1
|
Chi Y, Qin Z, Bai J, Yan J, Xu Z, Yang S, Li B. Update on the nature of central giant cell granuloma of the jaw with a focus on the aggressive subtype. Pathology 2025; 57:461-469. [PMID: 39952878 DOI: 10.1016/j.pathol.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 02/17/2025]
Abstract
Central giant cell granuloma (CGCG) is a benign, localised osteolytic lesion of the jaw that is categorised into non-aggressive and aggressive subtypes. In contrast to non-aggressive CGCG, aggressive CGCG is characterised by pain, paraesthesia, root resorption, rapid growth, a size of >5 cm, cortical perforation, or recurrence after surgical treatment. However, the nature of CGCG, especially aggressive CGCG, remains unclear. This study was performed to analyse the systematic and comprehensive characteristics of CGCG of the jaw, especially the aggressive subtype, and first explored the genetic variation of aggressive CGCG by whole-exome sequencing. In total, 42 CGCGs were analysed (including 25 non-aggressive and 17 aggressive subtypes). H3F3A mutations were not detected in these CGCGs through immunohistochemistry and Sanger sequencing. The inability to detect H3F3A mutations could help differentiate CGCG from giant cell tumour of bone, indicating the two diseases are not different stages of the same pathological entity. Additionally, fluorescence in situ hybridisation did not reveal USP6 gene rearrangement in CGCG, which could distinguish it from aneurysmal bone cysts, especially the solid type. Therefore, H3F3A mutation and USP6 gene rearrangement detection have great significance in the clinicopathological diagnosis of CGCG of the jaw in terms of their ability to exclude giant cell tumour of bone and aneurysmal bone cyst. Moreover, the whole-exome sequencing data indicated that LRP1B gene abnormalities might be related to the aggressive biological behaviour of CGCG, and that NOTCH4 mutation could be a novel therapeutic target for aggressive CGCG.
Collapse
Affiliation(s)
- Yanting Chi
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034, Beijing, P. R. China
| | - Zhiming Qin
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034, Beijing, P. R. China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034, Beijing, P. R. China
| | - Jing Yan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034, Beijing, P. R. China
| | - Zhixiu Xu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034, Beijing, P. R. China
| | - Shaomin Yang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, P. R. China.
| | - Binbin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034, Beijing, P. R. China.
| |
Collapse
|
2
|
Liu H, Hu X, Zhang X, Yao Y, Wu L, Tian Y, Dai H, Chen K, Liu B. Unveiling fatty acid subtypes: immunometabolic interplay and therapeutic opportunities in gastric cancer. Front Oncol 2025; 15:1570873. [PMID: 40492126 PMCID: PMC12146350 DOI: 10.3389/fonc.2025.1570873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/28/2025] [Indexed: 06/11/2025] Open
Abstract
Background The goal of this study was to develop a predictive signature using genes associated with fatty acid metabolism to evaluate the prognosis of individuals with gastric cancer (GC). Method A total of 24 prognostic-related genes were identified by intersecting differentially expressed genes with 525 fatty acid metabolism (FAM) -related genes and applying a univariate Cox proportional hazards model. By performing consensus clustering of 24 genes associated with FAM, two distinct clusters of GC patients were identified. Subsequently, a risk model was constructed using 39 differentially expressed mRNAs from the two clusters through a random forest model and univariate Cox regression. Results An R package, "GCFAMS", was developed to assess GC patients' prognosis based on FAM gene expression. The low-risk group exhibited a more favorable prognosis compared to the high-risk group across various datasets (P < 0.05). The model demonstrated strong predictive performance, with AUC values of 0.86, 0.623, and 0.508 for 5-year survival prediction in the training and two validation datasets. The high-risk group displayed lower IC50 values for embelin and imatinib, suggesting the potential efficacy of these drugs in this subgroup. Conversely, the low-risk group demonstrated an elevated response to immune checkpoints blockade therapy and a higher immunophenoscore, which was further validated in additional cancer cohorts. Public data from single-cell RNA sequencing confirmed that the characterized genes were predominantly expressed in endothelial cells and fibroblasts. Furthermore, the integration of transcriptomics and metabolomics revealed notable variations in fatty acid levels between the clusters, underscoring the clinical relevance of our fatty acid metabolism signature in shaping the metabolic profiles of GC patients. Conclusion This developed FAM signature demonstrated potential as a biomarker for guiding treatment and predicting prognosis in GC.
Collapse
Affiliation(s)
- Huahuan Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangnan Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Liuxing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Zheng Y, Yang F, Wu J. LRP1B mutation is associated with lymph node metastasis in endometrial carcinoma: A clinical next-generation sequencing study. Int J Biol Markers 2025; 40:3-11. [PMID: 39686583 DOI: 10.1177/03936155241304433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BackgroundThis study aims to investigate the mutation status and protein expression of low-density lipoprotein receptor-related protein 1B (LRP1B) in endometrial cancer, and analyze its association with lymph node metastasis (LNM) in endometrial cancer.MethodsTargeted next-generation sequencing (NGS) was conducted on both tumor tissues and paired blood DNA obtained from 94 endometrial cancer patients, followed by comprehensive analysis. Additionally, immunohistochemistry (IHC) was used to explore the correlation between LRP1B protein expression levels, its gene mutation status, and LNM.ResultsLRP1B mutation was observed in 19 patients (20.2%). Our results revealed that LRP1B mutation frequencies were significantly different between endometrial cancer with or without LNM (P = 0.038). Multivariate analysis indicated that LRP1B mutation was a favorable predictor (odds ratio 0.09; 95% confidence interval 0.01-0.95; P = 0.045) for LNM in endometrial cancer. Further analysis revealed that combination of LRP1B mutation with clinical variants (LVSI and histological subtype) yielded a higher area under the curve value of 0.871) and patients harboring LRP1B mutated-type were less likely to develop LNM. On integrated analysis, the concordance between LRP1B NGS and LRP1B IHC was 73.3%.ConclusionsThis study utilizes targeted NGS to uncover the relationship between LRP1B mutation and LNM status, contributing to the development of primary prevention and proactive treatment strategies.
Collapse
Affiliation(s)
- Yunfeng Zheng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Wu
- Department of Gynecology, People's Hospital of Fengjie, Chongqing, China
| |
Collapse
|
4
|
Eklund EA, Svensson J, Näslund LS, Yhr M, Sayin SI, Wiel C, Akyürek LM, Torstensson P, Sayin VI, Hallqvist A, Raghavan S, Rohlin A. Comprehensive genetic variant analysis reveals combination of KRAS and LRP1B as a predictive biomarker of response to immunotherapy in patients with non-small cell lung cancer. J Exp Clin Cancer Res 2025; 44:75. [PMID: 40011914 PMCID: PMC11866712 DOI: 10.1186/s13046-025-03342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND In non-small cell lung cancer (NSCLC), the rapid advancement of predictive genetic testing of tumors by identifying specific pathogenic driver variants has significantly improved treatment guidance. However, immune checkpoint blockade (ICB) is typically administered to patients with tumors in the absence of such driver variants. Since only about 30% of patients will respond to ICB treatment, identifying novel genetic biomarkers of clinical response is crucial and will improve treatment decisions. This prospective clinical study aims to combine molecular biology, advanced bioinformatics and clinical data on response to treatment with ICB from a prospective cohort of NSCLC patients to identify single or combination of genetic variants in the tumor that can serve as predictive biomarkers of clinical response. METHODS In this prospective bi-center clinical study, we performed next-generation sequencing (NGS) of 597 cancer-associated genes in a prospective cohort of 49 patients as the final cohort analyzed, with stage III or IV NSCLC, followed by establishment of an in-house developed bioinformatics-based molecular classification method that integrates, interprets and evaluates data from multiple databases and variant prediction tools. Overall survival (OS) and progression-free survival (PFS) were analyzed for selected candidate genes and variants identified using our novel methodology including molecular tools, databases and clinical information. RESULTS Our novel molecular interpretation and classification method identified high impact variants in frequently altered genes KRAS, LRP1B, and TP53. Analysis of these genes as single predictive biomarkers in ICB-treated patients revealed that the presence of likely pathogenic variants and variants of unclear significance in LRP1B was associated with improved OS (p = 0.041). Importantly, further analysis of variant combinations in the tumor showed that co-occurrence of KRAS and LRP1B variants significantly improved OS (p = 0.003) and merged PFS (p = 0.008). Notably, the triple combination of variants in KRAS, LRP1B, and TP53 positively impacted both OS (p = 0.026) and merged PFS (p = 0.003). CONCLUSIONS This study suggests that combination of the LRP1B and KRAS variants identified through our novel molecular classification scheme leads to better outcomes following ICB treatment in NSCLC. The addition of TP53 improves the outcome even further. To our knowledge, this is the first report indicating that harboring a combination of KRAS, LRP1B, and TP53 variants can significantly enhance the response to ICB, suggesting a novel predictive biomarker combination for NSCLC patients.
