G > A, p.Arg187Gln) has also been characterized for human NAT1 with similar effects. Population haplotypic and functional variability of rhesus NAT1 was considerably higher than previously reported for its human orthologue, suggesting different environmental pressures in the two lineages. Known functional elements downstream of human NAT1 were also differentiated in rhesus macaque and other primates. Xenobiotic metabolizing enzymes play roles beyond mere protection from exogenous chemicals. Therefore, any link to disease, particularly carcinogenesis, may be via modulation of xenobiotic mutagenicity or more subtle interference with cell physiology. Comparative analyses add the evolutionary dimension to such investigations, assessing functional conservation/diversification among primates.
Collapse
|
10
|
Minchin RF, Butcher NJ. Trimodal distribution of arylamine N-acetyltransferase 1 mRNA in breast cancer tumors: association with overall survival and drug resistance. BMC Genomics 2018; 19:513. [PMID: 29969986 PMCID: PMC6029418 DOI: 10.1186/s12864-018-4894-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/25/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Arylamine N-acetyltransferase 1 (NAT1) is a drug metabolizing enzyme that has been associated with cancer cell proliferation in vitro and with survival in vivo. NAT1 expression has been associated with the estrogen receptor and it has been proposed as a prognostic marker for estrogen receptor positive cancers. However, little is known about the distribution of NAT1 mRNA across an entire patient population or its effects on outcomes. To address this, gene expression data from breast cancer patient cohorts were investigated to identify sub-populations based on the level of NAT1 expression. Patient survival and drug response was examined to determine whether NAT1 mRNA levels influenced any of these parameters. RESULTS NAT1 expression showed a trimodal distribution in breast cancer samples (n = 1980) but not in tumor tissue from ovarian, prostate, cervical or colorectal cancers. In breast cancer, NAT1 mRNA in each sub-population correlated with a separate set of genes suggesting different mechanisms of NAT1 gene regulation. Kaplan-Meier plots showed significantly better survival in patients with highest NAT1 mRNA compared to those with intermediate or low expression. While NAT1 expression was elevated in estrogen receptor-positive patients, it did not appear to be dependent on estrogen receptor expression. Overall survival was analyzed in patients receiving no treatment, hormone therapy or chemotherapy. NAT1 expression correlated strongly with survival in the first 5 years in those patients receiving chemotherapy but did not influence survival in the other two groups. This suggests that low NAT1 expression is associated with chemo-resistance. The sensitivity of NAT1 mRNA levels as a single parameter to identify non-responders to chemotherapy was 0.58 at a log(2) < 6.5. CONCLUSIONS NAT1 mRNA can be used to segregate breast cancer patients into sub-populations that demonstrate different overall survival. Moreover, low NAT1 expression shows a distinct poor response to chemotherapy. Analysis of NAT1 expression may be useful for identifying specific individuals who would benefit from alternative therapy or drug combinations. However, additional information is required to increase the sensitivity of identifying non-responders.
Collapse
Affiliation(s)
- Rodney F. Minchin
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Neville J. Butcher
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
11
|
Carlisle SM, Hein DW. Retrospective analysis of estrogen receptor 1 and N‑acetyltransferase gene expression in normal breast tissue, primary breast tumors, and established breast cancer cell lines. Int J Oncol 2018; 53:694-702. [PMID: 29901116 PMCID: PMC6017241 DOI: 10.3892/ijo.2018.4436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
The expression levels of estrogen receptor 1 (ESR1), arylamine N‑acetyltransferase 1 (NAT1), and arylamine N‑acetyltransferase 2 (NAT2) are implicated in breast cancer; however, their co-expression profiles in normal breast tissue, primary breast tumors and established breast cancer cell lines are undefined. NAT1 expression is widely reported to be associated with ESR1 expression and is frequently investigated in breast cancer etiology. Furthermore, the NAT2 phenotype has been reported to modify breast cancer risk in molecular epidemiological association studies. Understanding the relationships between the expression levels of these genes is essential to understand their role in breast cancer etiology and treatment. In the present study, NAT1, NAT2 and ESR1 expression data were accessed from repositories of RNA‑Seq data covering 57 breast cancer cell lines, 1,043 primary breast tumors and 99 normal breast tissues. The relationships between gene expression, and between NAT1 activity and RNA expression in breast cancer cell lines were evaluated using non-parametric statistical analyses. Differences in gene expression in each dataset, as well as gene expression differences in normal breast tissue compared to primary breast tumors, and stratification by estrogen receptor status were determined. NAT1 and NAT2 mRNA expression were detected in normal and primary breast tumor tissues; NAT1 expression was much higher than NAT2. NAT1 and ESR1 expression were strongly associated, whereas NAT2 and ESR1 expression were not. Although NAT1 and NAT2 expression were associated, the magnitude was moderate. NAT1, NAT2, and ESR1 expression were increased in primary breast tumor tissue compared with normal breast tissue; however, the magnitude and significance of the differences were lower for NAT2. Analysis of NAT1, NAT2, and ESR1 expression in normal and primary breast tissues and breast cancer cell lines suggested that NAT1 and NAT2 expression are regulated by distinctive mechanisms, whereas NAT1 and ESR1 expression may have overlapping regulation. Defining these relationships is important for future investigations into breast cancer prevention.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
12
|
Zhang X, Carlisle SM, Doll MA, Martin RCG, States JC, Klinge CM, Hein DW. High N-Acetyltransferase 1 Expression Is Associated with Estrogen Receptor Expression in Breast Tumors, but Is not Under Direct Regulation by Estradiol, 5 α-androstane-3 β,17 β-Diol, or Dihydrotestosterone in Breast Cancer Cells. J Pharmacol Exp Ther 2018; 365:84-93. [PMID: 29339455 PMCID: PMC5830641 DOI: 10.1124/jpet.117.247031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
