1
|
Matsushita M, Mori Y, Uchiumi K, Ogata T, Nakamura M, Yoda H, Soda H, Takiguchi N, Nabeya Y, Shimozato O, Ozaki T. PTPRK suppresses progression and chemo-resistance of colon cancer cells via direct inhibition of pro-oncogenic CD133. FEBS Open Bio 2019; 9:935-946. [PMID: 30947381 PMCID: PMC6487712 DOI: 10.1002/2211-5463.12636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023] Open
Abstract
Receptor‐type protein tyrosine phosphatase κ (PTPRK) is considered to be a candidate tumor suppressor. PTPRK dephosphorylates CD133, which is a stem cell marker; phosphorylated CD133 accelerates xenograft tumor growth of colon cancer cells through the activation of AKT, but the functional significance of this has remained elusive. In this study, we have demonstrated that knockdown of PTPRK potentiates the pro‐oncogenic CD133–AKT pathway in colon cancer cells. Intriguingly, depletion of PTPRK significantly reduced sensitivity to the anti‐cancer drug oxaliplatin and was accompanied by up‐regulation of phosphorylation of Bad, a downstream target of AKT. Together, our present observations strongly suggest that the CD133–PTPRK axis plays a pivotal role in the regulation of colon cancer progression as well as drug resistance.
Collapse
Affiliation(s)
- Masashi Matsushita
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan
| | - Yusuke Mori
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan.,Laboratory of Oncogenomics, Chiba Cancer Center Research Institute, Japan
| | - Kyosuke Uchiumi
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan
| | - Takehiro Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan
| | - Mizuyo Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan
| | - Hiroyuki Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Japan
| | - Hiroaki Soda
- Department of Esophago-Gastrointestinal Surgery, Chiba Cancer Center Hospital, Japan
| | - Nobuhiro Takiguchi
- Department of Esophago-Gastrointestinal Surgery, Chiba Cancer Center Hospital, Japan
| | - Yoshihiro Nabeya
- Department of Esophago-Gastrointestinal Surgery, Chiba Cancer Center Hospital, Japan
| | - Osamu Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan.,Laboratory of Oncogenomics, Chiba Cancer Center Research Institute, Japan
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Japan.,Laboratory of Oncogenomics, Chiba Cancer Center Research Institute, Japan
| |
Collapse
|
2
|
Cordas Dos Santos DM, Eilers J, Sosa Vizcaino A, Orlova E, Zimmermann M, Stanulla M, Schrappe M, Börner K, Grimm D, Muckenthaler MU, Kulozik AE, Kunz JB. MAP3K7 is recurrently deleted in pediatric T-lymphoblastic leukemia and affects cell proliferation independently of NF-κB. BMC Cancer 2018; 18:663. [PMID: 29914415 PMCID: PMC6006985 DOI: 10.1186/s12885-018-4525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Deletions of 6q15-16.1 are recurrently found in pediatric T-cell acute lymphoblastic leukemia (T-ALL). This chromosomal region includes the mitogen-activated protein kinase kinase kinase 7 (MAP3K7) gene which has a crucial role in innate immune signaling and was observed to be functionally and prognostically relevant in different cancer entities. Therefore, we correlated the presence of MAP3K7 deletions with clinical parameters in a cohort of 327 pediatric T-ALL patients and investigated the function of MAP3K7 in the T-ALL cell lines CCRF-CEM, Jurkat and MOLT-4. METHODS MAP3K7 deletions were detected by multiplex ligation-dependent probe amplification (MLPA). T-ALL cell lines were transduced with adeno-associated virus (AAV) vectors expressing anti-MAP3K7 shRNA or a non-silencing shRNA together with a GFP reporter. Transduction efficiency was measured by flow cytometry and depletion efficiency by RT-PCR and Western blots. Induction of apoptosis was measured by flow cytometry after staining with PE-conjugated Annexin V. In order to assess the contribution of NF-κB signaling to the effects of MAP3K7 depletion, cells were treated with TNF-α and cell lysates analyzed for components of the NF-κB pathway by Western blotting and for expression of the NF-κB target genes BCL2, CMYC, FAS, PTEN and TNF-α by RT-PCR. RESULTS MAP3K7 is deleted in approximately 10% and point-mutated in approximately 1% of children with T-ALL. In 32 of 33 leukemias the