Collapse
Affiliation(s)
- Ella A Eklund
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Stauber Näslund
- Department of Clinical Pathology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Yhr
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sama I Sayin
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Levent M Akyürek
- Department of Clinical Pathology, Institute for Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Torstensson
- Department of Pulmonary Medicine, Skaraborg Hospital, Skövde, Sweden
| | - Volkan I Sayin
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Hallqvist
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Sahlgrenska Center for Cancer Research, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Ke Z, Chen Y, Yu T, Zhang Q, Xiang Y, Lu K. LRP1B Suppresses Immunotherapy Efficacy in Lung Adenocarcinoma by Preventing Ferroptosis. Cancer Med 2024; 13:e70486. [PMID: 39660409 PMCID: PMC11632276 DOI: 10.1002/cam4.70486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Immune biomarkers for non-small-cell lung cancer (NSCLC) are programmed death ligand 1 (PD-L1) and tumor mutational burden (TMB). However, they cannot accurately predict the effectiveness of immunotherapy. Identifying appropriate biomarkers that can differentiate between beneficiary groups is imperative. METHODS We identified lipoprotein receptor-related protein 1B (LRP1B) mutation as a potential biomarker for immunotherapy by analyzing clinical data, combined with bioinformatics analysis. The effects of LRP1B on ferroptosis were assessed using qRT-PCR, Western blotting, CCK-8 assay, and flow cytometry. The potential mechanism underlying the regulation of ferroptosis by LRP1B was elucidated using qRT-PCR, Western blotting, ChIP, and dual-luciferase reporter gene assays. RESULTS Through the collection and analysis of clinical data, we had established that LRP1B mutations are closely associated with immunotherapy. Bioinformatics analysis revealed significant differences in the expression levels of PD-L1 and TMB between patients with LRP1B mutation and wild-type patients in lung adenocarcinoma (LUAD). Furthermore, we observed that patients with LRP1B mutation in LUAD had significantly higher levels of tumor-infiltrating lymphocytes (TILs) than wild-type patients. In addition, we found that patients with LRP1B mutation in LUAD had significantly prolonged progression-free survival (PFS) compared to wild-type patients. However, the differences of PD-L1 expression, TILs, and PFS were not observed in patients with LRP1B mutation in lung squamous cell carcinoma (LUSC). These findings provided strong evidence that LRP1B mutation was a potential biomarker for immunotherapy in LUAD. Moreover, our in vivo experiments indicated that knockdown of LRP1B enhanced the efficacy of mPD-1, and mechanistic studies revealed that LRP1B regulated the sensitivity of cells to ferroptosis by modulating the expression of SLC7A11 through altering the phosphorylation level of STAT3. Further analysis revealed that LRP1B knockdown promoted immunotherapy in vivo. CONCLUSIONS Our results confirmed that LRP1B affected the efficacy of immunotherapy by modulating the sensitivity of NSCLC cells to ferroptosis. LRP1B mutations represent a highly promising immunotherapeutic biomarker for NSCLC.
Collapse
Affiliation(s)
- Zi‐Hao Ke
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Ying Chen
- Medical Research CenterThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Tao Yu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Qi Zhang
- Department of OncologyThe Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhouJiangsuChina
| | - Yan Xiang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Kai‐Hua Lu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Chen LC, Lo YS, Ho HY, Lin CC, Chuang YC, Chang WC, Hsieh MJ. LDL Receptor-Related Protein 1B Polymorphisms Associated with Increased Risk of Lymph Node Metastasis in Oral Cancer Group with Diabetes Mellitus. Int J Mol Sci 2024; 25:3963. [PMID: 38612772 PMCID: PMC11012249 DOI: 10.3390/ijms25073963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Oral cancer ranks fourth among malignancies among Taiwanese men and is the eighth most common cancer among men worldwide in terms of general diagnosis. The purpose of the current study was to investigate how low-density lipoprotein receptor-related protein 1B (LDL receptor related protein 1B; LRP1B) gene polymorphisms affect oral squamous cell carcinoma (OSCC) risk and progression in individuals with diabetes mellitus (DM). Three LRP1B single-nucleotide polymorphisms (SNPs), including rs10496915, rs431809, and rs6742944, were evaluated in 311 OSCC cases and 300 controls. Between the case and control groups, we found no evidence of a significant correlation between the risk of OSCC and any of the three specific SNPs. Nevertheless, in evaluating the clinicopathological criteria, individuals with DM who possess a minimum of one minor allele of rs10496915 (AC + CC; p = 0.046) were significantly associated with tumor size compared with those with homozygous major alleles (AA). Similarly, compared to genotypes homologous for the main allele (GG), rs6742944 genotypes (GA + AA; p = 0.010) were more likely to develop lymph node metastases. The tongue and the rs6742944 genotypes (GA + AA) exhibited higher rates of advanced clinical stages (p = 0.024) and lymph node metastases (p = 0.007) when compared to homozygous alleles (GG). LRP1B genetic polymorphisms appear to be prognostic and diagnostic markers for OSCC and DM, as well as contributing to genetic profiling research for personalized medicine.
Collapse
Affiliation(s)
- Liang-Cheng Chen
- Division of Oral & Maxillofacial Surgery, Dental Department, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Wei-Chen Chang
- Division of Oral & Maxillofacial Surgery, Dental Department, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
7
|
Wang R, Zhang G, Zhu X, Xu Y, Cao N, Li Z, Han C, Qin M, Shen Y, Dong J, Ma F, Zhao A. Prognostic Implications of LRP1B and Its Relationship with the Tumor-Infiltrating Immune Cells in Gastric Cancer. Cancers (Basel) 2023; 15:5759. [PMID: 38136305 PMCID: PMC10741692 DOI: 10.3390/cancers15245759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies have shown that low-density lipoprotein receptor-related protein 1b (LRP1B), as a potential tumor suppressor, is implicated in the response to immunotherapy. The frequency of LRP1B mutation gene is high in many cancers, but its role in gastric cancer (GC) has not been determined. METHODS The prognostic value of LRP1B mutation in a cohort containing 100 patients having received radical gastrectomy for stage II-III GC was explored. By analyzing the data of LRP1B mRNA, the risk score of differentially expressed genes (DEGs) between LRP1B mutation-type and wild-type was constructed based on the TCGA-STAD cohort. The infiltration of tumor immune cells was evaluated by the CYBERSORT algorithm and verified by immunohistochemistry. RESULTS LRP1B gene mutation was an independent risk factor for disease-free survival (DFS) in GC patients (HR = 2.57, 95% CI: 1.28-5.14, p = 0.008). The Kaplan-Meier curve demonstrated a shorter survival time in high-risk patients stratified according to risk score (p < 0.0001). CYBERSORT analysis showed that the DEGs were mainly concentrated in CD4+ T cells and macrophages. TIMER analysis suggested that LRP1B expression was associated with the infiltration of CD4+ T cells and macrophages. Immunohistochemistry demonstrated that LRP1B was expressed in the tumor cells (TCs) and immune cells in 16/89 and 26/89 of the cohort, respectively. LRP1B-positive TCs were associated with higher levels of CD4+ T cells, CD8+ T cells, and CD86/CD163 (p < 0.05). Multivariate analysis showed that LRP1B-positive TCs represented an independent protective factor of DFS in GC patients (HR = 0.43, 95% CI: 0.10-0.93, p = 0.042). CONCLUSIONS LRP1B has a high prognostic value in GC. LRP1B may stimulate tumor immune cell infiltration to provide GC patients with survival benefits.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chen Han
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Mengmeng Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| |
Collapse
|
8
|
Mugge L, Dang DD, Stabingas K, Keating G, Rossi C, Keating R. MN1 altered astroblastoma with APC and LRP1B gene mutations: a unique variant in the cervical spine of a pediatric patient. Childs Nerv Syst 2023; 39:1309-1315. [PMID: 36648513 DOI: 10.1007/s00381-022-05795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Astroblastomas (AB) are high-grade neoplasms which typically occur within the cerebral hemisphere. However, given the rarity of this neoplasm and the number of variants, the relevance of this molecular makeup is unknown. We sought to describe the clinical presentation, treatment, and pathological analysis of a novel MN1 (meningioma 1) cervical spinal cord astroblastoma variant presenting in a pediatric patient. METHODS A retrospective review of electronic medical records was performed with an emphasis on neuroimaging, perioperative course, and pathological analysis. RESULTS An 11-month-old male with no significant history presented with two weeks of neck stiffness and cervicalgia. Neurologically, the patient was intact without signs of infection or trauma. Cervical CT was unremarkable. A subsequent MRI demonstrated a heterogeneously enhancing intramedullary lesion extending from the craniocervical junction to T4. The patient was treated with perioperative steroids and underwent C1-C3 laminectomies and C4-T4 laminotomies for tumor resection. Upon completion of the durotomy, an exophytic gray-red tumor was appreciated within the epidural space and gross total resection was achieved (no change on intraoperative neurophysiological monitoring) and confirmed on post-operative imaging. Immunohistochemical analysis was consistent with an astroblastoma with atypical diffuse positivity of CD56, CD99, and nuclear OLIG2. Molecular analysis revealed not only MN1 alterations but also changes in genes encoding APC and LRP1B. Both alterations were not previously documented to be associated with an astroblastoma. CONCLUSION Our case represents the first report of an infant with an MN1 astroblastoma with APC and LRP1B gene alterations in the cervical spine. Gross total resection paired with a detailed histopathologic analysis is vital for optimizing adjuvant treatment.