N-acetyltransferase 1 (NAT1) is an enzyme that metabolizes carcinogens, which suggests a potential role in breast carcinogenesis. High NAT1 expression in breast tumors is associated with estrogen receptor α (ERα+) and the luminal subtype. We report that NAT1 mRNA transcript, protein, and enzyme activity were higher in human breast tumors with high expression of ERα/ESR1 compared with normal breast tissue. There was a strong correlation between NATb promoter and NAT1 protein expression/enzyme activity. High NAT1 expression in tumors was not the result of adipocytes, as evidenced by low perilipin (PLIN) expression. ESR1, NAT1, and XBP1 expression were associated in tumor biopsies. Direct regulation of NAT1 transcription by estradiol (E2) was investigated in ERα (+) MCF-7 and T47D breast cancer cells. E2 did not increase NAT1 transcript expression but increased progesterone receptor expression in a dose-dependent manner. Likewise, NAT1 transcript levels were not increased by dihydrotestosterone (DHT) or 5α-androstane-3β, (3β-adiol) 17β-diol. Dithiothreitol increased levels of the activated, spliced XBP1 in ERα (+) MCF-7 and T47D breast cancer cells but did not affect NAT1 or ESR1 expression. We conclude that NAT1 expression is not directly regulated by E2, DHT, 3β-adiol, or dithiothreitol despite high NAT1 and ESR1 expression in luminal A breast cancer cells, suggesting that ESR1, XBP1, and NAT1 expression may share a common transcriptional network arising from the luminal epithelium associated with better survival in breast cancer. Clusters of high-expression genes, including NAT1, in breast tumors might serve as potential targets for novel therapeutic drug development.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Samantha M Carlisle
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mark A Doll
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Robert C G Martin
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - J Christopher States
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Carolyn M Klinge
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W Hein
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
13
|
Stepp MW, Doll MA, Samuelson DJ, Sanders MAG, States JC, Hein DW. Congenic rats with higher arylamine N-acetyltransferase 2 activity exhibit greater carcinogen-induced mammary tumor susceptibility independent of carcinogen metabolism. BMC Cancer 2017; 17:233. [PMID: 28359264 PMCID: PMC5374573 DOI: 10.1186/s12885-017-3221-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/22/2017] [Indexed: 11/19/2022] Open
Abstract
Background Recent investigations suggest role(s) of human arylamine N-acetyltransferase 1 (NAT1) in breast cancer. Rat NAT2 is orthologous to human NAT1 and the gene products are functional homologs. We conducted in vivo studies using F344.WKY-Nat2rapid/slow rats, congenic at rat Nat2 for high (rapid) and low (slow) arylamine N-acetyltransferase activity, to assess a possible role for rat NAT2 in mammary tumor susceptibility. Methods Mammary carcinogens, methylnitrosourea (MNU) and 7,12-dimethylbenzanthracene (DMBA) neither of which is metabolized by N-acetyltransferase, were administered to assess mammary tumors. MNU was administered at 3 or 8 weeks of age. DMBA was administered at 8 weeks of age. NAT2 enzymatic activity and endogenous acetyl-coenzyme A (AcCoA) levels were measured in tissue samples and embryonic fibroblasts isolated from the congenic rats. Results Tumor latency was shorter in rapid NAT2 rats compared to slow NAT2 rats, with statistical significance for MNU administered at 3 and 8 weeks of age (p = 0.009 and 0.050, respectively). Tumor multiplicity and incidence were higher in rapid NAT2 rats compared to slow NAT2 rats administered MNU or DMBA at 8 weeks of age (MNU, p = 0.050 and 0.035; DMBA, p = 0.004 and 0.027, respectively). Recombinant rat rapid-NAT2, as well as tissue samples and embryonic fibroblasts derived from rapid NAT2 rats, catalyzed p-aminobenzoic acid N-acetyl transfer and folate-dependent acetyl-coenzyme A (AcCoA) hydrolysis at higher rates than those derived from rat slow-NAT2. Embryonic fibroblasts isolated from rapid NAT2 rats displayed lower levels of cellular AcCoA than slow NAT2 rats (p < 0.01). Conclusions A novel role for rat NAT2 in mammary cancer was discovered unrelated to carcinogen metabolism, suggesting a role for human NAT1 in breast cancer.
Collapse
Affiliation(s)
- Marcus W Stepp
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - David J Samuelson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.,Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Mary Ann G Sanders
- Department of Pathology, University of Louisville Hospital, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens. Oncotarget 2017; 7:8688-99. [PMID: 26840026 PMCID: PMC4890997 DOI: 10.18632/oncotarget.7086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/15/2016] [Indexed: 11/25/2022] Open
Abstract
Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (ki = 200 M−1.s−1 and 66 M−1.s−1 for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals.
Collapse
|
15
|
Carlisle SM, Trainor PJ, Yin X, Doll MA, Stepp MW, States JC, Zhang X, Hein DW. Untargeted polar metabolomics of transformed MDA-MB-231 breast cancer cells expressing varying levels of human arylamine N-acetyltransferase 1. Metabolomics 2016; 12:111. [PMID: 27872580 PMCID: PMC5115175 DOI: 10.1007/s11306-016-1056-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. Expression of NAT1 is elevated in several cancers including breast cancer. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. OBJECTIVE This study explored polar metabolome differences between MDA-MB-231 breast cancer cells expressing varying levels of NAT1 activity using an untargeted approach. METHODS Three MDA-MB-231 breast adenocarcinoma cell lines that stably express wild-type, increased, and decreased levels of human NAT1 were investigated for differences in polar metabolic profile using a comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) system. RESULTS Increased levels of human NAT1 in the transformed cell lines resulted in a statistically significant decreased abundance of the metabolite palmitoleic acid (q = 0.0006), when compared to normal and decreased levels of human NAT1. The fatty acid synthesis pathway utilizes acetyl coenzyme A (acetyl-CoA) in the first two reactions of the pathway and eventually leads to the synthesis of palmitoleic acid. CONCLUSION These data suggest a link between increased levels of NAT1 activity and decreased flux of acetyl-CoA through this portion of the fatty acid synthesis pathway.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Patrick J Trainor
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Marcus W Stepp
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
16
|
Yao F, Zhang C, Du W, Liu C, Xu Y. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging. PLoS One 2015; 10:e0138213. [PMID: 26375396 PMCID: PMC4573873 DOI: 10.1371/journal.pone.0138213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV) from early stage (stages I-II) cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests.