deletion of MAP3K7 also included the adjacent CASP8AP2 gene. MAP3K7 deletions were associated with the occurrence of SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and outcome. Depletion of MAP3K7 expression in T-ALL cell lines by shRNAs slowed down proliferation and induced apoptosis, but neither changed protein levels of components of NF-κB signaling nor NF-κB target gene expression after stimulation with TNF-α. CONCLUSIONS This study revealed that the recurrent deletion of MAP3K7/CASP8AP2 is associated with SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and risk of relapse. Homozygous deletions of MAP3K7 were not observed, and efficient depletion of MAP3K7 interfered with viability of T-ALL cells, indicating that a residual expression of MAP3K7 is indispensable for T-lymphoblasts.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Juliane Eilers
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Alfonso Sosa Vizcaino
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Elena Orlova
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, MH Hannover, Hannover, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, MH Hannover, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,BioQuant Center, Heidelberg University, Heidelberg, Germany.,Cluster of Excellence CellNetworks, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
3
|
Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene 2014; 34:1949-60. [PMID: 24882578 DOI: 10.1038/onc.2014.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022]
Abstract
Although CD133 has been considered to be a molecular marker for cancer stem cells, its functional roles in tumorigenesis remain unclear. We here examined the molecular basis behind CD133-mediated signaling. Knockdown of CD133 resulted in the retardation of xenograft tumor growth of colon cancer-derived HT-29 and LoVo cells accompanied by hypophosphorylation of AKT, which diminished β-catenin/T-cell factor-mediated CD44 expression. As tyrosine residues of CD133 at positions 828 and 852 were phosphorylated in HT-29 and SW480 cells, we further addressed the significance of this phosphorylation in the tumorigenesis of SW480 cells expressing mutant CD133, with substitution of these tyrosine residues by glutamate (CD133-EE) or phenylalanine (CD133-FF). Forced expression of CD133-EE promoted much more aggressive xenograft tumor growth relative to wild-type CD133-expressing cells accompanied by hyperphosphorylation of AKT; however, CD133-FF expression had negligible effects on AKT phosphorylation and xenograft tumor formation. Intriguingly, the tyrosine phosphorylation status of CD133 was closely linked to the growth of SW480-derived spheroids. Using yeast two-hybrid screening, we finally identified receptor-type protein tyrosine phosphatase κ (PTPRK) as a binding partner of CD133. In vitro studies demonstrated that PTPRK associates with the carboxyl-terminal region of CD133 through its intracellular phosphatase domains and also catalyzes dephosphorylation of CD133 at tyrosine-828/tyrosine-852. Silencing of PTPRK elevated the tyrosine phosphorylation of CD133, whereas forced expression of PTPRK reduced its phosphorylation level markedly and abrogated CD133-mediated AKT phosphorylation. Endogenous CD133 expression was also closely associated with higher AKT phosphorylation in primary colon cancer cells, and ectopic expression of CD133 enhanced AKT phosphorylation. Furthermore, lower PTPRK expression significantly correlated with the poor prognosis of colon cancer patients with high expression of CD133. Thus, our present findings strongly indicate that the tyrosine phosphorylation of CD133, which is dephosphorylated by PTPRK, regulates AKT signaling and has a critical role in colon cancer progression.
Collapse
|
4
|
Contribution of large genomic rearrangements in Italian Lynch syndrome patients: characterization of a novel alu-mediated deletion. BIOMED RESEARCH INTERNATIONAL 2012; 2013:219897. [PMID: 23484096 PMCID: PMC3591251 DOI: 10.1155/2013/219897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022]
Abstract
Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR) genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency). This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.