Collapse
Affiliation(s)
- Luke Mugge
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA. .,Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| | - Danielle D Dang
- Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Kristen Stabingas
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| | - Gregory Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA.,Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Christopher Rossi
- Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Robert Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
Li SS, Zhai XH, Liu HL, Liu TZ, Cao TY, Chen DM, Xiao LX, Gan XQ, Cheng K, Hong WJ, Huang Y, Lian YF, Xiao J. Whole-exome sequencing analysis identifies distinct mutational profile and novel prognostic biomarkers in primary gastrointestinal diffuse large B-cell lymphoma. Exp Hematol Oncol 2022; 11:71. [PMID: 36243813 PMCID: PMC9569083 DOI: 10.1186/s40164-022-00325-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma, and about 10% of DLBCL cases primarily occur in the gastrointestinal tract. Previous reports have revealed that primary gastrointestinal-DLBCL (pGI-DLBCL) harbors different genetic mutations from other nodal or extranodal DLBCL. However, the exonic mutation profile of pGI-DLBCL has not been fully addressed. Methods We performed whole-exome sequencing of matched tumor tissues and blood samples from 53 pGI-DLBCL patients. The exonic mutation profiles were screened, and the correlations between genetic mutations and clinicopathological characteristics were analyzed. Results A total of 6,588 protein-altering events were found and the five most frequent mutated genes in our pGI-DLBCL cohort were IGLL5 (47%), TP53 (42%), BTG2 (28%), P2RY8 (26%) and PCLO (23%). Compared to the common DLBCL, significantly less or absence of MYD88 (0%), EZH2 (0%), BCL2 (2%) or CD79B (8%) mutations were identified in pGI-DLBCL. The recurrent potential driver genes were mainly enriched in pathways related to signal transduction, infectious disease and immune regulation. In addition, HBV infection had an impact on the mutational signature in pGI-DLBCL, as positive HBsAg was significantly associated with the TP53 and LRP1B mutations, two established tumor suppressor genes in many human cancers. Moreover, IGLL5 and LRP1B mutations were significantly correlated with patient overall survival and could serve as two novel prognostic biomarkers in pGI-DLBCL. Conclusions Our study provides a comprehensive view of the exonic mutation profile of the largest pGI-DLBCL cohort to date. The results could facilitate the clinical development of novel therapeutic and prognostic biomarkers for pGI-DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00325-7.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Xiao-Hui Zhai
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Hai-Ling Liu
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Ting-Zhi Liu
- Department of Hematology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Tai-Yuan Cao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Dong-Mei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Le-Xin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiao-Qin Gan
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Ke Cheng
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Wan-Jia Hong
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yan Huang
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
10
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
11
|
Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals (Basel) 2021; 14:836. [PMID: 34577535 PMCID: PMC8469001 DOI: 10.3390/ph14090836] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1B (LRP1B) is a giant member of the LDLR protein family, which includes several structurally homologous cell surface receptors with a wide range of biological functions from cargo transport to cell signaling. LRP1B is among the most altered genes in human cancer overall. Found frequently inactivated by several genetic and epigenetic mechanisms, it has mostly been regarded as a putative tumor suppressor. Still, limitations in LRP1B studies exist, in particular associated with its huge size. Therefore, LRP1B expression and function in cancer remains to be fully unveiled. This review addresses the current understanding of LRP1B and the studies that shed a light on the LRP1B structure and ligands. It goes further in presenting increasing knowledge brought by technical and methodological advances that allow to better manipulate LRP1B expression in cells and to more thoroughly explore its expression and mutation status. New evidence is pushing towards the increased relevance of LRP1B in cancer as a potential target or translational prognosis and response to therapy biomarker.
Collapse
Affiliation(s)
- Catarina Príncipe
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel J. Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo Prazeres
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Han R, Chen G, Li M, Peng ZM, Xu L. Screening and clinical significance of lymph node metastasis-related genes within esophagogastric junction adenocarcinoma. Cancer Med 2021; 10:5088-5100. [PMID: 34152098 PMCID: PMC8335809 DOI: 10.1002/cam4.4065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background Despite recent improvements in treatment technologies, such as surgical resection and chemoradiotherapy, the prognosis of patients with esophagogastric junction adenocarcinoma (EJA) remains poor due to early lymph node metastasis. Since few studies have investigated genes associated with lymph node metastasis in EJA, we aimed to screen lymph node metastasis‐associated genes and clarify their expression status and prognostic significance in EJA. Methods The differential frequency of mutations between carcinoma and para‐carcinoma tissues from 199 cases with EJA was detected using targeted next‐generation sequencing (tNGS). Following a stratified analysis to determine that gender has no effect on the frequency of gene mutations, lymph node metastasis‐related genes, including CDK6, MET, NOTCH1, and LRP1B, were screened, and CDK6 and LRP1B were selected for further study as they displayed significant differences in mutation rates. Differences in their expression status were verified using immunohistochemical (IHC) staining in 18 CDK6‐ and 17 LRP1B‐mutated samples and a randomly matched control group. Results tNGS revealed that CDK6 and LRP1B mutation frequencies were significantly different between EJA cases with (N ≥ 1) or without (N = 0) lymph node metastasis. In particular, CDK6 mutation frequency was expected less, whereas that of LRP1B was remarkably higher in cases with stage N0 than in those with stage N ≥ 1. IHC staining confirmed significant differences in CDK6 and LRP1B expression status between the study and control cohorts. Chi‐square tests revealed that a high CDK6 expression status correlated significantly with smoking history (p = 0.044), T stage (p = 0.035), N stage (p = 0.000), and advanced TNM stage (p = 0.001) in EJA, whereas a high LRP1B expression status only correlated with BMI (p = 0.013) and N stage (p = 0.000). Furthermore, as confirmed by survival status investigation, a high LRP1B expression status predicted good prognosis, and a high CDK6 expression status was an independent predictor of poor prognosis in patients with EJA. Conclusions Taken together, the findings of this study demonstrate that a high CDK6 and LRP1B expression status promotes and inhibits lymph node metastasis in patients with EJA, respectively, suggesting that both CDK6 and LRP1B are significantly potential predictors of lymph node metastasis and prognosis in EJA.
