1
|
Druzhinin VG, Baranova ED, Volobaev VP, Ivanov VI, Larionov AV, Minina VI, Smagulova F, Legoff L, Titov VA, Fucic A. The Length of Telomeres and the Baseline Level of Cytogenetic Damage in Leukocytes of Lung Cancer Patients. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Jaiswal SK, Kumar A, Rai AK. Molecular Cytogenetic Classification of Down Syndrome and Screening of Somatic Aneuploidy in Mothers. Cytogenet Genome Res 2021; 161:397-405. [PMID: 34753128 DOI: 10.1159/000519624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Down Syndrome (DS) caused by trisomy 21 results in various congenital and developmental complications in children. It is crucial to cytogenetically diagnose the DS cases early for their proper health management and to reduce the risk of further DS childbirths in mothers. In this study, we performed a cytogenetic analysis of 436 suspected DS cases using karyotyping and fluorescent in situ hybridization. We detected free trisomies (95.3%), robertsonian translocations (2.4%), isochromosomes (0.6%), and mosaics (1.2%). We observed a slightly higher incidence of DS childbirth in younger mothers compared to mothers with advanced age. We compared the somatic aneuploidy in peripheral blood of mothers having DS children (MDS) and control mothers (CM) to identify biomarkers for predicting the risk for DS childbirths. No significant difference was observed. After induced demethylation in peripheral blood cells, we did not observe a significant difference in the frequency of aneuploidy between MDS and CM. In conclusion, free trisomy 21 is the most common type of chromosomal abnormality in DS. A small number of DS cases have translocations and mosaicism of chromosome 21. Additionally, somatic aneuploidy in the peripheral blood from the mother is not an effective marker to predict DS childbirths.
Collapse
Affiliation(s)
- Sushil Kumar Jaiswal
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amit Kumar Rai
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations. Front Genet 2021; 12:691947. [PMID: 34220964 PMCID: PMC8242355 DOI: 10.3389/fgene.2021.691947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Ludovit Musak
- Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
4
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Försti A, Hemminki K. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair (Amst) 2021; 101:103079. [PMID: 33676360 DOI: 10.1016/j.dnarep.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910 Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora 4D, 03601 Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Cho YH, Jang Y, Woo HD, Kim YJ, Kim SY, Christensen S, Cole E, Choi SY, Chung HW. LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:174-184. [PMID: 30488609 PMCID: PMC6363886 DOI: 10.1002/em.22237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
Global DNA hypomethylation is proposed as a potential biomarker for cancer risk associated with genomic instability, which is an important factor in radiation-induced cancer. However, the associations among radiation exposure, changes in DNA methylation, and carcinogenesis are unclear. The aims of this study were (1) to examine whether low-level occupational radiation exposure induces genomic DNA hypomethylation; and (2) to determine the relationships between radiation exposure, genomic DNA hypomethylation and radiation-induced genomic instability (RIGI) in industrial radiographers. Genomic DNA methylation levels were measured in blood DNA from 40 radiographers and 28 controls using the LINE-1 pyrosequencing assay and the luminometric methylation assay. Further, the micronucleus-centromere assay was performed to measure aneuploidy of chromosomes 1 and 4 as a marker of delayed RIGI. Genomic DNA methylation levels were significantly lower in radiographers than those in controls. LINE-1 hypomethylation was not significantly correlated with recent 1-year, recent 3-year, or total cumulative radiation doses in radiographers; however, LINE-1 hypomethylation significantly correlated with the cumulative radiation dose without recent 3-year exposure data (D3dose, r = -0.39, P < 0.05). In addition, LINE-1 hypomethylation was a significant contributor to aneuploidy frequency by D3dose (F (2, 34) = 13.85, P < 0.001), in which a total of 45% of the variance in aneuploidy frequency was explained. Our results provide suggestive evidence regarding the delayed effects of low-dose occupational radiation exposure in radiographers and its association with LINE-1 hypomethylation; however, additional studies using more subjects are needed to fully understand the relationship between genomic DNA hypomethylation and RIGI. Environ. Mol. Mutagen. 60: 174-184, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoon Hee Cho
- Departments of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Yoonhee Jang
- Departments of Psychology, The University of Montana, Missoula, MT, USA
| | - Hae Dong Woo
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Yang Jee Kim
- Da Vinci College of General Education, Chung-Ang University, Seoul, Korea
| | - Su Young Kim
- Departments of Preventive Medicine, School of Medicine, Jeju National University, Jeju-si, Jeju-do, Korea
| | - Sonja Christensen
- Departments of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Elizabeth Cole
- Departments of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Soo Yong Choi
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Science, Seoul Korea
| | - Hai Won Chung
