1
|
Lu CY, Tsai KF, Yen CJ, Hsieh CJ, Peng PJ, Huang SC, Chuang MR, Chu CJ. Circulating tumor DNA methylation markers for the early diagnosis of hepatocellular carcinoma. Clin Exp Med 2025; 25:83. [PMID: 40085315 PMCID: PMC11909076 DOI: 10.1007/s10238-025-01599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Hepatocellular carcinoma (HCC) is a major global health concern, being the sixth most common cancer and the third leading cause of cancer deaths worldwide. Less than 30% of HCC patients are eligible for curative treatment, primarily due to diagnosis at advanced stages. This emphasizes the importance of early detection in improving survival outcomes. In this study, we investigated the methylation levels of certain genes and miRNAs in liquid biopsy and developed a methyl predictive model (MPM-8G). The AUC for MPM-8G was found to be significantly higher than that for AFP (alpha-fetoprotein) alone. When MPM-8G and AFP were combined, the AUC increased notably, indicating that the combined use of MPM-8G and AFP offers superior diagnostic performance and enhances the accuracy of HCC detection. Furthermore, the combination of MPM-8G and AFP proved to be a powerful tool for early diagnosis of HCC. This study successfully identified differences in the methylation levels of certain genes and miRNAs in liquid biopsy from HCC patients, leading to the construction of a predictive model for early diagnosis. The impressive performance of these methylation markers underscores their potential for further clinical application in the management of HCC.
Collapse
Affiliation(s)
- Chang-Yi Lu
- Department of Clinical Technology Research, EpiSante Biomedical Co. Ltd., Taipei, Taiwan.
| | - Kun-Feng Tsai
- Department of Internal Medicine, Gastroenterology and Hepatology Section, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, Taiwan
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chueh-Jung Hsieh
- Department of Diagnostic Radiology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Pey-Jey Peng
- Department of Clinical Technology Research, EpiSante Biomedical Co. Ltd., Taipei, Taiwan
| | - Shao-Chang Huang
- Department of Clinical Technology Research, EpiSante Biomedical Co. Ltd., Taipei, Taiwan
| | - Meng-Rong Chuang
- Department of Clinical Technology Research, EpiSante Biomedical Co. Ltd., Taipei, Taiwan
| | - Chi-Jen Chu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Lu CY, Lin CP, Lee HL, Peng PJ, Huang SC, Chuang MR, Lin YJ. Epigenetic Perspectives and Their Prognostic Value in Early Recurrence After Hepatocellular Carcinoma Resection. Cancers (Basel) 2025; 17:769. [PMID: 40075616 PMCID: PMC11898875 DOI: 10.3390/cancers17050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES The post-hepatectomy survival of patients with hepatocellular carcinoma (HCC) faces challenges due to high recurrence rates, especially early recurrence (ER). We investigated DNA methylation in HCC and developed a methylation-based model for ER prediction (MER). METHODS We studied HCC patients with ER within a year post-hepatectomy, comparing them to those who remained recurrence-free (RF) for 5 years. In a testing set, we examined genome-wide methylation profiles to identify differences between ER and RF. Validation in an independent cohort confirmed candidate markers using real-time quantitative methylation-specific PCR (qMSP). We constructed MER by incorporating identified gene methylation, clinical information, and serum protein marker, and evaluated its predictive performance using ROC analysis and Cox regression. RESULTS Distinct signatures of hypermethylation and hypomethylation were observed between ER and RF, as well as between cirrhotic and non-cirrhotic groups. Significant aberrant methylation pathways, including FGFR signaling, the PI3K network, and the MAPK pathway, were observed in non-cirrhotic ER patients. Conversely, cirrhotic ER patients showed notable associations with Wnt/β-catenin signaling, cell adhesion, and migration mechanisms. Through qMSP analysis, we identified ER-associated genes, including BDNF, FOXL2, LMO7, NCAM1, NEIS3, PLA2G7, and LTB4R. MER demonstrated strong predictive ability for ER, with an AUC of 0.855, surpassing current indicators such as AFP, tumor size, and BCLC stage. Combining different predictors resulted in heightened AUC values. Importantly, the inclusion of MER yielded to the highest AUC of 0.952, underscoring the substantial contribution of MER to predictive accuracy. CONCLUSIONS This study discovered the involvement of aberrant DNA methylation in HCC with early recurrence. The MER outperforms clinicopathological predictors and achieves robust prediction capabilities in identifying patients at risk of ER.