Collapse
Affiliation(s)
- Rui Han
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Meng Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Zhong-Min Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| |
Collapse
|
13
|
Yu Y, Xie Z, Zhao M, Lian X. Identification of PIK3CA multigene mutation patterns associated with superior prognosis in stomach cancer. BMC Cancer 2021; 21:368. [PMID: 33827485 PMCID: PMC8028071 DOI: 10.1186/s12885-021-08115-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background PIK3CA is the second most frequently mutated gene in cancers and is extensively studied for its role in promoting cancer cell resistance to chemotherapy or targeted therapy. However, PIK3CA functions have mostly been investigated at a lower-order genetic level, and therapeutic strategies targeting PIK3CA mutations have limited effects. Here, we explore crucial factors interacting with PIK3CA mutations to facilitate a significant marginal survival effect at the higher-order level and identify therapeutic strategies based on these marginal factors. Methods Mutations in stomach adenocarcinoma (STAD), breast adenocarcinoma (BRCA), and colon adenocarcinoma (COAD) samples from The Cancer Genome Atlas (TCGA) database were top-selected and combined for Cox proportional-hazards model analysis to calculate hazard ratios of mutation combinations according to overall survival data and define criteria to acquire mutation combinations with considerable marginal effects. We next analyzed the PIK3CA + HMCN1 + LRP1B mutation combination with marginal effects in STAD patients by Kaplan-Meier, transcriptomic differential, and KEGG integrated pathway enrichment analyses. Lastly, we adopted a connectivity map (CMap) to find potentially useful drugs specifically targeting LRP1B mutation in STAD patients. Results Factors interacting with PIK3CA mutations in a higher-order manner significantly influenced patient cohort survival curves (hazard ratio (HR) = 2.93, p-value = 2.63 × 10− 6). Moreover, PIK3CA mutations interacting with higher-order combination elements distinctly differentiated survival curves, with or without a marginal factor (HR = 0.26, p-value = 6.18 × 10− 8). Approximately 3238 PIK3CA-specific higher-order mutational combinations producing marginal survival effects were obtained. In STAD patients, PIK3CA + HMCN1 mutation yielded a substantial beneficial survival effect by interacting with LRP1B (HR = 3.78 × 10− 8, p-value = 0.0361) and AHNAK2 (HR = 3.86 × 10− 8, p-value = 0.0493) mutations. We next identified 208 differentially expressed genes (DEGs) induced by PIK3CA + HMCN1 compared with LRP1B mutation and mapped them to specific KEGG modules. Finally, small-molecule drugs such as geldanamycin (connectivity score = − 0.4011) and vemurafenib (connectivity score = − 0.4488) were selected as optimal therapeutic agents for targeting the STAD subtype with LRP1B mutation. Conclusions Overall, PIK3CA-induced marginal survival effects need to be analyzed. We established a framework to systematically identify crucial factors responsible for marginal survival effects, analyzed mechanisms underlying marginal effects, and identified related drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08115-w.
Collapse
Affiliation(s)
- Yu Yu
- Department of Cell Biology, Basic Medical School, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| | - Zhuoming Xie
- Beijing Syngentech Co., Ltd, Zhongguancun Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Mingxin Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Xiaohua Lian
- Department of Cell Biology, Basic Medical School, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
14
|
Brown LC, Tucker MD, Sedhom R, Schwartz EB, Zhu J, Kao C, Labriola MK, Gupta RT, Marin D, Wu Y, Gupta S, Zhang T, Harrison MR, George DJ, Alva A, Antonarakis ES, Armstrong AJ. LRP1B mutations are associated with favorable outcomes to immune checkpoint inhibitors across multiple cancer types. J Immunother Cancer 2021; 9:e001792. [PMID: 33653800 PMCID: PMC7929846 DOI: 10.1136/jitc-2020-001792] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1b (encoded by LRP1B) is a putative tumor suppressor, and preliminary evidence suggests LRP1B-mutated cancers may have improved outcomes with immune checkpoint inhibitors (ICI). METHODS We conducted a multicenter, retrospective pan-cancer analysis of patients with LRP1B alterations treated with ICI at Duke University, Johns Hopkins University (JHU) and University of Michigan (UM). The primary objective was to assess the association between overall response rate (ORR) to ICI and pathogenic or likely pathogenic (P/LP) LRP1B alterations compared with LRP1B variants of unknown significance (VUS). Secondary outcomes were the associations with progression-free survival (PFS) and overall survival (OS) by LRP1B status. RESULTS We identified 101 patients (44 Duke, 35 JHU, 22 UM) with LRP1B alterations who were treated with ICI. The most common tumor types by alteration (P/LP vs VUS%) were lung (36% vs 49%), prostate (9% vs 7%), sarcoma (5% vs 7%), melanoma (9% vs 0%) and breast cancer (3% vs 7%). The ORR for patients with LRP1B P/LP versus VUS alterations was 54% and 13%, respectively (OR 7.5, 95% CI 2.9 to 22.3, p=0.0009). P/LP LRP1B alterations were associated with longer PFS (HR 0.42, 95% CI 0.26 to 0.68, p=0.0003) and OS (HR 0.62, 95% CI 0.39 to 1.01, p=0.053). These results remained consistent when excluding patients harboring microsatellite instability (MSI) and controlling for tumor mutational burden (TMB). CONCLUSIONS This multicenter study shows significantly better outcomes with ICI therapy in patients harboring P/LP versus VUS LRP1B alterations, independently of TMB/MSI status. Further mechanistic and prospective validation studies are warranted.
Collapse
Affiliation(s)
- Landon C Brown
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Matthew D Tucker
- Internal Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ramy Sedhom
- Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Eric B Schwartz
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason Zhu
- Levine Cancer Institute, Charlotte, North Carolina, USA
| | - Chester Kao
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Matthew K Labriola
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Rajan T Gupta
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Daniele Marin
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Yuan Wu
- Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Santosh Gupta
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Tian Zhang
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Michael R Harrison
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Ajjai Alva
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel S Antonarakis
- Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| |
Collapse
|
15
|
Yasufuku I, Saigo C, Kito Y, Yoshida K, Takeuchi T. Prognostic significance of LDL receptor-related protein 1B in patients with gastric cancer. J Mol Histol 2021; 52:165-172. [PMID: 33389427 DOI: 10.1007/s10735-020-09932-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
LDLR-related protein 1B (LRP1B) is believed to internalize ligands through receptor-mediated endocytosis. Previous epigenetic and genetic studies have indicated that impaired LRP1B mRNA expression might be related to gastric carcinogenesis. However, expression and prognostic significance of LRP1B protein remain to be elucidated. This study aimed to unravel the clinicopathological characteristics of LRP1B protein expression in gastric cancer. Immunohistochemical staining with antibodies specific to LRP1B peptide, which has an EXXXLL motif-containing region in the C-terminal flexible loop for intracellular sorting, was performed with 100 gastric cancer tissue specimens. Out of 100 tissue specimens, 45 exhibited cytoplasmic localization of LRP1B immunoreactivity. This cytoplasmic localization of LRP1B was significantly higher (P = 0.044) in intestinal-type gastric cancer (25 of 44) than in diffuse-type gastric cancer (20 of 56). Notably, cytoplasmic LRP1B immunoreactivity was significantly associated with low clinicopathological stage and favorable prognosis of patients with diffuse-type gastric cancer (P = 0.014), but nor with intestinal-type gastric cancer (P = 0.994). Multivalent analysis revealed that cytoplasmic LRP1B immunoreactivity had an independent favorable prognostic value in diffuse-type gastric cancer (P = 0.046; hazard ratio 3.058, 95% confidence interval 1.022-9.149). In contrast, no significant relation of cytoplasmic LRP1B immunoreactivity to patients' prognosis was found in intestinal-type gastric cancer. Double immunocytochemical staining demonstrated that cytoplasmic LRP1B was co-localized with RAB11FIP1, which constituted the endocytic recycling compartments in diffuse-type gastric cancer cells. The findings of this study indicated that impaired endocytosis of the cytoplasmic domain of LRP1B, resulting in insufficient ligand internalization, is related to poor prognosis of patients with diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Itaru Yasufuku
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
16
|
Li M, Hu J, Jin R, Cheng H, Chen H, Li L, Guo K. Effects of LRP1B Regulated by HSF1 on Lipid Metabolism in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:361-376. [PMID: 33324588 PMCID: PMC7733418 DOI: 10.2147/jhc.s279123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To date, aberrated lipid metabolism has been recognized as an important feature of hepatocellular carcinoma (HCC); however, it remains poorly defined. As a large member of the low-density lipoprotein receptor family, LRP1B plays a pivotal role in maintaining lipid homeostasis. Here we investigated the expression feature of LRP1B in HCC and elucidated its effects on lipid metabolism of HCC cells. MATERIALS AND METHODS LRP1B expression in HCC cells and tumor tissues was respectively examined by quantitative PCR, Western blotting and immunohistochemistry. Crispr-cas9 RNA inference and CRISPRa transcription activation system were used to downregulate and upregulate LRP1B expression, respectively. Oil red O staining, DiD staining combined with flow cytometry and transmission electron microscopy were used to evaluate the lipid content in HCC cells. Overall survival (OS) and time to recurrence (TTR) were calculated; meanwhile, Kaplan-Meier and the Cox proportional hazards model were used to assess the prognosis of HCC patients. RESULTS In contrast to inactivation expression in a majority of cancers, LRP1B showed predominantly strong expression in HCC. LRP1B knockdown induced the decrease of intracellular lipid content, downregulated expressions of lipid synthesis-related enzymes and upregulated expressions of β-oxidation-related enzymes as well as activated the AMPK signaling. Moreover, HSF1 directly regulated the transcription of LRP1B and was involved in LRP1B-mediated lipid metabolism in HCC; meanwhile, the combination of LRP1B knockdown and HSF1 inhibition suppressed synergistically the proliferation of HCC cells. In addition, simultaneous expression of HSF1 and LRP1B was an independent prognostic factor for HCC patients. CONCLUSION Altogether, the study reveals a novel unique role of LRP1B in HCC by serving as a mediator in lipid metabolism, which provides an insight for making explorable therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Miaomiao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People’s Republic of China
| | - Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Riming Jin
- Department of First Surgery, the Third Affiliated Hospital, NAVY Medical University, Shanghai, People’s Republic of China
| | - Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People’s Republic of China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Limin Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
18
|
E GX, Duan XH, Zhang JH, Huang YF, Zhao YJ, Na RS, Zhao ZQ, Ma YH, Chu MX, Basang WD, Zhu YB, An TW, Luo XL, Han YG, Zeng Y. Genome-wide selection signatures analysis of litter size in Dazu black goats using single-nucleotide polymorphism. 3 Biotech 2019; 9:336. [PMID: 31475088 DOI: 10.1007/s13205-019-1869-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022] Open
Abstract
Litter size is considered to be the most important index for estimating domestic animal productivity. The number of indigenous goats in China with higher litter sizes than those of commercial breeds in other countries may be helpful for accelerating genetic improvements in goat breeding. We performed a genome-wide selective sweep analysis of 31 Dazu black goats with extreme standard deviation in litter size within the third fetus to identify significant genomic regions and candidate genes through different analyses. The analysis identified a total of 33,917,703 variants, including 32,262,179 SNPs and 1,655,524 indels. In addition, two novel candidate genes (LRP1B and GLRB), which are related to litter size, were obtained with π, Tajima's D, πA/πB, and F ST at the individual level with a 95% threshold for each parameter. These two genes were annotated in five GO terms (localization, binding, macromolecular complex, membrane part, and membrane) and two pathways (long-term depression and neuroactive ligand-receptor interaction pathway). Regarding the result of linkage disequilibrium (LD) analysis, in LRP1B and GRID2, the high-yield Dazu black goats exhibit significantly different LD patterns from low-yield goats. Litter size variability has low heritability and is related to multiple complex factors found in domestic animals. Obtaining a clear explanation and significant signal by genome-wide selective sweep analysis with a small sample size is difficult. However, we investigated some candidate genes, particularly LRP1B and GLRB, which may provide useful information for further research.