Collapse
|
5
|
López-Nieva P, Vaquero C, Fernández-Navarro P, González-Sánchez L, Villa-Morales M, Santos J, Esteller M, Fernández-Piqueras J. EPHA7, a new target gene for 6q deletion in T-cell lymphoblastic lymphomas. Carcinogenesis 2012; 33:452-8. [PMID: 22114070 DOI: 10.1093/carcin/bgr271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cryptic deletions at chromosome 6q are common cytogenetic abnormalities in T-cell lymphoblastic leukemia/lymphoma (T-LBL), but the target genes have not been formally identified. Our results build on detection of specific chromosomal losses in a mouse model of γ-radiation-induced T-LBLs and provide interesting clues for new putative susceptibility genes in a region orthologous to human 6q15-6q16.3. Among these, Epha7 emerges as a bona fide candidate tumor suppressor gene because it is inactivated in practically all the T-LBLs analyzed (100% in mouse and 95.23% in human). We provide evidence showing that Epha7 downregulation may occur, at least in part, by loss of heterozygosity (19.35% in mouse and 12.5% in human) or promoter hypermethylation (51.61% in mouse and 43.75% in human) or a combination of both mechanisms (12.90% in mouse and 6.25% in human). These results indicate that EPHA7 might be considered a new tumor suppressor gene for 6q deletions in T-LBLs. Notably, this gene is located in 6q16.1 proximal to GRIK2 and CASP8AP2, other candidate genes identified in this region. Thus, del6q seems to be a complex region where inactivation of multiple genes may cooperatively contribute to the onset of T-cell lymphomas.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins/genetics
- Cell Line, Tumor
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- Chromosomes, Human, Pair 6/genetics
- DNA Methylation
- Down-Regulation
- Female
- Genes, Tumor Suppressor
- Humans
- Jurkat Cells
- Leukemia, T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Loss of Heterozygosity
- Lymphoma, T-Cell/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Promoter Regions, Genetic
- Receptor, EphA7/genetics
- Receptors, Kainic Acid/genetics
- Sequence Deletion
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Pilar López-Nieva
- Departmento Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
CLC and IFNAR1 are differentially expressed and a global immunity score is distinct between early- and late-onset colorectal cancer. Genes Immun 2011; 12:653-62. [PMID: 21716316 DOI: 10.1038/gene.2011.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) incidence increases with age, and early onset of the disease is an indication of genetic predisposition, estimated to cause up to 30% of all cases. To identify genes associated with early-onset CRC, we investigated gene expression levels within a series of young patients with CRCs who are not known to carry any hereditary syndromes (n=24; mean 43 years at diagnosis), and compared this with a series of CRCs from patients diagnosed at an older age (n=17; mean 79 years). Two individual genes were found to be differentially expressed between the two groups, with statistical significance; CLC was higher and IFNAR1 was less expressed in early-onset CRCs. Furthermore, genes located at chromosome band 19q13 were found to be enriched significantly among the genes with higher expression in the early-onset samples, including CLC. An elevated immune content within the early-onset group was observed from the differentially expressed genes. By application of outlier statistics, H3F3A was identified as a top candidate gene for a subset of the early-onset CRCs. In conclusion, CLC and IFNAR1 were identified to be overall differentially expressed between early- and late-onset CRC, and are important in the development of early-onset CRC.
Collapse
|
7
|
Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP. Mod Pathol 2011; 24:564-70. [PMID: 21297586 DOI: 10.1038/modpathol.2010.223] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.
Collapse
|
8
|
Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol Cancer 2010; 9:100. [PMID: 20459617 PMCID: PMC2885343 DOI: 10.1186/1476-4598-9-100] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 05/06/2010] [Indexed: 12/17/2022] Open
Abstract
Background Estimates suggest that up to 30% of colorectal cancers (CRC) may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV) (Roche NimbleGen, 385 000 oligo CGH array) in microsatellite stable (MSS) tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53) and 17 elderly patients with median age 79 years (range: 69-87). Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late onset CRC. Integration of genome and transcriptome data identifies seven novel candidate genes with the potential to identify an increased risk for CRC.
Collapse
|
9
|
A study on MSH2 and MLH1 mutations in hereditary nonpolyposis colorectal cancer families from the Basque Country, describing four new germline mutations. Fam Cancer 2010; 8:533-9. [PMID: 19760518 DOI: 10.1007/s10689-009-9283-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome underlies between 2 and 5% of all colorectal cancer. It is inherited as an autosomal dominant condition due to mutations in the mismatch repair genes. Fifty-four non-related index cases, 21 of them fulfilling Amsterdam criteria I or II, were studied. Ten (10/21 = 47.6%) different pathological mutations were found in this group, two of which had not previously been reported--one in MLH1 and the other in MSH2-. In the remaining patients, we also found another family with one of these new mutations, and four additional changes, two of which were also new--a pathological change in MSH2 and a second change of uncertain significance in MLH1-, while the other two changes had already been reported. Of all mutations, eight were found in MSH2 (8/15 = 53.3%) and seven in MLH1 (7/15 = 46.6%), suggesting a slightly greater involvement of MSH2 in HNPCC than MLH1 in our population, in contrast to the results reported by other authors.
Collapse
|