Collapse
Affiliation(s)
- Fang Yao
- Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- Jilin Teachers’ Institute of Engineering and Technology, Changchun, China
| | - Chi Zhang
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
| | - Wei Du
- Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- * E-mail: (WD); (YX)
| | - Chao Liu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Xu
- Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- * E-mail: (WD); (YX)
| |
Collapse
|
17
|
Stepp MW, Mamaliga G, Doll MA, States JC, Hein DW. Folate-Dependent Hydrolysis of Acetyl-Coenzyme A by Recombinant Human and Rodent Arylamine N-Acetyltransferases. Biochem Biophys Rep 2015; 3:45-50. [PMID: 26309907 PMCID: PMC4545580 DOI: 10.1016/j.bbrep.2015.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are drug and xenobiotic metabolizing enzymes that catalyze the N-acetylation of arylamines and hydrazines and the O-acetylation of N-hydroxy-arylamines. Recently, studies report that human NAT1 and mouse Nat2 hydrolyze acetyl-coenzyme A (AcCoA) into acetate and coenzyme A in a folate-dependent fashion, a previously unknown function. In this study, our goal was to confirm these findings and determine the apparent Michaelis-Menten kinetic constants (Vmax and Km) of the folate-dependent AcCoA hydrolysis for human NAT1/NAT2, and the rodent analogs rat Nat1/Nat2, mouse Nat1/Nat2, and hamster Nat1/Nat2. We also compared apparent Vmax values for AcCoA hydrolysis and N-acetylation of the substrate para-aminobenzoic acid (PABA). Human NAT1 and its rodent analogs rat Nat2, mouse Nat2 and hamster Nat2 catalyzed AcCoA hydrolysis in a folate-dependent manner. Rates of AcCoA hydrolysis were between 0.25 - 1% of the rates for N-acetylation of PABA catalyzed by human NAT1 and its rodent orthologs. In contrast to human NAT1, human NAT2 and its rodent analogs rat Nat1, mouse Nat1, and hamster Nat1 did not hydrolyze AcCoA in a folate-dependent manner. These results are consistent with the possibility that human NAT1 and its rodent analogs regulate endogenous AcCoA levels.
Collapse
Affiliation(s)
- Marcus W Stepp
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, School of Medicine, University of Louisville
| | - Galina Mamaliga
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, School of Medicine, University of Louisville
| | - Mark A Doll
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, School of Medicine, University of Louisville
| | - J Christopher States
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, School of Medicine, University of Louisville
| | - David W Hein
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, School of Medicine, University of Louisville
| |
Collapse
|
18
|
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol 2014; 171:2705-25. [PMID: 24467436 PMCID: PMC4158862 DOI: 10.1111/bph.12598] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide.
Collapse
Affiliation(s)
- E Sim
- Faculty of Science Engineering and Computing, Kingston University, Kingston, UK; Department of Pharmacology, Oxford University, Oxford, UK
| | | | | |
Collapse
|
19
|
Endo Y, Yamashita H, Takahashi S, Sato S, Yoshimoto N, Asano T, Hato Y, Dong Y, Fujii Y, Toyama T. Immunohistochemical determination of the miR-1290 target arylamine N-acetyltransferase 1 (NAT1) as a prognostic biomarker in breast cancer. BMC Cancer 2014; 14:990. [PMID: 25528056 PMCID: PMC4364092 DOI: 10.1186/1471-2407-14-990] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background There are many molecular differences between estrogen receptor α (ERα)-positive and ER-negative breast cancers. Recent analyses have shown that the former can be divided into two subtypes, luminal A and luminal B. These differ in response to endocrine therapy and chemotherapy, and in prognosis. In a previous study, we found that microRNA (miR)-1290 that was significantly down-regulated in luminal A tumors and its potential target arylamine N-acetyltransferase 1 (NAT1). The aim of the present study was to determine whether NAT1 is a bona fide target of miR-1290, and to investigate the impact of NAT1 on breast cancer prognosis. Methods Luciferase reporter assays were employed to validate NAT1 as a putative miR-1290 target gene. Expression of NAT1, ERα, progesterone receptor (PgR) and HER2 was analyzed in 394 breast cancer samples by immunohistochemistry. Results NAT1 was confirmed to be a direct target of miR-1290. Levels of expression of NAT1 were positively correlated with those of ERα (P < 0.0001) and PgR (P < 0.0001), but negatively correlated with both tumor grade and size (P < 0.0001). Kaplan-Meier analysis showed that the presence of NAT1 was significantly associated with increased overall survival (OS) (P = 0.0416) in these patients. Similarly, significant associations of NAT1 with disease-free survival (DFS) (P = 0.0048) and OS (P = 0.0055) in those patients who received adjuvant endocrine therapy with tamoxifen (n = 176) were found. Moreover, NAT1 was also significantly associated with increased DFS (P = 0.0025) and OS (P = 0.0007) in the subset of lymph node-positive patients (n = 147). Univariate and multivariate analyses showed significant associations between levels of NAT1 and DFS (P = 0.0005 and 0.019, respectively). Conclusions We report that miR-1290 directly targets the NAT1 3′-UTR and that NAT1 protein expression is correlated with improved OS of breast cancer patients. NAT1 is a possible prognostic biomarker for lymph node-positive breast cancer. Thus, miR-1290 and its target NAT1 are associated with important characteristics of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-990) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tatsuya Toyama
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
20
|
Structure–activity relationships and colorimetric properties of specific probes for the putative cancer biomarker human arylamine N-acetyltransferase 1. Bioorg Med Chem 2014; 22:3030-54. [DOI: 10.1016/j.bmc.2014.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 11/17/2022]
|
21
|
Laurieri N, Dairou J, Egleton JE, Stanley LA, Russell AJ, Dupret JM, Sim E, Rodrigues-Lima F. From arylamine N-acetyltransferase to folate-dependent acetyl CoA hydrolase: impact of folic acid on the activity of (HUMAN)NAT1 and its homologue (MOUSE)NAT2. PLoS One 2014; 9:e96370. [PMID: 24823794 PMCID: PMC4019507 DOI: 10.1371/journal.pone.0096370] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/07/2014] [Indexed: 11/24/2022] Open
Abstract
Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme’s active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these enzymes and for improving chemotherapeutic approaches to pathological conditions including estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Nicola Laurieri
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Julien Dairou
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, Paris, France
| | - James E. Egleton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Lesley A. Stanley
- Consultant in Investigative Toxicology, Linlithgow, West Lothian, United Kingdom
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Jean-Marie Dupret
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, Paris, France
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Science, Engineering and Computing, Kingston University, Kingston on Thames, United Kingdom
- * E-mail: (FR-L); (ES)
| | - Fernando Rodrigues-Lima
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, Paris, France
- * E-mail: (FR-L); (ES)
| |
Collapse
|
22
|
