1
|
Kim S, Kang SW, Kim SE, Kim HJ, Kim SA, Lee YW, Kim EY, Shin C, Lee HW. Genome-wide identification and functional validation of the WW domain containing oxidoreductase gene associated with sleep duration. Sci Rep 2025; 15:5552. [PMID: 39952983 PMCID: PMC11828923 DOI: 10.1038/s41598-024-81158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
Individual differences in sleep duration have been reported, and genetic components of sleep duration have been identified showing various heritability. To identify genetic variants that contribute to sleep duration, we conducted a human genome-wide identification on sleep duration and performed confirmatory experiments using a Drosophila model. Genome-wide association study in human was analyzed to determine the association of the genetic variants with self-aware sleep duration from two community-based cohort, Ansan (cohort 1, n = 4635) and Ansung (cohort 2, n = 4205), recruited from the Korean Genome and Epidemiology Study. Individual single nucleotide variants (rs16948804 and rs4887991) in the WW domain containing oxidoreductase (WWOX) gene were associated with self-aware sleep duration in human (p-values, 1.11 × 10- 7 and 2.05 × 10- 7, retrospectively). To examine the functional relevance of the WWOX gene identified in the genome-wide association study, we analyzed the sleep duration of Drosophila loss-of-function mutants. The deletion of Wwox in flies reduced sleep duration and quality with average bout length during daytime and increased night-time sleep duration (all of p-values < 0.01). Our findings suggested that WWOX expression is associated with sleep duration in both humans and Drosophila and genetic factors play a role in inter-individual variability in sleep characteristics.
Collapse
Affiliation(s)
- Soriul Kim
- Department of Paramedicine, Seowon University, Cheongju, South Korea
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Song E Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Hyeon Jin Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Department of Neurology, Asan Medical Center, Seoul, South Korea
| | - Sol Ah Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Yae Won Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea.
- Institute of Human Genomic Study, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Hyang Woon Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
- Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul, South Korea.
- Artificial Intelligence Convergence Graduate Programs, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
2
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
3
|
Hussain T, Sanchez K, Crayton J, Saha D, Jeter C, Lu Y, Abba M, Seo R, Noebels JL, Fonken L, Aldaz CM. WWOX P47T partial loss-of-function mutation induces epilepsy, progressive neuroinflammation, and cerebellar degeneration in mice phenocopying human SCAR12. Prog Neurobiol 2023; 223:102425. [PMID: 36828035 PMCID: PMC10835625 DOI: 10.1016/j.pneurobio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Crayton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata 1900, Argentina
| | - Ryan Seo
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
4
|
The WWOX/HIF1A Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063326. [PMID: 35328751 PMCID: PMC8955937 DOI: 10.3390/ijms23063326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.
Collapse
|
5
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells 2021; 10:cells10071637. [PMID: 34210081 PMCID: PMC8305172 DOI: 10.3390/cells10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.
Collapse
|
7
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Fragile Gene WWOX Guides TFAP2A/ TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer. Front Oncol 2021; 11:621060. [PMID: 33718178 PMCID: PMC7947623 DOI: 10.3389/fonc.2021.621060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer. METHODS RT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth. RESULTS WWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate. CONCLUSION Co-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Łódź, Poland
| | | | | | | |
Collapse
|
8
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
9
|
Kośla K, Płuciennik E, Styczeń-Binkowska E, Nowakowska M, Orzechowska M, Bednarek AK. The WWOX Gene Influences Cellular Pathways in the Neuronal Differentiation of Human Neural Progenitor Cells. Front Cell Neurosci 2019; 13:391. [PMID: 31543760 PMCID: PMC6730490 DOI: 10.3389/fncel.2019.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
The brain is the most functionally organized structure of all organs. It manages behavior, perception and higher cognitive functions. The WWOX gene is non-classical tumor suppressor gene, which has been shown to have an impact on proliferation, apoptosis and migration processes. Moreover, genetic aberrations in WWOX induce severe neuropathological phenotypes in humans and rodents. The aim of the present study was to investigate in detail the impact of WWOX on human neural progenitor cell (hNPC) maintenance and how depletion of WWOX disturbs signaling pathways playing a pivotal role in neuronal differentiation and central nervous system (CNS) organogenesis. hNPC with a silenced WWOX gene exhibited lowered mitochondrial redox potential, enhanced adhesion to fibronectin and extracellular matrix protein mixture, downregulation of MMP2/9 expression and impaired 3D growth. Global transcriptome analysis using cap analysis of gene expression (CAGE) found that WWOX downregulation significantly changes the expression of multiple genes engaged in cytoskeleton organization, adhesion, cell signaling and chromatin remodeling. The massive changes in gene expression caused by WWOX silencing may strongly affect the differentiation and migration of neurons in organogenesis, brain injury, cancerogenesis or neurodifferentiation. WWOX gene appears to be an important regulator of neural tissue architecture and function.