Collapse
Affiliation(s)
- Guang-Xin E
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jia-Hua Zhang
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Ju Zhao
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhong-Quan Zhao
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yue-Hui Ma
- 2Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193 China
| | - Ming-Xing Chu
- 2Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193 China
| | - Wang-Dui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009 China
| | - Yan-Bin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009 China
| | - Tian-Wu An
- 4Sichuan Academy of Grassland Sciences, Chengdu, 611731 Sichuan China
| | - Xiao-Lin Luo
- 4Sichuan Academy of Grassland Sciences, Chengdu, 611731 Sichuan China
| | - Yan-Guo Han
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Neoantigens Derived from Recurrently Mutated Genes as Potential Immunotherapy Targets for Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8103142. [PMID: 31312661 PMCID: PMC6595338 DOI: 10.1155/2019/8103142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022]
Abstract
Neoantigens are optimal tumor-specific targets for T-cell based immunotherapy, especially for patients with “undruggable” mutated driver genes. T-cell immunotherapy can be a “universal” treatment for HLA genotype patients sharing same oncogenic mutations. To identify potential neoantigens for therapy in gastric cancer, 32 gastric cancer patients were enrolled in our study. Whole exome sequencing data from these patients was processed by TSNAD software to detect cancer somatic mutations and predict neoantigens. The somatic mutations between different patients suggested a high interpatient heterogeneity. C>A and C>T substitutions are common, suggesting an active nucleotide excision repair. The number of predicted neoantigens was significantly higher in patients at stage T1a compared to in patients at T2 or T4b. Six genes (PIK3CA, FAT4, BRCA2, GNAQ, LRP1B, and PREX2) were found as recurrently mutated driver genes in our study. Combining with highly frequent HLA alleles, several neoantigens derived from six recurrently mutated genes were considered as potential targets for further immunotherapy.
Collapse
|
20
|
miR-500 promotes cell proliferation by directly targetting LRP1B in prostate cancer. Biosci Rep 2019; 39:BSR20181854. [PMID: 30877185 PMCID: PMC6449515 DOI: 10.1042/bsr20181854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/10/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that miRNAs play a crucial role in the development of prostate cancer (PC); however, the role of miR-500 in PC remains poorly understood. The data presented here reveal abnormal increases in miR-500 expression in PC tissues and cell lines. Suppression of miR-500 expression significantly inhibited the proliferation of PC-3 and LnCap cells and was negatively regulative with low-density lipoprotein receptor-related protein 1B (LRP1B). Increased cell cycle arrest at the G1 stage and decreased protein expression of cyclinD1 and CDK2 was observed in response to miR-500 knockdown in PC-3 and LnCap cells, in combination with LRP1B overexpression. LRP1B was identified as a target of miR-500 and was significantly decreased in PC tissues. Taken together, these findings demonstrate that miR-500 plays an important role in the proliferation of PC cells via the inhibition of LRP1B expression.
Collapse
|
21
|
The genetic and epigenetic association of LDL Receptor Related Protein 1B (LRP1B) gene with childhood obesity. Sci Rep 2019; 9:1815. [PMID: 30755693 PMCID: PMC6372679 DOI: 10.1038/s41598-019-38538-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/31/2018] [Indexed: 11/18/2022] Open
Abstract
Low-density lipoprotein Receptor Related Protein 1B (LRP1B) is homologous to the gigantic lipoprotein receptor-related protein 1 that belongs to the family of Low-density lipoprotein receptors. Previous genetic association studies of the LRP1B gene have shown its genetic association with obesity. Through exome sequencing of the LRP1B gene from a childhood severe obesity cohort (n = 692), we found novel single nucleotide polymorphism (rs431809) in intron 4, which has been significantly correlated with both body mass index (BMI) and waist-hip-ratio (WHR). Three methylations of CpG sites (cg141441481, cg01852095 and cg141441470) in the same intron were also significantly correlated with BMI and WHR. All CpG methylations had bimodal patterns, and were dependent on rs431809 genotypes. The genetic influences of obesity on the LRP1B gene may be linked to the interplay of CpG methylations in the same intron. Heritability of SNP interacts with epigenetic crosstalk in LRP1B. Genetic and epigenetic crosstalk of LRP1B gene may be implicated in the prevention and therapeutic approach to childhood obesity.
Collapse
|
22
|
Leung EY, Askarian-Amiri ME, Singleton DC, Ferraro-Peyret C, Joseph WR, Finlay GJ, Broom RJ, Kakadia PM, Bohlander SK, Marshall E, Baguley BC. Derivation of Breast Cancer Cell Lines Under Physiological (5%) Oxygen Concentrations. Front Oncol 2018; 8:425. [PMID: 30370249 PMCID: PMC6194255 DOI: 10.3389/fonc.2018.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Most human breast cancer cell lines currently in use were developed and are cultured under ambient (21%) oxygen conditions. While this is convenient in practical terms, higher ambient oxygen could increase oxygen radical production, potentially modulating signaling pathways. We have derived and grown a series of four human breast cancer cell lines under 5% oxygen, and have compared their properties to those of established breast cancer lines growing under ambient oxygen. Methods: Cell lines were characterized in terms of appearance, cellular DNA content, mutation spectrum, hormone receptor status, pathway utilization and drug sensitivity. Results: Three of the four lines (NZBR1, NZBR2, and NZBR4) were triple negative (ER-, PR-, HER2-), with NZBR1 also over-expressing EGFR. NZBR3 was HER2+ and ER+ and also over-expressed EGFR. Cell lines grown in 5% oxygen showed increased expression of the hypoxia-inducible factor 1 (HIF-1) target gene carbonic anhydrase 9 (CA9) and decreased levels of ROS. As determined by protein phosphorylation, NZBR1 showed low AKT pathway utilization while NZBR2 and NZBR4 showed low p70S6K and rpS6 pathway utilization. The lines were characterized for sensitivity to 7-hydroxytamoxifen, doxorubicin, paclitaxel, the PI3K inhibitor BEZ235 and the HER inhibitors lapatinib, afatinib, dacomitinib, and ARRY-380. In some cases they were compared to established breast cancer lines. Of particular note was the high sensitivity of NZBR3 to HER inhibitors. The spectrum of mutations in the NZBR lines was generally similar to that found in commonly used breast cancer cell lines but TP53 mutations were absent and mutations in EVI2B, LRP1B, and PMS2, which have not been reported in other breast cancer lines, were detected. The results suggest that the properties of cell lines developed under low oxygen conditions (5% O2) are similar to those of commonly used breast cancer cell lines. Although reduced ROS production and increased HIF-1 activity under 5% oxygen can potentially influence experimental outcomes, no difference in sensitivity to estrogen or doxorubicin was observed between cell lines cultured in 5 vs. 21% oxygen.