Dhaini HR, Kobeissi L. Toxicogenetic profile and cancer risk in Lebanese. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:95-125. [PMID: 24627976 DOI: 10.1080/10937404.2013.878679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An increasing number of genetic polymorphisms in drug-metabolizing enzymes (DME) were identified among different ethnic groups. Some of these polymorphisms are associated with an increased cancer risk, while others remain equivocal. However, there is sufficient evidence that these associations become significant in populations overexposed to environmental carcinogens. Hence, genetic differences in expression activity of both Phase I and Phase II enzymes may affect cancer risk in exposed populations. In Lebanon, there has been a marked rise in reported cancer incidence since the 1990s. There are also indicators of exposure to unusually high levels of environmental pollutants and carcinogens in the country. This review considers this high cancer incidence by exploring a potential gene-environment model based on available DME polymorphism prevalence, and their impact on bladder, colorectal, prostate, breast, and lung cancer in the Lebanese population. The examined DME include glutathione S-transferases (GST), N-acetyltransferases (NAT), and cytochromes P-450 (CYP). Data suggest that these DME influence bladder cancer risk in the Lebanese population. Evidence indicates that identification of a gene-environment interaction model may help in defining future research priorities and preventive cancer control strategies in this country, particularly for breast and lung cancer.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Faculty of Health Sciences , University of Balamand , Beirut , Lebanon
| | | |
Collapse
|
23
|
A novel color change mechanism for breast cancer biomarker detection: naphthoquinones as specific ligands of human arylamine N-acetyltransferase 1. PLoS One 2013; 8:e70600. [PMID: 23940600 PMCID: PMC3734253 DOI: 10.1371/journal.pone.0070600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
Human arylamine N-acetyltransferase 1 (hNAT1) has become an attractive potential biomarker for estrogen-receptor-positive breast cancers. We describe here the mechanism of action of a selective non-covalent colorimetric biosensor for the recognition of hNAT1 and its murine homologue, mNat2, over their respective isoenzymes, leading to new opportunities in diagnosis. On interaction with the enzyme, the naphthoquinone probe undergoes an instantaneous and striking visible color change from red to blue. Spectroscopic, chemical, molecular modelling and biochemical studies reported here show that the color change is mediated by selective recognition between the conjugate base of the sulfonamide group within the probe and the conjugate acid of the arginine residue within the active site of both hNAT1 and mNat2. This represents a new mechanism for selective biomarker sensing and may be exploited as a general approach to the specific detection of biomarkers in disease.
Collapse
|
24
|
Endo Y, Toyama T, Takahashi S, Yoshimoto N, Iwasa M, Asano T, Fujii Y, Yamashita H. miR-1290 and its potential targets are associated with characteristics of estrogen receptor α-positive breast cancer. Endocr Relat Cancer 2013. [PMID: 23183268 DOI: 10.1530/erc-12-0207] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent analyses have identified heterogeneity in estrogen receptor α (ERα)-positive breast cancer. Subtypes called luminal A and luminal B have been identified, and the tumor characteristics, such as response to endocrine therapy and prognosis, are different in these subtypes. However, little is known about how the biological characteristics of ER-positive breast cancer are determined. In this study, expression profiles of microRNAs (miRNAs) and mRNAs in ER-positive breast cancer tissue were compared between ER(high) Ki67(low) tumors and ER(low) Ki67(high) tumors by miRNA and mRNA microarrays. Unsupervised hierarchical clustering analyses revealed distinct expression patterns of miRNAs and mRNAs in these groups. We identified a downregulation of miR-1290 in ER(high) Ki67(low) tumors. Among 11 miRNAs that were upregulated in ER(high) Ki67(low) tumors, quantitative RT-PCR detection analysis using 64 samples of frozen breast cancer tissue identified six miRNAs (let-7a, miR-15a, miR-26a, miR-34a, miR-193b, and miR-342-3p). We picked up 11 genes that were potential target genes of the selected miRNAs and that were differentially expressed in ER(high) Ki67(low) tumors and ER(low) Ki67(high) tumors. Protein expression patterns of the selected target genes were analyzed in 256 ER-positive breast cancer samples by immunohistochemistry: miR-1290 and its putative targets, BCL2, FOXA1, MAPT, and NAT1, were identified. Transfection experiments revealed that introduction of miR-1290 into ER-positive breast cancer cells decreased expression of NAT1 and FOXA1. Our results suggest that miR-1290 and its potential targets might be associated with characteristics of ER-positive breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Arylamine N-Acetyltransferase/genetics
- Arylamine N-Acetyltransferase/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Immunoenzyme Techniques
- Isoenzymes/genetics
- Isoenzymes/metabolism
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Grading
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Yumi Endo
- Departments of Oncology, Immunology and Surgery Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bonamassa B, Ma Y, Liu D. Glucocorticoid receptor-mediated transcriptional regulation of N-acetyltransferase 1 gene through distal promoter. AAPS JOURNAL 2012; 14:581-90. [PMID: 22644701 DOI: 10.1208/s12248-012-9370-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/09/2012] [Indexed: 11/30/2022]
Abstract
Human arylamine N-acetyltransferase 1, (HUMAN)NAT1, is a phase II xenobiotic-metabolizing enzyme that plays an important role in drug and carcinogen biotransformation and cancer development. Its gene expression has been shown to be regulated by environmental factors. The purpose of the current study is to determine the involvement of nuclear receptors in transcriptional regulation of (HUMAN)NAT1 gene. We show that among the nuclear receptors examined, including the glucocorticoid receptor, retinoid acid receptor-related orphan receptor alpha, constitutive androstane receptor, pregnane X receptor, aryl hydrocarbon receptor, and retinoic acid receptor, the glucocorticoid receptor plays a dominant role in regulating (HUMAN)NAT1 gene expression through distal promoter (P3). The involvement of the glucocorticoid receptor in transcription regulation of (HUMAN)NAT1 gene expression was demonstrated by dexamethasone treatment, reporter assay using plasmid-containing 3 kbp of 5'-end region of promoter 3, and treatment of anti-glucocorticoid RU486 in primary culture of human hepatocytes and transfected HepG2 cells. In addition, translation inhibition did not affect dexamethasone-induced gene expression through P3, suggesting that dexamethasone effect is directly mediated by glucocorticoid receptor activation. Furthermore, deletion analysis revealed the presence of multiple responsive elements within the 3 kbp fragment of P3. Transfection assays in mice using hydrodynamics-based procedure and reporter gene assay in a mouse cell line revealed that glucocorticoid-induced NAT gene expression is species dependent. Dexamethasone treatment of transfected mice and mouse cell line decreased (MOUSE)Nat2 gene expression, (HUMAN)NAT1 homologue. These results suggest that glucocorticoids serve as a modulator for (HUMAN)NAT1 gene expression via the P3-containing 5'-flanking region.