- School of Public Health, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Alhamdow A, Lindh C, Hagberg J, Graff P, Westberg H, Krais AM, Albin M, Gustavsson P, Tinnerberg H, Broberg K. DNA methylation of the cancer-related genes F2RL3 and AHRR is associated with occupational exposure to polycyclic aromatic hydrocarbons. Carcinogenesis 2019; 39:869-878. [PMID: 29722794 PMCID: PMC6030939 DOI: 10.1093/carcin/bgy059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Some polycyclic aromatic hydrocarbons (PAH) are known carcinogens and workplace PAH exposure may increase the risk of cancer. Monitoring early cancer-related changes can indicate whether the exposure is carcinogenic. Here, we enrolled 151 chimney sweeps, 152 controls and 19 creosote-exposed male workers from Sweden. We measured urinary PAH metabolites using LC/MS/MS, the cancer-related markers telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) using qPCR, and DNA methylation of lung cancer-related genes F2RL3 and AHRR using pyrosequencing. The median 1-hydroxypyrene (PAH metabolite) concentrations were highest in creosote-exposed workers (8.0 μg/g creatinine) followed by chimney sweeps (0.34 μg/g creatinine) and controls (0.05 μg/g creatinine). TL and mtDNAcn did not differ between study groups. Chimney sweeps and creosote-exposed workers had significantly lower methylation of AHRR CpG site cg05575921 (88.1 and 84.9%, respectively) than controls (90%). Creosote-exposed workers (73.3%), but not chimney sweeps (76.6%) had lower methylation of F2RL3 cg03636183 than controls (76.7%). Linear regression analyses showed that chimney sweeps had lower AHRR cg05575921 methylation (B = -2.04; P < 0.057, adjusted for smoking and age) and lower average AHRR methylation (B = -2.05; P < 0.035), and non-smoking chimney sweeps had lower average F2RL3 methylation (B = -0.81; P < 0.042, adjusted for age) compared with controls. These cancer-related markers were not associated with urinary concentrations of PAH metabolites. In conclusion, although we found no associations with PAH metabolites in urine (short-term exposure), our results suggest dose-response relationship between PAH exposure and DNA hypomethylation of lung cancer-related loci. These findings indicate that further protective measures should be taken to reduce PAH exposure.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jessika Hagberg
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden.,Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Pål Graff
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,National Institute of Occupational Health, Oslo, Norway
| | - Håkan Westberg
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden.,Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm, Sweden
| | - Per Gustavsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A, Hemminki K. Genetic variation of acquired structural chromosomal aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:13-21. [PMID: 30389156 DOI: 10.1016/j.mrgentox.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic.
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, 03601, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Italian Institute for Genomic Medicine (IIGM), Torino, 10126, Italy
| | - Zdena Polivkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| |
Collapse
|
8
|
Xu Y, Lindh CH, Jönsson BAG, Broberg K, Albin M. Occupational exposure to asphalt mixture during road paving is related to increased mitochondria DNA copy number: a cross-sectional study. Environ Health 2018; 17:29. [PMID: 29587765 PMCID: PMC5870390 DOI: 10.1186/s12940-018-0375-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Asphalt workers are exposed to polyaromatic hydrocarbons (PAHs) from hot mix asphalt via both inhalation and dermal absorption. The use of crumb rubber modified (CRM) asphalt may result in higher exposure to PAHs and more adverse effects. Our aim is to assess occupational exposure to PAHs from conventional and CRM asphalt paving by measuring PAH metabolites in urine, and to investigate the effects on mitochondrial DNA copy number (mtDNAcn) and telomere length. METHODS We recruited 116 workers paving conventional asphalt, 51 workers paving CRM asphalt and 100 controls in Sweden, all males. A repeated-measures analysis included 31 workers paving both types of asphalt. Urine and blood samples were collected pre-working on Monday morning and post-working on Thursday afternoon after 4 days working. PAH metabolites: 1-hydroxypyrene (1-OH-PYR) and 2-hydroxyphenanthrene (2-OH-PH) were measured in urine by LC-MS/MS. Relative mtDNAcn and telomere length were measured by quantitative PCR. RESULTS Conventional and CRM asphalt workers showed higher 1-OH-PYR and 2-OH-PH than controls (p < 0.001 for all). Relative mtDNAcn were 0.21 units (p < 0.001) higher in conventional asphalt workers and 0.13 units (p = 0.010) higher in CRM asphalt workers compared to controls. Relative telomere length did not differ across occupational groups, but it was positively associated with increment of 2-OH-PH (β = 0.075, p = 0.037) in asphalt workers. The repeated-measures analysis showed no difference in either increment of 1-OH-PYP, or changes in effect biomarkers (mtDNAcn or telomere length) between paving with conventional and CRM asphalt. Increment of 2-OH-PH was smaller after paving with CRM asphalt. CONCLUSIONS Road asphalt paving in open areas resulted in PAHs exposure, as shown by elevation of PAH metabolites in urine. Asphalt workers may experience oxidative stress, evidenced by alternation in mtDNAcn; however the effects could not be fully explained by exposure to PAHs from the asphalt mixture.