Collapse
Affiliation(s)
- Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | | | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
10
|
Strategies by which WWOX-deficient metastatic cancer cells utilize to survive via dodging, compromising, and causing damage to WWOX-positive normal microenvironment. Cell Death Discov 2019; 5:97. [PMID: 31123603 PMCID: PMC6529460 DOI: 10.1038/s41420-019-0176-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Proapoptotic tumor suppressor WWOX is upregulated in the early stage of cancer initiation, which probably provides limitation to cancer growth and progression. Later, WWOX protein is reduced to enhance cancer cell growth, migration, invasiveness and metastasis. To understand how WWOX works in controlling cancer progression, here we demonstrate that apoptotic stress mediated by ectopic WWOX stimulated cancer cells to secrete basic fibroblast growth factor (bFGF) in order to support capillary microtubule formation. This event may occur in the cancer initiation stage. Later, when WWOX loss occurs in cancer cells, hyaluronidase production is then increased in the cancer cells to facilitate metastasis. We determined that inhibition of membrane hyaluronidase Tyr216-phosphorylated Hyal-2 by antibody suppresses cancer growth in vivo. WWOX-negative (WWOX-) cells dodged WWOX+cells in the microenvironment by migrating individually backward to avoid physical contacts and yet significantly upregulating the redox activity of WWOX+parental cells or other WWOX+cell types for causing apoptosis. Upon detecting the presence of WWOX+cells from a distance, WWOX- cells exhibit activation of MIF, Hyal-2, Eph, and Wnt pathways, which converges to MEK/ERK signaling and enables WWOX- cells to evade WWOX+cells. Inhibition of each pathway by antibody or specific chemicals enables WWOX- cells to merge with WWOX+cells. In addition, exogenous TGF-β assists WWOX- cells to migrate collectively forward and merge with WWOX+cells. Metastatic WWOX- cancer cells frequently secrete high levels of TGF-β, which conceivably assists them to merge with WWOX+cells in target organs and secure a new home base in the WWOX+microenvironment. Together, loss of WWOX allows cancer cells to develop strategies to dodge, compromise and even kill WWOX-positive cells in microenvironment.
Collapse
|
11
|
Hussain T, Lee J, Abba MC, Chen J, Aldaz CM. Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved. Front Oncol 2018; 8:591. [PMID: 30619736 PMCID: PMC6300487 DOI: 10.3389/fonc.2018.00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
It has become clear from multiple studies that WWOX (WW domain-containing oxidoreductase) operates as a "non-classical" tumor suppressor of significant relevance in cancer progression. Additionally, WWOX has been recognized for its role in a much wider array of human pathologies including metabolic conditions and central nervous system related syndromes. A myriad of putative functional roles has been attributed to WWOX mostly through the identification of various binding proteins. However, the reality is that much remains to be learned on the key relevant functions of WWOX in the normal cell. Here we employed a Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach in order to better define direct WWOX protein interactors and by extension interaction with multiprotein complexes under physiological conditions on a proteomic scale. This work led to the identification of both well-known, but more importantly novel high confidence WWOX interactors, suggesting the involvement of WWOX in specific biological and molecular processes while delineating a comprehensive portrait of WWOX protein interactome. Of particular relevance is WWOX interaction with key proteins from the endoplasmic reticulum (ER), Golgi, late endosomes, protein transport, and lysosomes networks such as SEC23IP, SCAMP3, and VOPP1. These binding partners harbor specific PPXY motifs which directly interact with the amino-terminal WW1 domain of WWOX. Pathway analysis of WWOX interactors identified a significant enrichment of metabolic pathways associated with proteins, carbohydrates, and lipids breakdown. Thus, suggesting that WWOX likely plays relevant roles in glycolysis, fatty acid degradation and other pathways that converge primarily in Acetyl-CoA generation, a fundamental molecule not only as the entry point to the tricarboxylic acid (TCA) cycle for energy production, but also as the key building block for de novo synthesis of lipids and amino acids. Our results provide a significant lead on subsets of protein partners and enzymatic complexes with which full-length WWOX protein interacts with in order to carry out its metabolic and other biological functions while also becoming a valuable resource for further mechanistic studies.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata, Argentina