Collapse
Affiliation(s)
- Chang-Yi Lu
- Department of Clinical Diagnostic Technology, EpiSante Biomedical Co., Ltd., Hsinchu 302, Taiwan; (C.-Y.L.)
| | - Ching-Pin Lin
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Pey-Jey Peng
- Department of Clinical Diagnostic Technology, EpiSante Biomedical Co., Ltd., Hsinchu 302, Taiwan; (C.-Y.L.)
| | - Shao-Chang Huang
- Department of Clinical Diagnostic Technology, EpiSante Biomedical Co., Ltd., Hsinchu 302, Taiwan; (C.-Y.L.)
| | - Meng-Rong Chuang
- Department of Clinical Diagnostic Technology, EpiSante Biomedical Co., Ltd., Hsinchu 302, Taiwan; (C.-Y.L.)
| | - Yih-Jyh Lin
- Division of General and Transplant Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Liver Cancer Collaborative Oncology Group, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
3
|
Ni T, Zhao RH, Wu JF, Li CY, Xue G, Lin X. KLK7, KLK10, and KLK11 in Papillary Thyroid Cancer: Bioinformatic Analysis and Experimental Validation. Biochem Genet 2024; 62:4446-4471. [PMID: 38316654 DOI: 10.1007/s10528-024-10679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
Despite many studies on papillary thyroid carcinoma (PTC) in the past few decades, some critical and significant genes remain undiscovered. To explore genes that may play crucial roles in PTC, a detailed analysis of the expression levels, mutations, and clinical significance of Kallikrein-related peptidases (KLKs) family genes in PTC was undertaken to provide new targets for the precise treatment of the disease. A comprehensive analysis of KLK family genes was performed using various online tools, such as GEPIA, Kaplan-Meier Plotter, LinkedOmics, GSCA, TIMER, and Cluego. KLK7, KLK10, and KLK11 were critical factors of KLK family genes. Then, functional assays were carried out on KLK7/10/11 to determine their proliferation, migration, and invasion capabilities in PTC. The mRNA expression levels of KLK7, KLK10, KLK11, and KLK13 were significantly elevated in thyroid carcinoma, while KLK1, KLK2, KLK3 and KLK4 mRNA levels were decreased compared to normal tissues. Correlations between KLK2/7-12/15 expression levels and tumor stage were also observed in thyroid carcinoma. Survival analysis demonstrated that KLK4/5/7/9-12/14 was associated with overall survival in patients with thyroid cancer. Not only were KLK genes strongly associated with cancer-related pathways, but also KLK7/10/11 was associated with immune-cell infiltration. Finally, silencing KLK7/10/11 impaired human papillary thyroid carcinoma cells' growth, migration ability, and invasiveness. The increased expression of KLK7, KLK10, and KLK11 may serve as molecular markers to identify PTC patients. KLK7, KLK10, and KLK11 could be potential prognostic indicators and targets for precision therapy against PTC.
Collapse
Affiliation(s)
- Tao Ni
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ru-Hua Zhao
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Chao-You Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xu Lin
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China.
| |
Collapse
|
4
|
Lu CY, Hsiao CY, Peng PJ, Huang SC, Chuang MR, Su HJ, Huang KW. DNA Methylation Biomarkers as Prediction Tools for Therapeutic Response and Prognosis in Intermediate-Stage Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4465. [PMID: 37760434 PMCID: PMC10527266 DOI: 10.3390/cancers15184465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Alfa-fetoprotein (AFP), as the main serum tumor marker of hepatocellular carcinoma (HCC), is limited in terms of specificity and ability to predict outcomes. This study investigated the clinical utility of DNA methylation biomarkers to predict therapeutic responses and prognosis in intermediate-stage HCC. METHODS This study enrolled 72 patients with intermediate-stage HCC who underwent locoregional therapy (LRT) between 2020 and 2021. The immediate therapeutic response and disease status during a two-year follow-up were recorded. Analysis was performed on 10 selected DNA methylation biomarkers via pyrosequencing analysis of plasma collected before and after LRT. RESULTS Analysis was performed on 53 patients with complete responses and 19 patients with disease progression after LRT. The mean follow-up duration was 2.4 ± 0.6 years. A methylation prediction model for tumor response (MMTR) and a methylation prediction model for early progression (MMEP) were constructed. The area under the curve (AUC) for sensitivity and specificity of MMTR was 0.79 for complete response and 0.759 for overall survival. The corresponding AUCs for sensitivity and specificity of AFP and protein induced by vitamin K absence-II (PIVKA-II) were 0.717 and 0.708, respectively. Note that the MMTR index was the only significant predictor in multivariate analysis. The AUC for sensitivity and specificity of the MMEP in predicting early progression was 0.79. The corresponding AUCs for sensitivity and specificity of AFP and PIVKA-II were 0.758 and 0.714, respectively. Multivariate analysis revealed that platelet count, beyond up-to-7 criteria, and the MMEP index were strongly correlated with early tumor progression. Combining the indexes and serum markers further improved the predictive accuracy (AUC = 0.922). Multivariate analysis revealed the MMEP index was the only independent risk factor for overall survival. DISCUSSION/CONCLUSIONS This study indicates that these methylation markers could potentially outperform current serum markers in terms of accuracy and reliability in assessing treatment response and predicting outcomes. Combining methylation markers and serum markers further improved predictive accuracy, indicating that a multi-marker approach may be more effective in clinical practice. These findings suggest that DNA methylation biomarkers may be a useful tool for managing intermediate-stage HCC patients and guiding personalized treatment, particularly for those who are at high risk for close surveillance or adjuvant treatment after LRT.