Collapse
Affiliation(s)
- Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carole Ferraro-Peyret
- Univ Lyon, Claude Bernard University, Cancer Research Center of Lyon, INSERM 1052, CNRS5286, Faculty of Pharmacy, Lyon, France.,Hospices Civils de Lyon, Molecular Biology of Tumors, GHE Hospital, Bron, France
| | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Reuben J Broom
- Auckland City Hospital-Oncology, Grafton, Auckland, New Zealand
| | - Purvi M Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elaine Marshall
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
A Novel Mechanism of Doxorubicin Resistance and Tumorigenesis Mediated by MicroRNA-501-5p-Suppressed BLID. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:578-590. [PMID: 30195794 PMCID: PMC6077131 DOI: 10.1016/j.omtn.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023]
Abstract
Doxorubicin is a widely used anthracycline-based anti-tumor agent for both solid and liquid tumors. Mounting evidence has demonstrated that microRNAs (miRNAs) are involved in chemoresistance and tumorigenesis. However, the roles of microRNA-501-5p (miR-501) in doxorubicin resistance and gastric cancer cell proliferation and invasion are still not fully understood. In this study, we identified that BLID (BH3-like motif-containing protein, cell death inducer) was directly regulated by miR-501 at the post-transcriptional level in multiple gastric cancer cell lines. Endogenous miR-501 was higher, whereas BLID was lower, in doxorubicin-resistant gastric cancer SGC7901/ADR cells compared with their parental SGC7901 cells. miR-501 suppressed gastric cancer cell apoptosis, induced resistance to doxorubicin, and enhanced cell proliferation, migration, and invasion. Subcutaneous injection of miR-501 lentivirus-infected SGC7901 cells resulted in rapid growth of xenograft tumors and resistance to doxorubicin treatment, unlike injection of negative miRNA lentivirus-infected SGC7901 cells. This is achieved at least partially by directly targeting BLID and subsequent inactivation of caspase-9 and caspase-3 and phosphorylation of Akt. Taken together, miR-501 induces doxorubicin resistance and enhances the tumorigenesis of gastric cancer cells by suppressing BLID. miR-501 might be a potential target for doxorubicin resistance and gastric cancer therapy.
Collapse
|
24
|
Expression of a recombinant full-length LRP1B receptor in human non-small cell lung cancer cells confirms the postulated growth-suppressing function of this large LDL receptor family member. Oncotarget 2018; 7:68721-68733. [PMID: 27626682 PMCID: PMC5356585 DOI: 10.18632/oncotarget.11897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/13/2016] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B), a member of the LDL receptor family, is frequently inactivated in multiple malignancies including lung cancer. LRP1B is therefore considered as a putative tumor suppressor. Due to its large size (4599 amino acids), until now only minireceptors or receptor fragments have been successfully cloned. To assess the effect of LRP1B on the proliferation of non-small cell lung cancer cells, we constructed and expressed a transfection vector containing the 13.800 bp full-length murine Lrp1b cDNA using a PCR-based cloning strategy. Expression of LRP1B was analyzed by quantitative RT-PCR (qRT-PCR) using primers specific for human LRP1B or mouse Lrp1b. Effective expression of the full length receptor was demonstrated by the appearance of a single 600 kDa band on Western Blots of HEK 293 cells. Overexpression of Lrp1b in non-small cell lung cancer cells with low or absent endogenous LRP1B expression significantly reduced cellular proliferation compared to empty vector-transfected control cells. Conversely, in Calu-1 cells, which express higher endogenous levels of the receptor, siRNA-mediated LRP1B knockdown significantly enhanced cellular proliferation. Taken together, these findings demonstrate that, consistent with the postulated tumor suppressor function, overexpression of full-length Lrp1b leads to impaired cellular proliferation, while LRP1B knockdown has the opposite effect. The recombinant Lrp1b construct represents a valuable tool to unravel the largely unknown physiological role of LRP1B and its potential functions in cancer pathogenesis.
Collapse
|
25
|
Boulagnon-Rombi C, Schneider C, Leandri C, Jeanne A, Grybek V, Bressenot AM, Barbe C, Marquet B, Nasri S, Coquelet C, Fichel C, Bouland N, Bonnomet A, Kianmanesh R, Lebre AS, Bouché O, Diebold MD, Bellon G, Dedieu S. LRP1 expression in colon cancer predicts clinical outcome. Oncotarget 2018; 9:8849-8869. [PMID: 29507659 PMCID: PMC5823651 DOI: 10.18632/oncotarget.24225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
LRP1 (low-density lipoprotein receptor-related protein 1), a multifunctional endocytic receptor, has recently been identified as a hub within a biomarker network for multi-cancer clinical outcome prediction. As its role in colon cancer has not yet been characterized, we here investigate the relationship between LRP1 and outcome. MATERIALS AND METHODS LRP1 mRNA expression was determined in colon adenocarcinoma and paired colon mucosa samples, as well as in stromal and tumor cells obtained after laser capture microdissection. Clinical potential was further investigated by immunohistochemistry in a population-based colon cancer series (n = 307). LRP1 methylation, mutation and miR-205 expression were evaluated and compared with LRP1 expression levels. RESULTS LRP1 mRNA levels were significantly lower in colon adenocarcinoma cells compared with colon mucosa and stromal cells obtained after laser capture microdissection. Low LRP1 immunohistochemical expression in adenocarcinomas was associated with higher age, right-sided tumor, loss of CDX2 expression, Annexin A10 expression, CIMP-H, MSI-H and BRAFV600E mutation. Low LRP1 expression correlated with poor clinical outcome, especially in stage IV patients. While LRP1 expression was downregulated by LRP1 mutation, LRP1 promoter was never methylated. CONCLUSIONS Loss of LRP1 expression is associated with worse colon cancer outcomes. Mechanistically, LRP1 mutation modulates LRP1 expression.
Collapse
Affiliation(s)
- Camille Boulagnon-Rombi
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, Reims, France
| | - Chloé Leandri
- Service de Gastro-entérologie et Cancérologie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Albin Jeanne
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- SATT Nord, Lille, France
| | - Virginie Grybek
- Laboratoire de Génétique, Centre Hospitalier Universitaire, Reims, France
| | | | - Coralie Barbe
- Unité d’Aide Méthodologique, Centre Hospitalier Universitaire, Reims, France
| | - Benjamin Marquet
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Saviz Nasri
- CRB Tumorothèque de Champagne-Ardenne, Reims, France
| | | | - Caroline Fichel
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Nicole Bouland
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Arnaud Bonnomet
- Plateforme d’Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Reza Kianmanesh
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Anne-Sophie Lebre
- Laboratoire de Génétique, Centre Hospitalier Universitaire, Reims, France
| | - Olivier Bouché
- Service de Gastro-entérologie et Cancérologie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Marie-Danièle Diebold
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Georges Bellon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire, Reims, France
| | - Stéphane Dedieu
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, Reims, France
| |
Collapse
|
26
|
Camacho N, Van Loo P, Edwards S, Kay JD, Matthews L, Haase K, Clark J, Dennis N, Thomas S, Kremeyer B, Zamora J, Butler AP, Gundem G, Merson S, Luxton H, Hawkins S, Ghori M, Marsden L, Lambert A, Karaszi K, Pelvender G, Massie CE, Kote-Jarai Z, Raine K, Jones D, Howat WJ, Hazell S, Livni N, Fisher C, Ogden C, Kumar P, Thompson A, Nicol D, Mayer E, Dudderidge T, Yu Y, Zhang H, Shah NC, Gnanapragasam VJ, The CRUK-ICGC Prostate Group, Isaacs W, Visakorpi T, Hamdy F, Berney D, Verrill C, Warren AY, Wedge DC, Lynch AG, Foster CS, Lu YJ, Bova GS, Whitaker HC, McDermott U, Neal DE, Eeles R, Cooper CS, Brewer DS. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet 2017; 13:e1007001. [PMID: 28945760 PMCID: PMC5628936 DOI: 10.1371/journal.pgen.1007001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/05/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA) in human cancer. Our study employs Whole Genome DNA Sequence (WGS) data from tumor samples (n = 103) to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%), Chr6q27 (16.50%) and Chr18q12.3 (17.48%). Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40). We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR) pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.