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
12
|
Liu CC, Ho PC, Lee IT, Chen YA, Chu CH, Teng CC, Wu SN, Sze CI, Chiang MF, Chang NS. WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Front Neurosci 2018; 12:563. [PMID: 30158849 PMCID: PMC6104168 DOI: 10.3389/fnins.2018.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Abu-Remaileh M, Khalaileh A, Pikarsky E, Aqeilan RI. WWOX controls hepatic HIF1α to suppress hepatocyte proliferation and neoplasia. Cell Death Dis 2018; 9:511. [PMID: 29724996 PMCID: PMC5938702 DOI: 10.1038/s41419-018-0510-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
Liver cancer is one of the most lethal malignancies with very poor prognosis once diagnosed. The most common form of liver cancer is hepatocellular carcinoma (HCC). The WW domain-containing oxidoreductase (WWOX) is a large gene that is often perturbed in a wide variety of tumors, including HCC. WWOX has been shown to act as a tumor suppressor modulating cellular metabolism via regulating hypoxia-inducible factor 1α (HIF-1α) levels and function. Given that WWOX is commonly inactivated in HCC, we set to determine whether specific targeted deletion of murine Wwox affects liver biology and HCC development. WWOX liver-specific knockout mice (Wwox ΔHep ) showed more potent liver regeneration potential and enhanced proliferation as compared with their control littermates. Moreover, WWOX deficiency in hepatocytes combined with diethylnitrosamine treatment increased the tumor burden, which was associated with increased HIF1α levels and target gene transactivation. Inhibition of HIF1α by systemic treatment with digoxin significantly delayed HCC formation. Our work suggests that WWOX inactivation has a central role in promoting HCC through rewiring of cellular metabolism and modulating proliferation.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Diet, High-Fat/adverse effects
- Diethylnitrosamine/pharmacology
- Digoxin/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- WW Domain-Containing Oxidoreductase/deficiency
- WW Domain-Containing Oxidoreductase/genetics
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hebrew University-Hadassah Medical, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Chen W, Zhou C, Zhang W, Atyah M, Yin Y, Guo L, Tang W, Dong Q, Ye Q, Ren N. Association of WWOX rs9926344 polymorphism with poor prognosis of hepatocellular carcinoma. J Cancer 2018; 9:1239-1247. [PMID: 29675105 PMCID: PMC5907672 DOI: 10.7150/jca.23808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction: The WW domain-containing oxidoreductase (WWOX), widely expressed in human tissues, is considered as a tumor suppressor gene and plays an important role in the incidence and progression of human cancer, HCC included. This study was to investigate the correlation between single nucleotide polymorphisms (SNPs) of the WWOX gene and the prognosis of hepatocellular carcinoma (HCC) patients. Materials and Methods: After a total of 152 HCC patients were recruited, 8 cases with tumor recurrence within 2-years after operation and 8 cases without recurrence were selected randomly for SNP genotyping and screening using Affymetrix Array 6.0. And then we confirmed candidate SNPs in the remaining 136 patients by time-of-flight mass spectrometry (TOF-MS). Results: In total, 32 SNPs were screened and identified as candidate SNPs with one SNP in particular, (rs9926344), being further verified to be valuable. We found that AA+AG genotype and A allele of WWOX rs9926344 were significantly associated with recurrent risk of HCC (p=0.002 and p=0.001, respectively). The Kaplan-Meier curve showed that patients carrying rs9926344 AA +AG genotype had poor RFS (P=0.004) and OS (P=0.005) compared to those carrying GG genotypes. The multivariate COX regression analysis showed that the AA+AG genotype were an independent prognostic factor for tumor recurrence (HR 1.787, 95% CI 1.042-3.064, P=0.035). Furthermore, IHC analysis showed that the WWOX protein down-regulation is more frequent in patients with AG genotype compared to those with GG genotype (P=0.023). Conclusion: Our findings indicate that WWOX rs9926344 polymorphism is positively correlated with tumor recurrence and can be used as an independent prognostic marker for HCC patients after operation.