Collapse
Affiliation(s)
- Chang-Yi Lu
- Phalanx Biotech Group, Hsinchu 300, Taiwan; (C.-Y.L.); (S.-C.H.); (H.-J.S.)
| | - Chih-Yang Hsiao
- Department of Surgery and Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Traumatology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Pey-Jey Peng
- Phalanx Biotech Group, Hsinchu 300, Taiwan; (C.-Y.L.); (S.-C.H.); (H.-J.S.)
| | - Shao-Chang Huang
- Phalanx Biotech Group, Hsinchu 300, Taiwan; (C.-Y.L.); (S.-C.H.); (H.-J.S.)
| | - Meng-Rong Chuang
- Phalanx Biotech Group, Hsinchu 300, Taiwan; (C.-Y.L.); (S.-C.H.); (H.-J.S.)
| | - Hung-Ju Su
- Phalanx Biotech Group, Hsinchu 300, Taiwan; (C.-Y.L.); (S.-C.H.); (H.-J.S.)
| | - Kai-Wen Huang
- Department of Surgery and Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Center for Functional Image and Interventional Therapy, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
5
|
Melanotic Neuroectodermal Tumor of Infancy (MNTI) and Pineal Anlage Tumor (PAT) Harbor A Medulloblastoma Signature by DNA Methylation Profiling. Cancers (Basel) 2021; 13:cancers13040706. [PMID: 33572349 PMCID: PMC7916108 DOI: 10.3390/cancers13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Melanotic neuroectodermal tumor of infancy (MNTI) is a rare tumor of uncertain origin, morphologically overlapping other rare neoplasms such as pineal anlage tumor (PAT) and a subset of medulloblastomas (i.e., melanotic medulloblastoma). Despite the similarities with MNTI, their possible histogenetic relationship has been traditionally disregarded based on their aggressive behavior and dismal prognosis. The aim of this study was to further characterize the molecular features of MNTI and PAT based on DNA-methylation and copy number variation profiling analysis. We found that MNTI shares a methylation profile with group 3 high-risk medulloblastoma, and potentially with PAT, suggesting a common histogenesis. Most MNTIs in our series lacked copy number variation alterations, whereas their presence in the one PAT deserves further study in larger cohorts to better determine their impact in prognosis and biologic behavior. Abstract MNTI is a rare tumor of indeterminate histogenesis and molecular signature. We performed methylation and copy number variation (CNV) profiles in patients with MNTI (n = 7) and PAT (n = 1) compared to the methylation brain tumor classifier v11b4 (BT-C) and the medulloblastoma (MB) classifier group 3/4 v1.0 (MB3/4-C). The patients’ mean age was 8 months (range: 4–48). The BT-C classified five MNTIs and one PAT (relapse) as class family MB-G3/G4, subclass group 3 (score: >0.9). The remaining two MNTIs and PAT (primary) were classified as class family plexus tumor, subclass pediatric (scores: >0.45). The MB3/4-C classified all MNTIs as high-risk MB-G3, Subtype II (score: >0.45). The primary PAT was classified as subtype III (score: 0.99) and its relapse as subtype II/III. MNTI and PAT clustered close to MB-G3. CNV analysis showed multiple rearrangements in one PAT and two MNTIs. The median follow-up was 54 months (four MNTIs in remission, one PAT died). In conclusion, we demonstrated that MNTI shares a homogenous methylation profile with MB-G3, and possibly with PAT. The role of a multipotent progenitor cell (i.e., early cranial neural crest cell) in their histogenesis and the influence of the anatomical site, tumor microenvironment, and other cytogenetic events in their divergent biologic behavior deserve further investigation.
Collapse
|
6
|
Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Martínez MA. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev 2020; 40:1973-2018. [PMID: 32525219 DOI: 10.1002/med.21696] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
The cancer mortality rate of hepatocellular carcinoma (HCC) is the second highest in the world and the therapeutic options are limited. The incidence of this deadly cancer is rising at an alarming rate because of the high degree of resistance to chemo- and radiotherapy, lack of proper, and adequate vaccination to hepatitis B, and lack of consciousness and knowledge about the disease itself and the lifestyle of the people. DNA methylation and DNA methylation-induced epigenetic alterations, due to their potential reversibility, open the access to develop novel biomarkers and therapeutics for HCC. The contribution to these epigenetic changes in HCC development still has not been thoroughly summarized. Thus, it is necessary to better understand the new molecular targets of HCC epigenetics in HCC diagnosis, prevention, and treatment. This review elaborates on recent key findings regarding molecular biomarkers for HCC early diagnosis, prognosis, and treatment. Currently emerging epigenetic drugs for the treatment of HCC are summarized. In addition, combining epigenetic drugs with nonepigenetic drugs for HCC treatment is also mentioned. The molecular mechanisms of DNA methylation-mediated HCC resistance are reviewed, providing some insights into the difficulty of treating liver cancer and anticancer drug development.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
7
|
Lin CL, Ying TH, Yang SF, Wang SW, Cheng SP, Lee JJ, Hsieh YH. Transcriptional Suppression of miR-7 by MTA2 Induces Sp1-Mediated KLK10 Expression and Metastasis of Cervical Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:699-710. [PMID: 32402941 PMCID: PMC7218230 DOI: 10.1016/j.omtn.2020.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