Collapse
Affiliation(s)
- Niedzica Camacho
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Sandra Edwards
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Jonathan D. Kay
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Molecular Diagnostics and Therapeutics Group, University College London, London, United Kingdom
| | - Lucy Matthews
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Kerstin Haase
- Cancer Genomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Clark
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Nening Dennis
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sarah Thomas
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Barbara Kremeyer
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Jorge Zamora
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Adam P. Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Gunes Gundem
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sue Merson
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Hayley Luxton
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Molecular Diagnostics and Therapeutics Group, University College London, London, United Kingdom
| | - Steve Hawkins
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Mohammed Ghori
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Luke Marsden
- Department of Physiology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Adam Lambert
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, Oxfordshire, United Kingdom
| | - Katalin Karaszi
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, Oxfordshire, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Gill Pelvender
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Charlie E. Massie
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- CRUK Cambridge Centre, Early Detection Programme, Urological Malignancies Programme, Hutchison-MRC Research Centre, Cambridge, Cambridgeshire, United Kingdom
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - William J. Howat
- Histopathology and in situ hybridization Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Steven Hazell
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Naomi Livni
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Cyril Fisher
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christopher Ogden
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Pardeep Kumar
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alan Thompson
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - David Nicol
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Erik Mayer
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tim Dudderidge
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Yongwei Yu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Nimish C. Shah
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom
| | - Vincent J. Gnanapragasam
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | | | - William Isaacs
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tapio Visakorpi
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Dan Berney
- Centre for Molecular Oncology, Barts Cancer Institute, The Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology and Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire, United Kingdom
| | - Anne Y. Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom
| | - David C. Wedge
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Oxford Big Data Institute & Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Oxford, Oxfordshire, United Kingdom
| | - Andrew G. Lynch
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- School of Mathematics and Statistics/School of Medicine, University of St Andrews, St Andrews, Fife, Scotland
| | | | - Yong Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, The Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - G. Steven Bova
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hayley C. Whitaker
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Molecular Diagnostics and Therapeutics Group, University College London, London, United Kingdom
| | - Ultan McDermott
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David E. Neal
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Colin S. Cooper
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- Organisms and Ecosystems, The Earlham Institute, Norwich, Norfolk, United Kingdom
| |
Collapse
|
27
|
Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development. Proc Natl Acad Sci U S A 2016; 113:E2057-65. [PMID: 27006499 DOI: 10.1073/pnas.1603223113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.
Collapse
|
28
|
Cotterchio M, Lowcock E, Bider-Canfield Z, Lemire M, Greenwood C, Gallinger S, Hudson T. Association between Variants in Atopy-Related Immunologic Candidate Genes and Pancreatic Cancer Risk. PLoS One 2015; 10:e0125273. [PMID: 25945796 PMCID: PMC4422524 DOI: 10.1371/journal.pone.0125273] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/22/2015] [Indexed: 02/06/2023] Open
Abstract
Background Many epidemiology studies report that atopic conditions such as allergies are associated with reduced pancreas cancer risk. The reason for this relationship is not yet understood. This is the first study to comprehensively evaluate the association between variants in atopy-related candidate genes and pancreatic cancer risk. Methods A population-based case-control study of pancreas cancer cases diagnosed during 2011-2012 (via Ontario Cancer Registry), and controls recruited using random digit dialing utilized DNA from 179 cases and 566 controls. Following an exhaustive literature review, SNPs in 180 candidate genes were pre-screened using dbGaP pancreas cancer GWAS data; 147 SNPs in 56 allergy-related immunologic genes were retained and genotyped. Logistic regression was used to estimate age-adjusted odd ratio (AOR) for each variant and false discovery rate was used to adjust Wald p-values for multiple testing. Subsequently, a risk allele score was derived based on statistically significant variants. Results 18 SNPs in 14 candidate genes (CSF2, DENND1B, DPP10, FLG, IL13, IL13RA2, LRP1B, NOD1, NPSR1, ORMDL3, RORA, STAT4, TLR6, TRA) were significantly associated with pancreas cancer risk. After adjustment for multiple comparisons, two LRP1B SNPs remained statistically significant; for example, LRP1B rs1449477 (AA vs. CC: AOR=0.37, 95% CI: 0.22-0.62; p (adjusted)=0.04). Furthermore, the risk allele score was associated with a significant reduction in pancreas cancer risk (p=0.0007). Conclusions Preliminary findings suggest certain atopy-related variants may be associated with pancreas cancer risk. Further studies are needed to replicate this, and to elucidate the biology behind the growing body of epidemiologic evidence suggesting allergies may reduce pancreatic cancer risk.
Collapse
Affiliation(s)
- Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON M5G 2L7, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- * E-mail:
| | - Elizabeth Lowcock
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON M5G 2L7, Canada
| | - Zoe Bider-Canfield
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON M5G 2L7, Canada
| | - Mathieu Lemire
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Celia Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Division of General Surgery, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
| | - Thomas Hudson
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
29
|
Wang ZC, Hou XW, Shao J, Ji YJ, Li L, Zhou Q, Yu SM, Mao YL, Zhang HJ, Zhang PC, Lu H. HIF-1α polymorphism in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion treatment. PLoS One 2014; 9:e110862. [PMID: 25401740 PMCID: PMC4234507 DOI: 10.1371/journal.pone.0110862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Background To investigate the association between the single nucleotide polymorphism (SNP) of hypoxia-inducible factor1 α (HIF-1α) and the susceptibility to cervical spondylotic myelopathy (CSM) and its outcome after surgical treatment. Method A total of 230 CSM patients and 284 healthy controls were recruited. All patients received anterior cervical corpectomy and fusion (ACF) and were followed for 12 months. The genotypes for two HIF-1α variants (1772C>T and 1790G>A) were determined. Results In the present study, we found that the HIF-1α polymorphism at 1790G>A significantly affects the susceptibility to CSM and its clinical features, including severity and onset age. In addition, the 1790A>G polymorphism also determines the prognosis of CSM patients after ACF treatment. The GG genotype of 1790G>A polymorphism is associated with a higher risk to develop CSM, higher severity and earlier onset age. More importantly, we found that the 1790G>A polymorphism determines the clinical outcome in CSM patients who underwent ACF treatment. Conclusion Our findings suggest that the HIF-1α 1790G>A polymorphism is associated with the susceptibility to CSM and can be used as predictor for the clinical outcome in CSM patients receiving ACF treatment.
Collapse
Affiliation(s)
- Zhan-Chao Wang
- Department of Orthopedics, Xinhua Hospital (Chongming), Shanghai Jiaotong University, Shanghai, China
| | - Xu-Wei Hou
- Department of Cardiology, Hangzhou Hospital, Nanjing Medical University & Hangzhou First Municipal Hospital, Hangzhou, China
| | - Jiang Shao
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiaotong University; Shanghai, China
| | - Yong-Jing Ji
- Department of Internal Medicine, Jinan 2nd People's Hospital, Jinan, China
| | - Lulu Li
- Department of Biostatistics, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiang Zhou
- Department of Orthopedics, Xinhua Hospital (Chongming), Shanghai Jiaotong University, Shanghai, China
| | - Si-Ming Yu
- Department of Orthopedics, Xinhua Hospital (Chongming), Shanghai Jiaotong University, Shanghai, China
| | - Yu-Lun Mao
- Department of Orthopedics, Xinhua Hospital (Chongming), Shanghai Jiaotong University, Shanghai, China
| | - Hao-Jie Zhang
- Department of Orthopedics, Xinhua Hospital (Chongming), Shanghai Jiaotong University, Shanghai, China
| | - Ping-Chao Zhang
- Department of Orthopedics, Xinhua Hospital (Chongming), Shanghai Jiaotong University, Shanghai, China
| | - Hua Lu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiaotong University; Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K. Methylation-mediated gene silencing as biomarkers of gastric cancer: A review. World J Gastroenterol 2014; 20:11991-12006. [PMID: 25232236 PMCID: PMC4161787 DOI: 10.3748/wjg.v20.i34.11991] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Despite a decline in the overall incidence of gastric cancer (GC), the disease remains the second most common cause of cancer-related death worldwide and is thus a significant global health problem. The best means of improving the survival of GC patients is to screen for and treat early lesions. However, GC is often diagnosed at an advanced stage and is associated with a poor prognosis. Current diagnostic and therapeutic strategies have not been successful in decreasing the global burden of the disease; therefore, the identification of reliable biomarkers for an early diagnosis, predictive markers of recurrence and survival and markers of drug sensitivity and/or resistance is urgently needed. The initiation and progression of GC depends not only on genetic alterations but also epigenetic changes, such as DNA methylation and histone modification. Aberrant DNA methylation is the most well-defined epigenetic change in human cancers and is associated with inappropriate gene silencing. Therefore, an increasing number of genes methylated at the promoter region have been targeted as possible biomarkers for different purposes, including early detection, classification, the assessment of the tumor prognosis, the development of therapeutic strategies and patient follow-up. This review article summarizes the current understanding and recent evidence regarding DNA methylation markers in GC with a focus on the clinical potential of these markers.