Collapse
Affiliation(s)
- Wanyong Chen
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| | - Chenhao Zhou
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wentao Zhang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Manar Atyah
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yirui Yin
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Lei Guo
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Weiguo Tang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| | - Qiongzhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qinghai Ye
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| |
Collapse
|
15
|
Schrock MS, Batar B, Lee J, Druck T, Ferguson B, Cho JH, Akakpo K, Hagrass H, Heerema NA, Xia F, Parvin JD, Aldaz CM, Huebner K. Wwox-Brca1 interaction: role in DNA repair pathway choice. Oncogene 2017; 36:2215-2227. [PMID: 27869163 PMCID: PMC5398941 DOI: 10.1038/onc.2016.389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs). Cancer cells that survive radiation recur more rapidly in a xenograft model of irradiated breast cancer cells; Wwox-deficient cells exhibited significantly shorter tumor latencies vs Wwox-expressing cells. This Wwox effect has important consequences in human disease: in a cohort of cancer patients treated with radiation, Wwox deficiency significantly correlated with shorter overall survival times. In examining mechanisms underlying Wwox-dependent survival differences, we found that Wwox-deficient cells exhibit enhanced homology directed repair (HDR) and decreased non-homologous end-joining (NHEJ) repair, suggesting that Wwox contributes to DNA DSB repair pathway choice. Upon silencing of Rad51, a protein critical for HDR, Wwox-deficient cells were resensitized to radiation. We also demonstrated interaction of Wwox with Brca1, a driver of HDR, and show via immunofluorescent detection of repair proteins at ionizing radiation-induced DNA damage foci that Wwox expression suppresses DSB repair at the end-resection step of HDR. We propose a genome caretaker function for WWOX, in which Brca1-Wwox interaction supports NHEJ as the dominant DSB repair pathway in Wwox-sufficient cells. Taken together, the experimental results suggest that reduced Wwox expression, a common occurrence in cancers, dysregulates DSB repair, enhancing efficiency of likely mutagenic repair, and enabling radiation and cisplatin treatment resistance.
Collapse
Affiliation(s)
- M S Schrock
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - B Batar
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Lee
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - T Druck
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - B Ferguson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - J H Cho
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - K Akakpo
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - H Hagrass
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - N A Heerema
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - F Xia
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J D Parvin
- Division of Computational Biology and Bioinformatics, Department of Biomedical Informatics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - C M Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - K Huebner
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
16
|
Lee MH, Shih YH, Lin SR, Chang JY, Lin YH, Sze CI, Kuo YM, Chang NS. Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:189-204. [PMID: 29067327 PMCID: PMC5651433 DOI: 10.1016/j.trci.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction Zinc finger-like protein that regulates apoptosis (Zfra) is a naturally occurring 31-amino-acid protein. Synthetic peptides Zfra1–31 and Zfra4–10 are known to effectively block the growth of many types of cancer cells. Methods Ten-month-old triple-transgenic (3×Tg) mice for Alzheimer's disease (AD) received synthetic Zfra peptides via tail vein injections, followed by examining restoration of memory deficits. Results Zfra significantly downregulated TRAPPC6AΔ, SH3GLB2, tau, and amyloid β (Αβ) aggregates in the brains of 3×Tg mice and effectively restored their memory capabilities. Zfra inhibited melanoma-induced neuronal death in the hippocampus and plaque formation in the cortex. Mechanistically, Zfra blocked the aggregation of amyloid β 42 and many serine-containing peptides in vitro, suppressed tumor necrosis factor–mediated NF-κB activation, and bound cytosolic proteins for accelerating their degradation in ubiquitin/proteasome-independent manner. Discussion Zfra peptides exhibit a strong efficacy in blocking tau aggregation and amyloid Αβ formation and restore memory deficits in 3×Tg mice, suggesting its potential for treatment of AD.
Collapse
Affiliation(s)
- Ming-Hui Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yao-Hsiang Shih
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Sing-Ru Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jean-Yun Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Hao Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan, ROC.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| |
Collapse
|
17
|
Functions and Epigenetic Regulation of Wwox in Bone Metastasis from Breast Carcinoma: Comparison with Primary Tumors. Int J Mol Sci 2017; 18:ijms18010075. [PMID: 28045433 PMCID: PMC5297710 DOI: 10.3390/ijms18010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox). The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1) affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif) and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF) phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.