MTA2 is involved in tumor proliferation and metastasis. However, the role of MTA2 in cervical cancer thus far has not been identified. In this study, we report that elevated expression of MTA2 negatively correlates with Kallikrein-10 (KLK10) expression and poor prognosis of cervical cancer patients. Knockdown of MTA2 substantially inhibited tumor cell migration and invasion, and it enhanced KLK10 expression of the cervical cancer cells in vitro and in vivo. Functionally, shMTA2-mediated suppression of cell mobility was significantly restored by knockdown of KLK10. We also found that Sp1 (transcription factor specificity protein 1) is critical for shMTA2-induced transcriptional upregulation of KLK10 and subsequent biological functions. Furthermore, we found that the expression of miR-7 is elevated by MTA2 silencing and then by direct inhibition of Sp1 expression. Knockdown of Sp1 additively enhanced KLK10 expression in MTA2-knocked down cervical cancer cells, suggesting that the miR-7/Sp1 axis acts as an effector of MTA2 to impact KLK10 levels and mobility of cervical cancer cells. Taken together, our findings provide new insights into the physiological relationship between MTA2 and KLK10 via regulating the miR-7/Sp1 axis, and they provide a potential therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Chia-Liang Lin
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
8
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Alfredo Martinez J. Association of Methylation Signatures at Hepatocellular Carcinoma Pathway Genes with Adiposity and Insulin Resistance Phenotypes. Nutr Cancer 2018; 71:840-851. [PMID: 30457363 DOI: 10.1080/01635581.2018.1531136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes mellitus are independent risk factors for the onset and progression of hepatocellular carcinoma (HCC). This study aimed to analyze the association of DNA methylation signatures at HCC pathway genes with obesity and related metabolic disturbances. A population of 474 adults within the Methyl Epigenome Network Association (MENA) project was included. DNA methylation levels were measured in white blood cells by microarray. The identification and discrimination of HCC pathway genes were performed using KEGG and PathDIP databases. Anthropometry measurements, the blood metabolic profile, and clinical data were analyzed. The methylation patterns of 20 CpG sites at HCC pathway genes strongly correlated with BMI (FDR <0.0001). These genes encompassed GADD45A, MTOR, FRAT2, E2F3, WNT7B, FRAT1, LRP5, DPF3, GSTA2, APC, MYC, WNT10B, ARID1B, AKT1, GSTA1, WNT5A, CDK4, GAB1, TCF7, which statistically contributed to the regulation of the HCC pathway (P = 2.10e-07). The main biological process where these genes were implicated included uncontrolled cell proliferation, DNA damage, increased survival, and altered oncogenic expression. Interestingly, 9 out of 20 BMI-associated CpGs also correlated with waist circumference and HOMA-IR index. In conclusion, pathway analysis revealed potential associations of DNA methylation signatures at HCC pathway genes with adiposity and insulin resistance phenotypes.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Jose I Riezu-Boj
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
| | - Fermin I Milagro
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- c CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute , Madrid , Spain
| | - J Alfredo Martinez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
- c CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute , Madrid , Spain
- d Madrid Institute of Advanced Studies (IMDEA Food) , Madrid , Spain
| |
Collapse
|
9
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
10
|
Shan L, Kim I. Joint estimation of multiple Gaussian graphical models across unbalanced classes. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Lu CY, Chen SY, Peng HL, Kan PY, Chang WC, Yen CJ. Cell-free methylation markers with diagnostic and prognostic potential in hepatocellular carcinoma. Oncotarget 2018; 8:6406-6418. [PMID: 28031532 PMCID: PMC5351641 DOI: 10.18632/oncotarget.14115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with poor prognosis and high mortality. There is a dearth of effective early diagnostic tools, so liver resection surgery and liver transplantation are the only effective medical treatments. The most commonly used marker for HCC detection is serum alpha fetoprotein (AFP), which has low sensitivity and specificity. Because aberrant DNA methylation of genes and miRNAs occurs early in most cancers, we explored whether circulating methylation markers could be promising clinical tools for HCC diagnosis. Using a whole-genome approach, we identified many hyper-methylated miRNAs in HCC. Furthermore, three abnormally methylated genes and one miRNA were combined to establish a methylation predictive model and tested for its diagnostic and prognostic potential in HCC. Using plasma samples, the predictive model exhibited high sensitivity and specificity (> 80%) for HBV-related HCC. Most importantly, nearly 75% of patients who could not be diagnosed with AFP at 20 ng/mL were detected by this model. Further, the predictive model exhibited an exceedingly high ability to predict 5-year overall survival in HCC patients. These data demonstrate the high diagnostic and prognostic potential of methylation markers in the plasma of HCC patients.
Collapse
Affiliation(s)
- Chang-Yi Lu
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Ya Chen
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hui-Ling Peng
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pu-Yeh Kan
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wan-Chi Chang
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Wijetunga NA, Pascual M, Tozour J, Delahaye F, Alani M, Adeyeye M, Wolkoff AW, Verma A, Greally JM. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. Oncogene 2017; 36:2030-2044. [PMID: 27721404 PMCID: PMC5383522 DOI: 10.1038/onc.2016.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These epigenetic events occur before neoplastic transformation, resulting in what may be a pharmacologically reversible epigenetic field defect in HCV-infected liver.