Collapse
Affiliation(s)
- Barbara Bonamassa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
26
|
Masoud GN, Youssef AM, Abdel Khalek MM, Abdel Wahab AE, Labouta IM, Hazzaa AAB. Design, synthesis, and biological evaluation of new 4-thiazolidinone derivatives substituted with benzimidazole ring as potential chemotherapeutic agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0057-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Johansson I, Nilsson C, Berglund P, Lauss M, Ringnér M, Olsson H, Luts L, Sim E, Thorstensson S, Fjällskog ML, Hedenfalk I. Gene expression profiling of primary male breast cancers reveals two unique subgroups and identifies N-acetyltransferase-1 (NAT1) as a novel prognostic biomarker. Breast Cancer Res 2012; 14:R31. [PMID: 22333393 PMCID: PMC3496149 DOI: 10.1186/bcr3116] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/09/2012] [Accepted: 02/14/2012] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Male breast cancer (MBC) is a rare and inadequately characterized disease. The aim of the present study was to characterize MBC tumors transcriptionally, to classify them into comprehensive subgroups, and to compare them with female breast cancer (FBC). METHODS A total of 66 clinicopathologically well-annotated fresh frozen MBC tumors were analyzed using Illumina Human HT-12 bead arrays, and a tissue microarray with 220 MBC tumors was constructed for validation using immunohistochemistry. Two external gene expression datasets were used for comparison purposes: 37 MBCs and 359 FBCs. RESULTS Using an unsupervised approach, we classified the MBC tumors into two subgroups, luminal M1 and luminal M2, respectively, with differences in tumor biological features and outcome, and which differed from the intrinsic subgroups described in FBC. The two subgroups were recapitulated in the external MBC dataset. Luminal M2 tumors were characterized by high expression of immune response genes and genes associated with estrogen receptor (ER) signaling. Luminal M1 tumors, on the other hand, despite being ER positive by immunohistochemistry showed a lower correlation to genes associated with ER signaling and displayed a more aggressive phenotype and worse prognosis. Validation of two of the most differentially expressed genes, class 1 human leukocyte antigen (HLA) and the metabolizing gene N-acetyltransferase-1 (NAT1), respectively, revealed significantly better survival associated with high expression of both markers (HLA, hazard ratio (HR) 3.6, P = 0.002; NAT1, HR 2.5, P = 0.033). Importantly, NAT1 remained significant in a multivariate analysis (HR 2.8, P = 0.040) and may thus be a novel prognostic marker in MBC. CONCLUSIONS We have detected two unique and stable subgroups of MBC with differences in tumor biological features and outcome. They differ from the widely acknowledged intrinsic subgroups of FBC. As such, they may constitute two novel subgroups of breast cancer, occurring exclusively in men, and which may consequently require novel treatment approaches. Finally, we identified NAT1 as a possible prognostic biomarker for MBC, as suggested by NAT1 positivity corresponding to better outcome.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Arylamine N-Acetyltransferase/genetics
- Arylamine N-Acetyltransferase/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms, Male/classification
- Breast Neoplasms, Male/diagnosis
- Breast Neoplasms, Male/enzymology
- Breast Neoplasms, Male/mortality
- Carcinoma, Ductal, Breast/classification
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Intraductal, Noninfiltrating/classification
- Carcinoma, Intraductal, Noninfiltrating/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/enzymology
- Carcinoma, Intraductal, Noninfiltrating/mortality
- Cluster Analysis
- Female
- Gene Expression Profiling
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Multivariate Analysis
- Oligonucleotide Array Sequence Analysis
- Principal Component Analysis
- Prognosis
- Statistics, Nonparametric
- Tissue Array Analysis
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Ida Johansson
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| | - Cecilia Nilsson
- Center for Clinical Research, Central Hospital of Västerås, SE 72189 Västerås, Sweden
- Department of Oncology, Uppsala University, SE 75185 Uppsala, Sweden
| | - Pontus Berglund
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
| | - Martin Lauss
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| | - Markus Ringnér
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| | - Håkan Olsson
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
| | - Lena Luts
- Department of Pathology, Lund University Hospital, SE 22185 Lund, Sweden
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sten Thorstensson
- Department of Pathology, Linköping University Hospital, SE 58185 Linköping, Sweden
| | | | - Ingrid Hedenfalk
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| |
Collapse
|
28
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Butcher NJ, Minchin RF. Arylamine N-acetyltransferase 1: a novel drug target in cancer development. Pharmacol Rev 2012; 64:147-65. [PMID: 22090474 DOI: 10.1124/pr.110.004275] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The human arylamine N-acetyltransferases first attracted attention because of their role in drug metabolism. However, much of the current literature has focused on their role in the activation and detoxification of environmental carcinogens and how genetic polymorphisms in the genes create predispositions to increased or decreased cancer risk. There are two closely related genes on chromosome 8 that encode the two human arylamine N-acetyltransferases--NAT1 and NAT2. Although NAT2 has restricted tissue expression, NAT1 is found in almost all tissues of the body. There are several single-nucleotide polymorphisms in the protein coding and 3'-untranslated regions of the gene that affect enzyme activity. However, NAT1 is also regulated by post-translational and environmental factors, which may be of greater importance than genotype in determining tissue NAT1 activities. Recent studies have suggested a novel role for this enzyme in cancer cell growth. NAT1 is up-regulated in several cancer types, and overexpression can lead to increased survival and resistance to chemotherapy. Although a link to folate homeostasis has been suggested, many of the effects attributed to NAT1 and cancer cell growth remain to be explained. Nevertheless, the enzyme has emerged as a viable candidate for drug development, which should lead to small molecule inhibitors for preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | | |
Collapse
|
30
|
Millner LM, Doll MA, Cai J, States JC, Hein DW. NATb/NAT1*4 promotes greater arylamine N-acetyltransferase 1 mediated DNA adducts and mutations than NATa/NAT1*4 following exposure to 4-aminobiphenyl. Mol Carcinog 2011; 51:636-46. [PMID: 21837760 DOI: 10.1002/mc.20836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 07/11/2011] [Indexed: 11/05/2022]
Abstract
N-acetyltransferase 1 (NAT1) is a phase II metabolic enzyme responsible for the biotransformation of aromatic and heterocyclic amine carcinogens such as 4-aminobiphenyl (ABP). NAT1 catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1 is transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting in mRNAs with distinct 5'-untranslated regions (UTR). NATa mRNA is expressed primarily in the kidney, liver, trachea, and lung while NATb mRNA has been detected in all tissues studied. To determine if differences in 5'-UTR have functional effect upon NAT1 activity and DNA adducts or mutations following exposure to ABP, pcDNA5/FRT plasmid constructs were prepared for transfection of full-length human mRNAs including the 5'-UTR derived from NATa or NATb, the open reading frame, and 888 nucleotides of the 3'-UTR. Following stable transfection of NATb/NAT1*4 or NATa/NAT1*4 into nucleotide excision repair (NER) deficient Chinese hamster ovary cells, N-acetyltransferase activity (in vitro and in situ), mRNA, and protein expression were higher in NATb/NAT1*4 than NATa/NAT1*4 transfected cells (P < 0.05). Consistent with NAT1 expression and activity, ABP-induced DNA adducts and hypoxanthine phosphoribosyl transferase mutants were significantly higher (P < 0.05) in NATb/NAT1*4 than in NATa/NAT1*4 transfected cells following exposure to ABP. These differences observed between NATa and NATb suggest that the 5'-UTRs are differentially regulated.