Collapse
Affiliation(s)
- Yiyi Xu
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
| | - Bo A. G. Jönsson
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
- Unit of Metals & Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Kroupa M, Polivkova Z, Rachakonda S, Schneiderova M, Vodenkova S, Buchler T, Jiraskova K, Urbanova M, Vodickova L, Hemminki K, Kumar R, Vodicka P. Bleomycin‐induced chromosomal damage and shortening of telomeres in peripheral blood lymphocytes of incident cancer patients. Genes Chromosomes Cancer 2017; 57:61-69. [DOI: 10.1002/gcc.22508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michal Kroupa
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
| | - Zdenka Polivkova
- Department of Medical GeneticsThird Faculty of Medicine, Charles UniversityPrague10000 Czech Republic
| | | | - Michaela Schneiderova
- Department of SurgeryGeneral University Hospital in PraguePrague12800 Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Department of Medical GeneticsThird Faculty of Medicine, Charles UniversityPrague10000 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Tomas Buchler
- Department of OncologyFirst Faculty of Medicine, Charles University and Thomayer HospitalPrague, 14059 Czech Republic
| | - Katerina Jiraskova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Marketa Urbanova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Ludmila Vodickova
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic EpidemiologyGerman Cancer Research CenterHeidelberg69120 Germany
| | - Rajiv Kumar
- Division of Molecular Genetic EpidemiologyGerman Cancer Research CenterHeidelberg69120 Germany
| | - Pavel Vodicka
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| |
Collapse
|
10
|
Pinto-Medel MJ, Oliver-Martos B, Urbaneja-Romero P, Hurtado-Guerrero I, Ortega-Pinazo J, Serrano-Castro P, Fernández Ó, Leyva L. Global methylation correlates with clinical status in multiple sclerosis patients in the first year of IFNbeta treatment. Sci Rep 2017; 7:8727. [PMID: 28821874 PMCID: PMC5562733 DOI: 10.1038/s41598-017-09301-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
The alteration of DNA methylation patterns are a key component of disease onset and/or progression. Our objective was to evaluate the differences in Long Interspersed Nuclear Element-1 (LINE-1) methylation levels, as a surrogate marker of global DNA methylation, between multiple sclerosis (MS) patients and healthy controls. In addition, we assessed the association of LINE-1 methylation with clinical disease activity in patients treated with IFNbeta (IFNβ). We found that individuals with high levels of LINE-1 methylation showed 6-fold increased risk of suffering MS. Additionally, treated MS patients who bear high LINE-1 methylation levels had an 11-fold increased risk of clinical activity. Moreover, a negative correlation between treatment duration and percentage of LINE-1 methylation, that was statistically significant exclusively in the group of patients without clinical activity, was observed. Our data suggest that in MS patients, a slight global DNA hypermethylation occurs that may be related to the pathophysiology of the disease. In addition, global DNA methylation levels could play a role as a biomarker for the differential clinical response to IFNβ.
Collapse
Affiliation(s)
- María Jesús Pinto-Medel
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain.
| | - Begoña Oliver-Martos
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Patricia Urbaneja-Romero
- UGC Neurociencias, Servicio de Neurología, Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS), Málaga, Spain
| | - Isaac Hurtado-Guerrero
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Jesús Ortega-Pinazo
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Pedro Serrano-Castro
- UGC Neurociencias, Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Óscar Fernández
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Laura Leyva
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| |
Collapse
|
11
|
Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans. Cancer Lett 2016; 380:442-446. [PMID: 27424524 DOI: 10.1016/j.canlet.2016.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022]
Abstract
Non-specific chromosomal aberrations (CAs) are microscopically detected in about 1% of lymphocytes drawn from healthy persons. Causes of CAs in general population are not known but they may be related to risk of cancer. In view of the importance of the mitotic checkpoint machinery on maintaining chromosomal integrity we selected 9 variants in main checkpoint related genes (BUB1B, BUB3, MAD2L1, CENPF, ESPL1/separase, NEK2, PTTG1/securin, ZWILCH and ZWINT) for a genotyping study on samples from healthy individuals (N = 330 to 729) whose lymphocytes had an increased number of CAs compared to persons with a low number of CAs. Genetic variation in individual genes played a minor importance, consistent with the high conservation and selection pressure of the checkpoint system. However, gene pairs were significantly associated with CAs: PTTG1-ZWILCH and PTTG1-ZWINT. MAD2L1 and PTTG1 were the most common partners in any of the two-way interactions. The results suggest that interactions at the level of cohesin (PTTG1) and kinetochore function (ZWINT, ZWILCH and MAD2L1) contribute to the frequency of CAs, suggesting that gene variants at different checkpoint functions appeared to be required for the formation of CAs.