Collapse
Affiliation(s)
- N A Wijetunga
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - M Pascual
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Centro de Investigación Médica Aplicada (CIMA), IDISNA, Oncohematology Department, Pamplona, Spain
| | - J Tozour
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - F Delahaye
- Department of Obstetrics, Gynecology and Women's Health, Bronx, NY, USA
| | - M Alani
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - M Adeyeye
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - A W Wolkoff
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - A Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - J M Greally
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx NY 10461, USA. E-mail:
| |
Collapse
|
13
|
Cai X, Zhu C, Xu Y, Jing Y, Yuan Y, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Shu G. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways. Sci Rep 2016; 6:26802. [PMID: 27225984 PMCID: PMC4881026 DOI: 10.1038/srep26802] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Knockdown Techniques
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Hypertrophy/chemically induced
- Hypertrophy/metabolism
- Ketoglutaric Acids/pharmacology
- Ketoglutaric Acids/toxicity
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/physiology
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/genetics
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/physiology
Collapse
Affiliation(s)
- Xingcai Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Canjun Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yaqiong Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuanyuan Jing
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yexian Yuan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Songbo Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaotong Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ping Gao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongliang Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
14
|
Niller HH, Ay E, Banati F, Demcsák A, Takacs M, Minarovits J. Wild type HBx and truncated HBx: Pleiotropic regulators driving sequential genetic and epigenetic steps of hepatocarcinogenesis and progression of HBV-associated neoplasms. Rev Med Virol 2015; 26:57-73. [PMID: 26593760 DOI: 10.1002/rmv.1864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) is one of the causative agents of hepatocellular carcinoma. The molecular mechanisms of tumorigenesis are complex. One of the host factors involved is apparently the long-lasting inflammatory reaction which accompanies chronic HBV infection. Although HBV lacks a typical viral oncogene, the HBx gene encoding a pleiotropic regulatory protein emerged as a major player in liver carcinogenesis. Here we review the tumorigenic functions of HBx with an emphasis on wild type and truncated HBx variants, and their role in the transcriptional dysregulation and epigenetic reprogramming of the host cell genome. We suggest that HBx acquired by the HBV genome during evolution acts like a cellular proto-onc gene that is activated by deletion during hepatocarcinogenesis. The resulting viral oncogene (v-onc gene) codes for a truncated HBx protein that facilitates tumor progression. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Eva Ay
- Department of Retrovirology, National Center for Epidemiology, Budapest, Hungary
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, Mosonmagyarovar, Hungary
| | - Anett Demcsák
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - Maria Takacs
- Division of Virology, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| |
Collapse
|
15
|
DNA methylation level of OPCML and SFRP1: a potential diagnostic biomarker of cholangiocarcinoma. Tumour Biol 2015; 36:4973-8. [PMID: 25652468 DOI: 10.1007/s13277-015-3147-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/26/2015] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium which is caused by liver fluke infection. The clinical symptoms of CCA were revealed as the disease progresses to advanced stage. Thus, specific diagnostic biomarkers are important for this fatal disease. We applied methylation-sensitive high-resolution melting (MS-HRM) to quantify DNA methylation levels of opioid binding protein/cell adhesion molecule-like gene (OPCML) and Secreted frizzled-related protein 1 (SFRP1) in 73 primary CCA and 10 adjacent normal tissues and evaluated the sensitivity, specificity, and accuracy of the assay. The median methylation level of OPCML in CCA was 38.7 % (ranged from 0 to 82.2 %) and of SFRP1 was 31.5 % (ranged from 0 to 86.2 %). Methylation cutoff values of OPCML and SFRP1 derived from adjacent normal tissue were 6.90 and 10.44 %, respectively. With these cutoff values, the area under curve (AUC) of OPCML was 0.932 (95 % CI 0.878-0.986) and of SFRP1 was 0.951 (95 % CI 0.905-0.996). The sensitivity, specificity, and accuracy of OPCML were 89.04, 100, and 90.36 %, respectively, and of SFRP1 were 83.56, 100, and 85.54 %, respectively. In conclusion, the DNA methylation levels of OPCML and SFRP1 could be potential biomarkers for diagnosis of CCA with high specificity, sensitivity, and accuracy, in particular for biopsy specimens. Further validation in noninvasive samples such as serum or plasma is warranted for clinical applicability, especially as early diagnostic biomarkers.