Collapse
Affiliation(s)
- Lori M Millner
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center and Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, Kentucky 40202-1617, USA
| | | | | | | | | |
Collapse
|
31
|
Myhre S, Mohammed H, Tramm T, Alsner J, Finak G, Park M, Overgaard J, Børresen-Dale AL, Frigessi A, Sørlie T. In silico ascription of gene expression differences to tumor and stromal cells in a model to study impact on breast cancer outcome. PLoS One 2010; 5:e14002. [PMID: 21124964 PMCID: PMC2988804 DOI: 10.1371/journal.pone.0014002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/26/2010] [Indexed: 11/18/2022] Open
Abstract
Breast tumors consist of several different tissue components. Despite the heterogeneity, most gene expression analyses have traditionally been performed without prior microdissection of the tissue sample. Thus, the gene expression profiles obtained reflect the mRNA contribution from the various tissue components. We utilized histopathological estimations of area fractions of tumor and stromal tissue components in 198 fresh-frozen breast tumor tissue samples for a cell type-associated gene expression analysis associated with distant metastasis. Sets of differentially expressed gene-probes were identified in tumors from patients who developed distant metastasis compared with those who did not, by weighing the contribution from each tumor with the relative content of stromal and tumor epithelial cells in their individual tumor specimen. The analyses were performed under various assumptions of mRNA transcription level from tumor epithelial cells compared with stromal cells. A set of 30 differentially expressed gene-probes was ascribed solely to carcinoma cells. Furthermore, two sets of 38 and five differentially expressed gene-probes were mostly associated to tumor epithelial and stromal cells, respectively. Finally, a set of 26 differentially expressed gene-probes was identified independently of cell type focus. The differentially expressed genes were validated in independent gene expression data from a set of laser capture microdissected invasive ductal carcinomas. We present a method for identifying and ascribing differentially expressed genes to tumor epithelial and/or stromal cells, by utilizing pathologic information and weighted t-statistics. Although a transcriptional contribution from the stromal cell fraction is detectable in microarray experiments performed on bulk tumor, the gene expression differences between the distant metastasis and no distant metastasis group were mostly ascribed to the tumor epithelial cells of the primary breast tumors. However, the gene PIP5K2A was found significantly elevated in stroma cells in distant metastasis group, compared to stroma in no distant metastasis group. These findings were confirmed in gene expression data from the representative compartments from microdissected breast tissue. The method described was also found to be robust to different histopathological procedures.
Collapse
Affiliation(s)
- Simen Myhre
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Hayat Mohammed
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trine Tramm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Greg Finak
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Canada
| | - Jens Overgaard
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arnoldo Frigessi
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Therese Sørlie
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Bonifas J, Scheitza S, Clemens J, Blömeke B. Characterization of N-acetyltransferase 1 activity in human keratinocytes and modulation by para-phenylenediamine. J Pharmacol Exp Ther 2010; 334:318-26. [PMID: 20406859 DOI: 10.1124/jpet.110.167874] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
N-acetyltransferase 1 (NAT1)-mediated N-acetylation in keratinocytes is an important detoxification pathway for the hair dye ingredient para-phenylenediamine (PPD). Because NAT1 can be regulated by various exogenous compounds, including some NAT1 substrates themselves, we investigated NAT1 expression in keratinocytes and the interactions between PPD and NAT1. NAT1 activity was found to be cell-cycle phase-dependent. Maximum NAT1 activities (mean: 49.7 nmol/mg/min) were estimated when HaCaT keratinocytes were arrested in G(0)/G(1) phase, whereas nonsynchronized cells showed the lowest activities (mean: 28.9 nmol/mg/min). It is noteworthy that we also found an accelerated progression through the cell cycle in HaCaT cells with high NAT1 activities. This evidence suggests an association between NAT1 and proliferation in keratinocytes. Regarding the interaction between NAT1 and PPD, we found that keratinocytes N-acetylate PPD; however, this N-acetylation was saturated with increasing PPD concentrations. HaCaT cultured in medium supplemented with PPD (10-200 microM) for 24 h showed a significant concentration-dependent decrease (17-50%) in NAT1 activity. PPD also induced down-regulation of NAT1 activity in human primary keratinocytes. Western blot studies using a NAT1-specific antibody in HaCaT showed that the loss of enzyme activity was associated with a decline in the amount of NAT1 protein, whereas no changes in the amounts of NAT1 P1 (NATb)-dependent mRNA were found by quantitative reverse transcription-polymerase chain reaction analysis, suggesting the involvement of a substrate-dependent mechanism of NAT1 down-regulation. In conclusion, these data show that overall N-acetylation capacity of keratinocytes and consequently detoxification capacities of human skin is modulated by the presence of NAT1 substrates and endogenously by the cell proliferation status of keratinocytes.
Collapse
Affiliation(s)
- Jutta Bonifas
- Department of Environmental Toxicology, University Trier, Trier, Germany
| | | | | | | |
Collapse
|
33
|
The human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) is irreversibly inhibited by inorganic (Hg2+) and organic mercury (CH3Hg+): mechanism and kinetics. FEBS Lett 2010; 584:3366-9. [PMID: 20591428 DOI: 10.1016/j.febslet.2010.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/21/2022]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50)=250 nM and kinact=1.4x10(4) M(-1) s(-1) for Hg2+ and IC50=1.4 microM and kinact=2x10(2) M(-1) s(-1) for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50=3 and 20 microM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.