Collapse
|
12
|
Luo YB, Zhang L, Lin ZL, Ma JY, Jia J, Namgoong S, Sun QY. Distinct subcellular localization and potential role of LINE1-ORF1P in meiotic oocytes. Histochem Cell Biol 2015; 145:93-104. [PMID: 26464247 DOI: 10.1007/s00418-015-1369-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 02/06/2023]
Abstract
LINE-1 is an autonomous non-LTR retrotransposon in mammalian genomes and encodes ORF1P and ORF2P. ORF2P has been clearly identified as the enzyme supplier needed in LINE-1 retrotransposition. However, the role of ORF1P is not well explored. In this study, we employed loss/gain-of-function approach to investigate the role of LINE1-ORF1P in mouse oocyte meiotic maturation. During mouse oocyte development, ORF1P was observed in cytoplasm as well as in nucleus at germinal vesicle (GV) stage while was localized on the spindle after germinal vesicle breakdown (GVBD). Depletion of ORF1P caused oocyte arrest at the GV stage as well as down-regulation of CDC2 and CYCLIN B1, components of the maturation-promoting factor (MPF). Further analysis demonstrated ORF1P depletion triggered DNA damage response and most of the oocytes presented altered chromatin configuration. In addition, SMAD4 showed nuclear foci signal after Orf1p dsRNA injection. ORF1P overexpression held the oocyte development at MI stage and the chromosome alignment and spindle organization were severely affected. We also found that ORF1P could form DCP1A body-like foci structure in both cytoplasm and nucleus after heat shock. Taken together, accurate regulation of ORF1P plays an essential role in mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yi-Bo Luo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing, China.,Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - Li Zhang
- Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Zi-Li Lin
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - Jun-Yu Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing, China
| | - Jialin Jia
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - Suk Namgoong
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing, China.
| |
Collapse
|
13
|
Pusceddu I, Herrmann M, Kirsch SH, Werner C, Hübner U, Bodis M, Laufs U, Wagenpfeil S, Geisel J, Herrmann W. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr 2015; 55:1863-73. [DOI: 10.1007/s00394-015-1003-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023]
|
14
|
Lee Y, Kim YJ, Choi YJ, Lee JW, Lee S, Cho YH, Chung HW. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers. Int J Radiat Biol 2015; 91:142-9. [PMID: 25264146 DOI: 10.3109/09553002.2015.969847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the association between occupational radiation exposure and DNA methylation changes in nuclear power plant workers. We also evaluated whether radiation- induced DNA methylation alterations are associated with chromosome aberrations. MATERIALS AND METHODS The study population included 170 radiation-exposed workers and 30 controls. We measured global, long interspersed nuclear element-1 (LINE-1), and satellite 2 methylation levels in blood leukocyte DNA. The analysis of chromosome aberrations was performed on peripheral lymphocytes. RESULTS Global DNA methylation levels were lower in radiation-exposed workers than in controls. The methylation levels were negatively associated with the recent 1.5-year radiation dose in a multiple linear regression model (β = - 0.0088, p ≤ 0.001); the levels increased proportionally with the total cumulative dose in radiation-exposed workers. LINE-1 methylation levels were higher in radiation-exposed workers than in controls and were significantly associated with the total cumulative radiation dose in a multiple linear regression model (β = - 0.031, p = 0.035). Global DNA methylation levels were also correlated with chromosome aberrations among workers. Workers with low global methylation levels had a higher frequency of chromosome aberrations than did subjects with high global methylation levels. CONCLUSION Occupational exposure to low-dose radiation could affect DNA methylation levels, and the radiation-induced DNA methylation alterations may be associated with chromosome aberrations.
Collapse
Affiliation(s)
- Younghyun Lee
- School of Public Health and Institute of Health and Environment, Seoul National University , Gwanak-gu, Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Hemminki K, Rachakonda S, Musak L, Vymetalkova V, Halasova E, Försti A, Vodickova L, Buchancova J, Vodicka P, Kumar R. Telomere length in circulating lymphocytes: Association with chromosomal aberrations. Genes Chromosomes Cancer 2014; 54:194-6. [PMID: 25428887 DOI: 10.1002/gcc.22225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center Heidelberg, (DKFZ), Im Neuenheimer Feld 580, 69121, Heidelberg, Germany; Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Neale RE, Clark PJ, Fawcett J, Fritschi L, Nagler BN, Risch HA, Walters RJ, Crawford WJ, Webb PM, Whiteman DC, Buchanan DD. Association between hypermethylation of DNA repetitive elements in white blood cell DNA and pancreatic cancer. Cancer Epidemiol 2014; 38:576-82. [DOI: 10.1016/j.canep.2014.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/28/2022]
|