Collapse
|
16
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|
17
|
DNA methylation: potential biomarker in Hepatocellular Carcinoma. Biomark Res 2014; 2:5. [PMID: 24635883 PMCID: PMC4022334 DOI: 10.1186/2050-7771-2-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/07/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common cancers in the world and it is often associated with poor prognosis. Liver transplantation and resection are two currently available curative therapies. However, most patients cannot be treated with such therapies due to late diagnosis. This underscores the urgent need to identify potential markers that ensure early diagnosis of HCC. As more evidences are suggesting that epigenetic changes contribute hepatocarcinogenesis, DNA methylation was poised as one promising biomarker. Indeed, genome wide profiling reveals that aberrant methylation is frequent event in HCC. Many studies showed that differentially methylated genes and CpG island methylator phenotype (CIMP) status in HCC were associated with clinicopathological data. Some commonly studied hypermethylated genes include p16, SOCS1, GSTP1 and CDH1. In addition, studies have also revealed that methylation markers could be detected in patient blood samples and associated with poor prognosis of the disease. Undeniably, increasing number of methylation markers are being discovered through high throughput genome wide data in recent years. Proper and systematic validation of these candidate markers in prospective cohort is required so that their actual prognostication and surveillance value could be accurately determined. It is hope that in near future, methylation marker could be translate into clinical use, where patients at risk could be diagnosed early and that the progression of disease could be more correctly assessed.
Collapse
|
18
|
Zhu XL, Liu WZ, Rao XF, Yuan S. Clinical significance of KLK10 and HER-2/neu expression in colon cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:4050-4055. [DOI: 10.11569/wcjd.v21.i35.4050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance of kallikreins10 (KLK10) and human epidermal growth factor receptor 2 (HER-2/neu) in colon cancer and analyze the correlation of KLK10 and HER-2 expression with clinical and pathological parameters of colon cancer.
METHODS: Sixty-seven colon cancer specimens, 10 colorectal adenoma specimens and 10 normal colon tissue specimens were used in the study. Immunohistochemistry was used to detect KLK10 and HER-2/neu expression in these specimens. The correlation of KLK10 and HER-2/neu expression with clinical and pathological parameters of colon cancer was analyzed.
RESULTS: KLK10 and HER-2/neu expression levels were significantly higher in colon cancer than in colorectal adenoma specimens and normal colon tissue specimens (all P < 0.05). KLK10 expression in colon cancer was correlated positively with TNM stage, degree of differentiation, lymph node metastasis (all P < 0.05), but not with age, sex, tumor size, pathological type, or distant metastasis (all P > 0.05). HER-2/neu expression in colon cancer was correlated positively with TNM stage and lymph node metastasis (P < 0.05), but not with age, sex, tumor size, pathological type, distant metastasis or differentiation degree (all P > 0.05). KLK10 expression was correlated positively with HER-2/neu expression in colon cancer (r = 0.260, P < 0.05).
CONCLUSION: KLK10 and HER-2/neu may play a critical role in the development, progression, metastasis and angiogenesis of colon cancer. KLK10 and HER-2/neu expression can be used as important prognostic factors for colon cancer.
Collapse
|
19
|
Wang F, Zhang S, Wen Y, Wei Y, Yan H, Liu H, Su J, Zhang Y, Che J. Revealing the architecture of genetic and epigenetic regulation: a maximum likelihood model. Brief Bioinform 2013; 15:1028-43. [DOI: 10.1093/bib/bbt076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
20
|
Sun YV, Lazarus A, Smith JA, Chuang YH, Zhao W, Turner ST, Kardia SLR. Gene-specific DNA methylation association with serum levels of C-reactive protein in African Americans. PLoS One 2013; 8:e73480. [PMID: 23977389 PMCID: PMC3747126 DOI: 10.1371/journal.pone.0073480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/22/2013] [Indexed: 01/10/2023] Open
Abstract
A more thorough understanding of the differences in DNA methylation (DNAm) profiles in populations may hold promise for identifying molecular mechanisms through which genetic and environmental factors jointly contribute to human diseases. Inflammation is a key molecular mechanism underlying several chronic diseases including cardiovascular disease, and it affects DNAm profile on both global and locus-specific levels. To understand the impact of inflammation on the DNAm of the human genome, we investigated DNAm profiles of peripheral blood leukocytes from 966 African American participants in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. By testing the association of DNAm sites on CpG islands of over 14,000 genes with C-reactive protein (CRP), an inflammatory biomarker of cardiovascular disease, we identified 257 DNAm sites in 240 genes significantly associated with serum levels of CRP adjusted for age, sex, body mass index and smoking status, and corrected for multiple testing. Of the significantly associated DNAm sites, 80.5% were hypomethylated with higher CRP levels. The most significant Gene Ontology terms enriched in the genes associated with the CRP levels were immune system process, immune response, defense response, response to stimulus, and response to stress, which are all linked to the functions of leukocytes. While the CRP-associated DNAm may be cell-type specific, understanding the DNAm association with CRP in peripheral blood leukocytes of multi-ethnic populations can assist in unveiling the molecular mechanism of how the process of inflammation affects the risks of developing common disease through epigenetic modifications.