Collapse
|
34
|
Khelil M, Djerdjouri B, Tayebi B. N-acetyltransferase 2 (Nat2) polymorphism in the sand rat Psammomys obesus. Toxicol Mech Methods 2010; 20:440-4. [PMID: 20550432 DOI: 10.3109/15376516.2010.492814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) and its homologue in rodents (Nat2) are polymorphic xenobiotic metabolizing enzymes and also seem to play a role in endogenous metabolism. NAT1 and Nat2 polymorphism was associated to cancers under xenobiotic procarcinogens metabolism as well as under endogenous substrate metabolism. This study investigated the p-aminobenzoic acid (PABA) -Nat2 catalytic activity and its polymorphism in liver homogenates of adult sand rats Psammomys obesus Cretzschmar, 1828. These Saharian sand rats develop high incidence of spontaneous cancers under standard laboratory diet. The average value of PABA-Nat2 specific activity tested in nine sand rats was significant (2.96 ± 2.16 nmoles/min/mg). The N-acetylation exhibited a bimodal distribution. There was a significant difference (p<0.01) between PABA-Nat2 activity in the fast acetylators group (4.10 ± 1.67 nmol/min/mg) and slow acetylators group (0.7 ± 0.27 nmol/min/mg). The percentage of the fast acetylator group was 66.66%. These results support the presence of Nat2 polymorphism in the liver of the strain sand rats Psammomys obesus. This strain is useful for investigating the role of Nat2 polymorphisms in susceptibility to cancers related to arylamine carcinogen exposures as well as to endogenous substrate metabolism.
Collapse
Affiliation(s)
- Malika Khelil
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, BP: 32 El-Alia, 16111 Alger, Algérie.
| | | | | |
Collapse
|
35
|
Laurieri N, Crawford MHJ, Kawamura A, Westwood IM, Robinson J, Fletcher AM, Davies SG, Sim E, Russell AJ. Small molecule colorimetric probes for specific detection of human arylamine N-acetyltransferase 1, a potential breast cancer biomarker. J Am Chem Soc 2010; 132:3238-9. [PMID: 20170182 DOI: 10.1021/ja909165u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The identification, synthesis, and evaluation of a series of naphthoquinone derivatives as selective inhibitors of human arylamine N-acetyltransferase 1 and mouse arylamine N-acetyltransferase 2 are described. The compounds undergo a distinctive color change (red --> blue) upon binding to these human and mouse NAT isoenzymes driven by a proton transfer event. No color change is observed in the presence of functionally distinct but highly similar isoenzymes which are >70% identical. These molecules may be used as sensors to detect the presence of human NAT1 in cell lysates.
Collapse
Affiliation(s)
- Nicola Laurieri
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Butcher NJ, Minchin RF. Arylamine N-acetyltransferase 1 gene regulation by androgens requires a conserved heat shock element for heat shock factor-1. Carcinogenesis 2010; 31:820-6. [PMID: 20176657 DOI: 10.1093/carcin/bgq042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) is a widely distributed protein that has been implicated in a number of different cancers including breast and prostate. Previously, NAT1 gene expression was shown to be androgen dependent, although the effect of androgens was not due to direct activation of the NAT1 promoter. Here, we show that heat shock factor (HSF)1 is induced by androgen in androgen receptor-positive prostate 22Rv1 cells. It also binds to a heat shock element (HSE) in the NAT1 promoter located 776 bp upstream of the transcriptional start site. Mutation of the HSE inhibited androgen responsiveness and prevented direct upregulation of the NAT1 promoter by HSF1. Although HSF2 also bound to the HSE, it did not increase promoter activity. HSF1 induced endogenous NAT1 activity in this cell line in the absence of androgen. This could be attenuated by pretreating cells with HSF1-directed small interfering RNA but not by a scrambled sequence. Our results show that HSF1 is an important transcription factor for induction of NAT1 in human cells and is required for androgen activation of the NAT1 promoter.
Collapse
Affiliation(s)
- Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | | |
Collapse
|
37
|
Ballester PJ, Westwood I, Laurieri N, Sim E, Richards WG. Prospective virtual screening with Ultrafast Shape Recognition: the identification of novel inhibitors of arylamine N-acetyltransferases. J R Soc Interface 2010; 7:335-42. [PMID: 19586957 PMCID: PMC2842611 DOI: 10.1098/rsif.2009.0170] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 06/08/2009] [Indexed: 12/21/2022] Open
Abstract
There is currently a shortage of chemical molecules that can be used as bioactive probes to study molecular targets and potentially as starting points for drug discovery. One inexpensive way to address this problem is to use computational methods to screen a comprehensive database of small molecules to discover novel structures that could lead to alternative and better bioactive probes. Despite that pleasing logic the results have been somewhat mixed. Here we describe a virtual screening technique based on ligand-receptor shape complementarity, Ultrafast Shape Recognition (USR). USR is specifically applied to identify novel inhibitors of arylamine N-acetyltransferases by computationally screening almost 700 million molecular conformers in a time- and resource-efficient manner. A small number of the predicted active compounds were purchased and tested obtaining a confirmed hit rate of 40 per cent which is an outstanding result for a prospective virtual screening.
Collapse
Affiliation(s)
- Pedro J Ballester
- Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | | | | | | | | |
Collapse
|
38
|
Malka F, Dairou J, Ragunathan N, Dupret JM, Rodrigues-Lima F. Mechanisms and kinetics of human arylamine N-acetyltransferase 1 inhibition by disulfiram. FEBS J 2009; 276:4900-8. [DOI: 10.1111/j.1742-4658.2009.07189.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Stanley LA, Sim E. Update on the pharmacogenetics of NATs: structural considerations. Pharmacogenomics 2009; 9:1673-93. [PMID: 19018723 DOI: 10.2217/14622416.9.11.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The arylamine N-acetyltransferase (NAT) genes encode enzymes that catalyze the N-acetylation of aromatic amines and hydrazines and the O-acetylation of heterocyclic amines. These genes, which play a key role in cellular homeostasis as well as in gene-environment interactions, are subject to marked pharmacogenetic variation, and different combinations of SNPs in the human NAT genes lead to different acetylation phenotypes. Our understanding of the consequences of pharmacogenetic variability in NATs has recently been enhanced by structural studies showing that effects on protein folding, aggregation and turnover, as well as direct changes in active site topology, are involved. These developments pave the way for a better understanding of the role played by NATs in maintaining cellular homeostasis. In addition, the NATs represent a model for studying fundamental processes associated with protein folding and pharmacogenomic effects mediated by inheritance in human populations across a polymorphic region of the genome.