Collapse
|
18
|
Huang SS, Su WP, Lin HP, Kuo HL, Wei HL, Chang NS. Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J Biol Chem 2016; 291:17319-31. [PMID: 27339895 DOI: 10.1074/jbc.m116.716167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/24/2023] Open
Abstract
Whether tumor suppressor WWOX (WW domain-containing oxidoreductase) stimulates immune cell maturation is largely unknown. Here, we determined that Tyr-33-phosphorylated WWOX physically binds non-phosphorylated ERK and IκBα in immature acute lymphoblastic leukemia MOLT-4 T cells and in the naïve mouse spleen. The IκBα·ERK·WWOX complex was shown to localize, in part, in the mitochondria. WWOX prevents IκBα from proteasomal degradation. Upon stimulating MOLT-4 with ionophore A23187/phorbol myristate acetate, endogenous IκBα and ERK undergo rapid phosphorylation in <5 min, and subsequently WWOX is Tyr-33 and Tyr-287 de-phosphorylated and Ser-14 phosphorylated. Three hours later, IκBα starts to degrade, and ERK returns to basal or non-phosphorylation, and this lasts for the next 12 h. Finally, expression of CD3 and CD8 occurs in MOLT-4 along with reappearance of the IκBα·ERK·WWOX complex near 24 h. Inhibition of ERK phosphorylation by U0126 or IκBα degradation by MG132 prevents MOLT-4 maturation. By time-lapse FRET microscopy, IκBα·ERK·WWOX complex exhibits an increased binding strength by 1-2-fold after exposure to ionophore A23187/phorbol myristate acetate for 15-24 h. Meanwhile, a portion of ERK and WWOX relocates to the nucleus, suggesting their role in the induction of CD3 and CD8 expression in MOLT-4.
Collapse
Affiliation(s)
| | - Wan-Pei Su
- From the Institute of Molecular Medicine
| | | | | | | | - Nan-Shan Chang
- From the Institute of Molecular Medicine, Center of Infectious Disease and Signaling Research, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, New York 10314, Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
19
|
Zhang HF, Wang KH. Relationship between mutations of mitochondrial DNA control region and tumors. Shijie Huaren Xiaohua Zazhi 2016; 24:2676-2681. [DOI: 10.11569/wcjd.v24.i17.2676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is the main place of cell respiration and participates in the process of cell apoptosis and proliferation, nucleic acid synthesis, and the production of free radicals. Mitochondrial DNA (mtDNA) is susceptible to the attack by oxygen free radicals and their products, and tends to develop somatic mutations, because of the lack of protection by histones and complete repair system. Somatic mutations in mtDNA will finally promote tumorigenesis. The control region of mtDNA is a region with a high mutation frequency. The association between control region mutations and tumorigenesis has attracted wide attention. Therefore, it is of great significance to elucidate the relationship between mtDNA control region mutations and tumorigenesis.
Collapse
|
20
|
Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI. Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells. J Biol Chem 2015; 290:30728-35. [PMID: 26499798 DOI: 10.1074/jbc.r115.676346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.
Collapse
Affiliation(s)
| | - Emma Joy-Dodson
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Ora Schueler-Furman
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Rami I Aqeilan
- From the Departments of Immunology & Cancer Research and
| |
Collapse
|
21
|
O’Keefe LV, Lee CS, Choo A, Richards RI. Tumor Suppressor WWOX Contributes to the Elimination of Tumorigenic Cells in Drosophila melanogaster. PLoS One 2015; 10:e0136356. [PMID: 26302329 PMCID: PMC4547717 DOI: 10.1371/journal.pone.0136356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
WWOX is a >1Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX. Although its normal role in vivo and functional contribution to cancer have not been fully defined, WWOX does have an integral role in metabolism and can suppress tumor growth. Using Drosophila melanogaster as an in vivo model system, we find that WWOX is a modulator of TNFα/Egr-mediated cell death. We found that altered levels of WWOX can modify phenotypes generated by low level ectopic expression of TNFα/Egr and this corresponds to altered levels of Caspase 3 activity. These results demonstrate an in vivo role for WWOX in promoting cell death. This form of cell death is accompanied by an increase in levels of reactive oxygen species, the regulation of which we have previously shown can also be modified by altered WWOX activity. We now hypothesise that, through regulation of reactive oxygen species, WWOX constitutes a link between alterations in cellular metabolism observed in cancer cells and their ability to evade normal cell death pathways. We have further shown that WWOX activity is required for the efficient removal of tumorigenic cells from a developing epithelial tissue. Together these results provide a molecular basis for the tumor suppressor functions of WWOX and the better prognosis observed in cancer patients with higher levels of WWOX activity. Understanding the conserved cellular pathways to which WWOX contributes provides novel possibilities for the development of therapeutic approaches to restore WWOX function in cancer.
Collapse
Affiliation(s)
- Louise V. O’Keefe
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Amanda Choo
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Robert I. Richards
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|