Collapse
Affiliation(s)
- Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
21
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kontos CK, Mavridis K, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: mechanistic and clinical aspects. Thromb Haemost 2013; 110:450-7. [PMID: 23446315 DOI: 10.1160/th12-11-0791] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/31/2013] [Indexed: 01/20/2023]
Abstract
The human tissue kallikrein (KLK1) and kallikrein-related peptidases (KLKs) are secreted serine proteases with diverse expression patterns and physiological roles in different systems, including the digestive system. The aberrant expression of KLKs in gastrointestinal malignancies as well as their implication in carcinogenesis including cell growth regulation, angiogenesis, invasion, and metastasis, has prompted scientists to investigate their potential as cancer biomarkers. Expression of distinct KLKs is associated with various clinic-pathological parameters of patients with gastric, colorectal, pancreatic, hepatic, and esophageal cancer. Moreover, several KLKs possess significant favourable or unfavourable prognostic value in these human malignancies. Identification of novel diagnostic, prognostic and predictive biomarkers will contribute utmost to clinical decision-making, since early diagnosis of gastrointestinal cancer and early detection of recurrence following surgery are critical for the effective treatment of patients and for a positive clinical outcome. The current review provides a brief overview of the functional role of KLKs in gastric, colorectal, pancreatic, hepatic, and esophageal cancer, and describes the current status of KLKs as potential tumour biomarkers in these human malignancies.
Collapse
Affiliation(s)
- C K Kontos
- Assoc. Professor Andreas Scorilas, Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece, Tel.: +30 210 727 4306, Fax: +30 210 727 4158, E-mail:
| | | | | | | |
Collapse
|
23
|
Neumann O, Kesselmeier M, Geffers R, Pellegrino R, Radlwimmer B, Hoffmann K, Ehemann V, Schemmer P, Schirmacher P, Lorenzo Bermejo J, Longerich T. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 2012; 56:1817-1827. [PMID: 22689435 DOI: 10.1002/hep.25870] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED To identify new tumor-suppressor gene candidates relevant for human hepatocarcinogenesis, we performed genome-wide methylation profiling and vertical integration with array-based comparative genomic hybridization (aCGH), as well as expression data from a cohort of well-characterized human hepatocellular carcinomas (HCCs). Bisulfite-converted DNAs from 63 HCCs and 10 healthy control livers were analyzed for the methylation status of more than 14,000 genes. After defining the differentially methylated genes in HCCs, we integrated their DNA copy-number alterations as determined by aCGH data and correlated them with gene expression to identify genes potentially silenced by promoter hypermethylation. Aberrant methylation of candidates was further confirmed by pyrosequencing, and methylation dependency of silencing was determined by 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Methylation profiling revealed 2,226 CpG sites that showed methylation differences between healthy control livers and HCCs. Of these, 537 CpG sites were hypermethylated in the tumor DNA, whereas 1,689 sites showed promoter hypomethylation. The hypermethylated set was enriched for genes known to be inactivated by the polycomb repressive complex 2, whereas the group of hypomethylated genes was enriched for imprinted genes. We identified three genes matching all of our selection criteria for a tumor-suppressor gene (period homolog 3 [PER3], insulin-like growth-factor-binding protein, acid labile subunit [IGFALS], and protein Z). PER3 was down-regulated in human HCCs, compared to peritumorous and healthy liver tissues. 5-aza-dC treatment restored PER3 expression in HCC cell lines, indicating that promoter hypermethylation was indeed responsible for gene silencing. Additionally, functional analysis supported a tumor-suppressive function for PER3 and IGFALS in vitro. CONCLUSION The present study illustrates that vertical integration of methylation data with high-resolution genomic and transcriptomic data facilitates the identification of new tumor-suppressor gene candidates in human HCC.
Collapse
Affiliation(s)
- Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Olkhov-Mitsel E, Van der Kwast T, Kron KJ, Ozcelik H, Briollais L, Massey C, Recker F, Kwiatkowski M, Fleshner NE, Diamandis EP, Zlotta AR, Bapat B. Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics 2012; 7:1037-45. [PMID: 22874102 DOI: 10.4161/epi.21524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA methylation plays an important role in carcinogenesis and is being recognized as a promising diagnostic and prognostic biomarker for a variety of malignancies including Prostate cancer (PCa). The human kallikrein-related peptidases (KLKs) have emerged as an important family of cancer biomarkers, with KLK3, encoding for Prostate Specific Antigen, being most recognized. However, few studies have examined the epigenetic regulation of KLKs and its implications to PCa. To assess the biological effect of DNA methylation on KLK6 and KLK10 expression, we treated PC3 and 22RV1 PCa cells with a demethylating drug, 5-aza-2'deoxycytidine, and observed increased expression of both KLKs, establishing that DNA methylation plays a role in regulating gene expression. Subsequently, we have quantified KLK6 and KLK10 DNA methylation levels in two independent cohorts of PCa patients operated by radical prostatectomy between 2007-2011 (Cohort I, n = 150) and 1998-2001 (Cohort II, n = 124). In Cohort I, DNA methylation levels of both KLKs were significantly higher in cancerous tissue vs. normal. Further, we evaluated the relationship between DNA methylation and clinicopathological parameters. KLK6 DNA methylation was significantly associated with pathological stage only in Cohort I while KLK10 DNA methylation was significantly associated with pathological stage in both cohorts. In Cohort II, low KLK10 DNA methylation was associated with biochemical recurrence in univariate and multivariate analyses. A similar trend for KLK6 DNA methylation was observed. The results suggest that KLK6 and KLK10 DNA methylation distinguishes organ confined from locally invasive PCa and may have prognostic value.