Collapse
|
40
|
Russell AJ, Westwood IM, Crawford MHJ, Robinson J, Kawamura A, Redfield C, Laurieri N, Lowe ED, Davies SG, Sim E. Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorg Med Chem 2009; 17:905-18. [PMID: 19059786 DOI: 10.1016/j.bmc.2008.11.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/06/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
The identification, synthesis and evaluation of a series of rhodanine and thiazolidin-2,4-dione derivatives as selective inhibitors of human arylamine N-acetyltransferase 1 and mouse arylamine N-acetyltransferase 2 is described. The most potent inhibitors identified have submicromolar activity and inhibit both the recombinant proteins and human NAT1 in ZR-75 cell lysates in a competitive manner. (1)H NMR studies on purified mouse Nat2 demonstrate that the inhibitors bind within the putative active site of the enzyme.
Collapse
Affiliation(s)
- Angela J Russell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arylamine N-acetyltransferases: Structural and functional implications of polymorphisms. Toxicology 2008; 254:170-83. [DOI: 10.1016/j.tox.2008.08.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/29/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
42
|
Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: From Structure to Function. Drug Metab Rev 2008; 40:479-510. [DOI: 10.1080/03602530802186603] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Ragunathan N, Dairou J, Pluvinage B, Martins M, Petit E, Janel N, Dupret JM, Rodrigues-Lima F. Identification of the xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 as a new target of cisplatin in breast cancer cells: molecular and cellular mechanisms of inhibition. Mol Pharmacol 2008; 73:1761-8. [PMID: 18310302 DOI: 10.1124/mol.108.045328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that plays an important role in the biotransformation of aromatic drugs and carcinogens. NAT1 activity has long been associated with susceptibility to various cancers. Evidence for a role of NAT1 in malignant progression has also been obtained, particularly for breast and prostate cancer. Cisplatin is widely used in chemotherapy against human cancers, and it is thought to act principally by forming DNA adducts. However, recent studies have suggested that some of the pharmacological and/or toxicological effects of cisplatin may be due to the direct targeting and inhibition of certain cellular enzymes. We show here that the exposure of breast cancer cells, known to express functional NAT1 enzyme, to therapeutically relevant concentrations of cisplatin impairs the catalytic activity of endogenous NAT1. Endogenous NAT1 was also found to be inactivated, in vivo, in the tissues of mice treated with cisplatin. Mechanistic studies with purified human NAT1 indicated that this inhibition resulted from the irreversible formation of a cisplatin adduct with the active-site cysteine residue of the enzyme. Kinetic studies suggested that NAT1 interacts rapidly with cisplatin, with a second-order rate inhibition constant of 700 M(-1) min(-1). This rate constant is one the highest ever reported for the reaction of cisplatin with a biological macromolecule. Few enzymes have been clearly shown to be inactivated by cisplatin. We provide here molecular and cellular evidence suggesting that NAT1 is one of the targets of cisplatin in cells.
Collapse
Affiliation(s)
- Nilusha Ragunathan
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire (EA 1553), Université Paris Diderot-Paris 7, 75005, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Boukouvala S, Westwood IM, Butcher NJ, Fakis G. Current trends in N-acetyltransferase research arising from the 2007 International NAT Workshop. Pharmacogenomics 2008; 9:765-71. [DOI: 10.2217/14622416.9.6.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arylamine N-acetyltransferase (NAT) research has been influenced in recent years by the rapid progress in genomics, proteomics, structural genomics and other cutting-edge disciplines. To keep up with these advancements, the NAT scientific community has fostered collaboration and exchange of know-how between its members. As a specialized event bringing together experts from many different laboratories, the triennial International NAT Workshop has been instrumental in maintaining this culture over the past ten years. The 2007 Workshop took place in Alexandroupolis, Greece, and covered ongoing research on the structure and enzymatic function of human NATs, the prokaryotic and eukaryotic models for NAT, the mechanisms of NAT gene regulation and expression, the frequencies and effects of polymorphisms in the human NAT genes, and the involvement of NATs in multifactorial diseases, including cancer, allergic conditions, endometriosis and endemic nephropathies. Gene nomenclature issues were also addressed and the participants discussed current trends in the field.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Demetras 19, Alexandroupolis 68100, Greece
| | - Isaac M Westwood
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Giannoulis Fakis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Demetras 19, Alexandroupolis 68100, Greece
| |
Collapse
|
45
|
Kawamura A, Westwood I, Wakefield L, Long H, Zhang N, Walters K, Redfield C, Sim E. Mouse N-acetyltransferase type 2, the homologue of human N-acetyltransferase type 1. Biochem Pharmacol 2008; 75:1550-60. [PMID: 18280460 PMCID: PMC2279149 DOI: 10.1016/j.bcp.2007.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/29/2022]
Abstract
There is increasing evidence that human arylamine N-acetyltransferase type 1 (NAT1, EC 2.3.1.5), although first identified as a homologue of a drug-metabolising enzyme, appears to be a marker in human oestrogen receptor positive breast cancer. Mouse Nat2 is the mouse equivalent of human NAT1. The development of mouse models of breast cancer is important, and it is essential to explore the biological role of mouse Nat2. We have therefore produced mouse Nat2 as a recombinant protein and have investigated its substrate specificity profile in comparison with human NAT1. In addition, we have tested the effects of inhibitors on mouse Nat2, including compounds which are endogenous and exogenous steroids. We show that tamoxifen, genistein and diethylstilbestrol inhibit mouse Nat2. The steroid analogue, bisphenol A, also inhibits mouse Nat2 enzymic activity and is shown by NMR spectroscopy, through shifts in proton peaks, to bind close to the active site. A three-dimensional structure for human NAT1 has recently been released, and we have used this crystal structure to generate a model of the mouse Nat2 structure. We propose that a conformational change in the structure is required in order for ligands to bind to the active site of the protein.
Collapse
Affiliation(s)
- Akane Kawamura
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Isaac Westwood
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Larissa Wakefield
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Hilary Long
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Naixia Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kylie Walters
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| |
Collapse
|