Collapse
|
31
|
Ni S, Hu J, Duan Y, Shi S, Li R, Wu H, Qu Y, Li Y. Down expression of LRP1B promotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer. Cancer Sci 2013; 104:817-25. [PMID: 23521319 DOI: 10.1111/cas.12157] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 12/28/2022] Open
Abstract
The low-density lipoprotein receptor-related protein 1B (LRP1B) is known as a putative tumor suppressor. The decreased expression of LRP1B has been involved in multiple primary cancers in several studies. However, its expression and function in the carcinogenesis of renal cell cancer (RCC) remain unclear. In this study, we investigated the expression of LRP1B in RCC by in situ hybridization (ISH) and real-time polymerase chain reaction (qRT-PCR). Our results indicated that LRP1B was frequently downexpressed in human RCC tissue and cell lines, which involved both epigenetic events (DNA methylation and histone deacetylation) and N-terminal deletion of LRP1B. Moreover, we testified that knockdown of LRP1B by shRNA significantly promoted anchorage-independent growth, cell migration and invasion in HEK293 cells and renal cancer cells 127 in vitro. We further found that silencing of LRP1B altered the expression of focal adhesion complex-associated proteins, and Cdc42/RhoA activities, which regulate the cytoskeleton dynamics. Taken together, these results strongly support that LRP1B may function as a tumor suppressor against renal cell cancer, and may regulate cell motility via RhoA/Cdc42 pathway and actin cytoskeleton reorganization in RCC.
Collapse
Affiliation(s)
- Shaobin Ni
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu XT, He C. Recent progress in the study of methylated tumor suppressor genes in gastric cancer. CHINESE JOURNAL OF CANCER 2013; 32:31-41. [PMID: 22059906 PMCID: PMC3845584 DOI: 10.5732/cjc.011.10175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/27/2011] [Accepted: 08/17/2011] [Indexed: 12/14/2022]
Abstract
Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide. The pathogenesis mechanisms of gastric cancer are still not fully clear. Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis. Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes, particularly caused by hypermethylation of CpG islands in promoters, is critical to carcinogenesis and metastasis. Here, we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer. We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.
Collapse
Affiliation(s)
- Xiao-Tong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province,
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province,
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang 310016, P. R. China.
| |
Collapse
|
33
|
Schmitz M, Driesch C, Jansen L, Runnebaum IB, Dürst M. Non-random integration of the HPV genome in cervical cancer. PLoS One 2012; 7:e39632. [PMID: 22761851 PMCID: PMC3384597 DOI: 10.1371/journal.pone.0039632] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/24/2012] [Indexed: 12/19/2022] Open
Abstract
HPV DNA integration into the host genome is a characteristic but not an exclusive step during cervical carcinogenesis. It is still a matter of debate whether viral integration contributes to the transformation process beyond ensuring the constitutive expression of the viral oncogenes. There is mounting evidence for a non-random distribution of integration loci and the direct involvement of cellular cancer-related genes. In this study we addressed this topic by extending the existing data set by an additional 47 HPV16 and HPV18 positive cervical carcinoma. We provide supportive evidence for previously defined integration hotspots and have revealed another cluster of integration sites within the cytogenetic band 3q28. Moreover, in the vicinity of these hotspots numerous microRNAs (miRNAs) are located and may be influenced by the integrated HPV DNA. By compiling our data and published reports 9 genes could be identified which were affected by HPV integration at least twice in independent tumors. In some tumors the viral-cellular fusion transcripts were even identical with respect to the viral donor and cellular acceptor sites used. However, the exact integration sites are likely to differ since none of the integration sites analysed thus far have shown more than a few nucleotides of homology between viral and host sequences. Therefore, DNA recombination involving large stretches of homology at the integration site can be ruled out. It is however intriguing that by sequence alignment several regions of the HPV16 genome were found to have highly homologous stretches of up to 50 nucleotides to the aforementioned genes and the integration hotspots. One common region of homologies with cellular sequences is between the viral gene E5 and L2 (nucleotides positions 4100 to 4240). We speculate that this and other regions of homology are involved in the integration process. Our observations suggest that targeted disruption, possibly also of critical cellular genes, by HPV integration remains an issue to be fully resolved.
Collapse
Affiliation(s)
- Martina Schmitz
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Jena, Jena, Germany
| | - Corina Driesch
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Jena, Jena, Germany
| | - Lars Jansen
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Jena, Jena, Germany
| | - Ingo B. Runnebaum
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Jena, Jena, Germany
| | - Matthias Dürst
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
34
|
Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 2011; 31:3939-48. [PMID: 22139082 DOI: 10.1038/onc.2011.554] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A clearer definition of the molecular determinants that drive the development and progression of prostate cancer (PCa) is urgently needed. Efforts to map recurrent somatic deletions in the tumor genome, especially homozygous deletions (HODs), have provided important positional information in the search for cancer-causing genes. Analyzing HODs in the tumors of 244 patients from two independent cohorts and 22 PCa xenografts using high-resolution single-nucleotide polymorphism arrays, herein we report the identification of CHD1, a chromatin remodeler, as one of the most frequently homozygously deleted genes in PCa, second only to PTEN in this regard. The HODs observed in CHD1, including deletions affecting only internal exons of CHD1, were found to completely extinguish the expression of mRNA of this gene in PCa xenografts. Loss of this chromatin remodeler in clinical specimens is significantly associated with an increased number of additional chromosomal deletions, both hemi- and homozygous, especially on 2q, 5q and 6q. Together with the deletions observed in HEK293 cells stably transfected with CHD1 small hairpin RNA, these data suggest a causal relationship. Downregulation of Chd1 in mouse prostate epithelial cells caused dramatic morphological changes indicative of increased invasiveness, but did not result in transformation. Indicating a new role of CHD1, these findings collectively suggest that distinct CHD1-associated alterations of genomic structure evolve during and are required for the development of PCa.
Collapse
|
35
|
Haas J, Beer A, Widschwendter P, Oberdanner J, Salzmann K, Sarg B, Lindner H, Herz J, Patsch J, Marschang P. LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE-carrying lipoproteins. Atherosclerosis 2011; 216:342-7. [PMID: 21420681 PMCID: PMC3119793 DOI: 10.1016/j.atherosclerosis.2011.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 02/10/2011] [Accepted: 02/20/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate low-density lipoprotein receptor-related protein 1b (LRP1b) expression in human tissues and to identify circulating ligands of LRP1b. METHODS AND RESULTS Using two independent RT-PCR assays, LRP1b mRNA was detected in human brain, thyroid gland, skeletal muscle, and to a lesser amount in testis but absent in other tissues, including heart, kidney, liver, lung, and placenta. Circulating ligands were purified from human plasma by affinity chromatography using FLAG-tagged recombinant LRP1b ectodomains and identified by mass spectrometry. Using this technique, several potential ligands (fibrinogen, clusterin, vitronectin, histidine rich glycoprotein, serum amyloid P-component, and immunoglobulins) were identified. Direct binding of LRP1b ectodomains to fibrinogen was verified by co-immunoprecipitation. ApoE-carrying lipoproteins were shown to bind to LRP1b ectodomains in a lipoprotein binding assay. Furthermore, binding as well as internalization of very low density lipoproteins by cells expressing an LRP1b minireceptor was demonstrated. DISCUSSION LRP1b expression in humans appears to be confined to few tissues, which could point out to specialized functions of LRP1b in certain organs. Most of the newly identified LRP1b ligands are well-known factors in blood coagulation and lipoprotein metabolism, suggesting a possible role of LRP1b in atherosclerosis.
Collapse
Affiliation(s)
- J. Haas
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - A.G. Beer
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - P. Widschwendter
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - J. Oberdanner
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - K. Salzmann
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - B. Sarg
- Divison of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - H. Lindner
- Divison of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - J. Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J.R. Patsch
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - P. Marschang
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|