Collapse
|
25
|
Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011; 50:211-33. [PMID: 22047144 DOI: 10.1515/cclm.2011.750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
The human kallikrein-related peptidase 6 (KLK6) gene belongs to the 15-member kallikrein (KLK) gene family mapping to chromosome 19q13.3-13.4. Encoding for an enzyme with trypsin-like properties, KLK6 can degrade components of the extracellular matrix. The successful utilisation of another KLK member (KLK3/PSA) for prostate cancer diagnosis has led many to evaluate KLK6 as a potential biomarker for other cancer and diseased states. The observed dysregulated expression in cancers, neurodegenerative diseases and skin conditions has led to the discovery that KLK6 participates in other cellular pathways including inflammation, receptor activation and regulation of apoptosis. Moreover, the improvements in high-throughput genomics have not only enabled the identification of sequence polymorphisms, but of transcript variants, whose functional significances have yet to be realised. This comprehensive review will summarise the current findings of KLK6 pathophysiology and discuss its potential as a viable biomarker.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
26
|
Yang JD, Seol SY, Leem SH, Kim YH, Sun Z, Lee JS, Thorgeirsson SS, Chu IS, Roberts LR, Kang KJ. Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling. J Korean Med Sci 2011; 26:1428-1438. [PMID: 22065898 PMCID: PMC3207045 DOI: 10.3346/jkms.2011.26.11.1428] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
Gene expression is suppressed by DNA methylation. The goal of this study was to identify genes whose CpG site methylation and mRNA expression are associated with recurrence after surgical resection for hepatocellular carcinoma (HCC). Sixty-two HCCs were examined by both whole genome DNA methylation and transcriptome analysis. The Cox model was used to select genes associated with recurrence. A validation was performed in an independent cohort of 66 HCC patients. Among fifty-nine common genes, increased CpG site methylation and decreased mRNA expression were associated with recurrence for 12 genes (Group A), whereas decreased CpG site methylation and increased mRNA expression were associated with recurrence for 25 genes (Group B). The remaining 22 genes were defined as Group C. Complement factor H (CFH) and myosin VIIA and Rab interacting protein (MYRIP) in Group A; proline/serine-rich coiled-coil 1 (PSRC1), meiotic recombination 11 homolog A (MRE11A), and myosin IE (MYO1E) in Group B; and autophagy-related protein LC3 A (MAP1LC3A), and NADH dehydrogenase 1 alpha subcomplex assembly factor 1 (NDUFAF1) in Group C were validated. In conclusion, potential tumor suppressor (CFH, MYRIP) and oncogenes (PSRC1, MRE11A, MYO1E) in HCC are reported. The regulation of individual genes by methylation in hepatocarcinogenesis needs to be validated.
Collapse
Affiliation(s)
- Ju Dong Yang
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - So-Young Seol
- Department of Biological Sciences, Dong-A University, Busan, Korea
| | - Sun-Hee Leem
- Department of Biological Sciences, Dong-A University, Busan, Korea
| | - Yong Hoon Kim
- Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | - In-Sun Chu
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Lewis R. Roberts
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Koo Jeong Kang
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
27
|
Laffaire J, Everhard S, Idbaih A, Crinière E, Marie Y, de Reyniès A, Schiappa R, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre JY, Thillet J, Ducray F. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro Oncol 2010; 13:84-98. [PMID: 20926426 DOI: 10.1093/neuonc/noq110] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.
Collapse
Affiliation(s)
- Julien Laffaire
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moëlle épinière (CRICM) UMR-S975, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Song H, Miao Y, Wang R, Chen L. Frequent transcriptional inactivation of Kallikrein 10 gene by CpG island hypermethylation in non-small cell lung cancer. Cancer Sci 2010; 101:934-40. [PMID: 20180809 PMCID: PMC11158746 DOI: 10.1111/j.1349-7006.2009.01486.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of Kallikrein 10 gene (KLK10) in non-small cell lung cancer (NSCLC) remains largely unknown. We determined the frequency and functional significance of KLK10 hypermethylation in NSCLC. The mRNA expression and methylation status of KLK10 in 78 pairs NSCLC specimens was explored. The biological effects of KLK10 were analyzed by transfection. The results showed that, KLK10 was significantly downregulated in NSCLC (57.7%, 45/78) as compared to non-cancer samples (P = 0.010). CpG island hypermethylation of KLK10 was detected in 46.2% (36/78) NSCLC tissues and was closely correlated with loss of transcript (P < 0.001). KLK10 methylation was associated with advanced stage (P = 0.013) and lymph metastasis (P = 0.015). Furthermore, demethylation treatment restored the expression of KLK10 in two lung adencarcinoma cell lines (A549, SPC-A1). Forced expression of KLK10 in A549 and SPC-A1 remarkably suppressed cells proliferation, migration in vitro and oncogenicity in vivo. Additionally, methylated KLK10 was detected in 38.7% (30/78) of plasma samples from cancer patients but rare in cancer-free controls (P < 0.001). In conclusion, KLK10 acts as a functional tumor suppressor gene in NSCLC, epigenetic inactivation of KLK10 is a common event contributing to NSCLC pathogenesis and may be used as a potential biomarker.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | | | | | | |
Collapse
|