1
|
Coyle KM, Dreval K, Hodson DJ, Morin RD. Audit of B-cell cancer genes. Blood Adv 2025; 9:2019-2031. [PMID: 39853274 PMCID: PMC12034075 DOI: 10.1182/bloodadvances.2022009461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
ABSTRACT Comprehensive genetic analysis of tumors with exome or whole-genome sequencing has enabled the identification of the genes that are recurrently mutated in cancer. This has stimulated a series of exciting advances over the past 15 years, guiding us to new molecular biomarkers and therapeutic targets among the common mature B-cell neoplasms. In particular, diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Burkitt lymphoma (BL) have each been the subject of considerable attention in this field. Currently, >850 genes have been reported as targets of protein-coding mutations in at least 1 of these entities. To reduce this to a manageable size, we describe a systematic approach to prioritize and categorize these genes, based on the quality and type of supporting data. For each entity, we provide a list of candidate driver genes categorized into Tier 1 (high-confidence genes), Tier 2 (candidate driver genes), or Tier 3 (lowest-confidence genes). Collectively, this reduces the number of high-confidence genes for these 3 lymphomas to a mere 144. This further affirms the substantial overlap between the genes relevant in DLBCL and each of FL and BL. These highly curated and annotated gene lists will continue to be maintained as a resource to the community. These results emphasize the extent of the knowledge gap regarding the role of each of these genes in lymphomagenesis. We offer our perspective on how to accelerate the experimental confirmation of drivers using a variety of model systems, using these lists as a guide for prioritizing genes.
Collapse
Affiliation(s)
- Krysta M. Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Daniel J. Hodson
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
2
|
Soma L, Crisan L, Reid J, Lee W, Song J, Afkhami M, Shouse G, Fei F, Danilova O, Pillai R, Zain J, Querfeld C. Epstein-Barr virus-positive, primary cutaneous marginal zone lymphoma, with transformation: Case report and review of the literature. Am J Clin Pathol 2025; 163:298-312. [PMID: 39290045 DOI: 10.1093/ajcp/aqae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Epstein-Barr Virus (EBV) positive primary cutaneous marginal zone lymphoma (PCMZL) is uncommon and subsequent transformation is rare. METHODS We report a patient with EBV positive PCMZL with subsequent transformation to plasmablastic lymphoma and review the literature for transformed PCMZL to assess clinical and pathologic characteristics. In the case we describe, the patient presented with multifocal PCMZL, developed large B cell transformation with plasmacytic differentiation, followed by plasmablastic transformation (PBL), and ultimately died of disease progression despite multiple lines of therapy. Past history was significant for psoriatic arthritis (multiple prior lines of immunomodulatory therapy). The lymphomas and non-involved bone marrow share the same somatic DNMT3A and TET2 mutations, suggesting clonal relatedness and an association with clonal hematopoiesis (CH). RESULTS Eighteen cases comprised the cohort (seventeen cases from the literature and the case reported herein). Nearly half of the eighteen cases of PCMZL with transformation died of progressive disease (44%). Transformed cases were more commonly seen in patients with >2 sites at initial diagnosis. EBV was assessed in 5 patients, 3 were positive (all died of disease). Two patients with NGS studies demonstrated TET2 and DNMT3A mutations. CONCLUSIONS Transformation of EBV positive PCMZL appears to be a poor prognostic indicator, with our reported case being the first well defined case transformed to PBL, suspected to arise from myeloid-CH.
Collapse
Affiliation(s)
- Lori Soma
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Liliana Crisan
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Jack Reid
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Winston Lee
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Joo Song
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Michelle Afkhami
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Geoffrey Shouse
- Department of Hematology and Hematopoietic Cell Transplant, Division of Lymphoma, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Fei Fei
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Olga Danilova
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Raju Pillai
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Jasmin Zain
- Department of Hematology and Hematopoietic Cell Transplant, Division of Lymphoma, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Christiane Querfeld
- Department of Pathology, Division of Dermatology, Department of Hematology and Hematopoietic Cell Transplantation, and Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| |
Collapse
|
3
|
Zhang T, Wang YF, Montoya A, Patrascan I, Nebioglu N, Pallikonda HA, Georgieva R, King JWD, Kramer HB, Shliaha PV, Rueda DS, Merkenschlager M. Conserved helical motifs in the IKZF1 disordered region mediate NuRD interaction and transcriptional repression. Blood 2025; 145:422-437. [PMID: 39437550 PMCID: PMC7617475 DOI: 10.1182/blood.2024024787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The transcription factor (TF) Ikaros zinc finger 1 (IKZF1) is essential for B-cell development, and recurrently mutated in human B-cell acute lymphoblastic leukemia (B-ALL). IKZF1 has been ascribed both activating and repressive functions via interactions with coactivator and corepressor complexes, but the relative abundance of IKZF1-associated coregulators and their contribution to IKZF1-mediated gene regulation are not well understood. To address this, we performed an unbiased identification of IKZF1-interacting proteins in pre-B cells and found that IKZF1 interacts overwhelmingly with corepressors and heterochromatin-associated proteins. Time-resolved analysis of transcription and chromatin state identified transcriptional repression as the immediate response to IKZF1 induction. Transcriptional repression preceded transcriptional activation by several hours, manifesting as a decrease in the fraction of transcriptional bursts at the single-molecule level. Repression was accompanied by a rapid loss of chromatin accessibility and reduced levels of histone H3 lysine 27 acetylation (H3K27ac), particularly at enhancers. We identified highly conserved helical motifs within the intrinsically disordered region of IKZF1 that mediate its association with the nucleosome remodeling and deacetylase (NuRD) corepressor complex through critical "KRK" residues that bind the NuRD subunit retinoblastoma binding protein 4 (RBBP4), a mechanism shared with the TFs FOG1, BCL11A, and SALL4. Functional characterization reveals that this region is necessary for the efficient silencing of target genes and antiproliferative functions of IKZF1 in B-ALL.
Collapse
Affiliation(s)
- Tianyi Zhang
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Yi-Fang Wang
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Alex Montoya
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Ilinca Patrascan
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Nehir Nebioglu
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Husayn A. Pallikonda
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Radina Georgieva
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - James WD King
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Holger B. Kramer
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Pavel V. Shliaha
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - David S. Rueda
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
- Section of Virology, Department of Infectious Disease, Imperial College London, Du Cane Road, LondonW12 0HS
| | - Matthias Merkenschlager
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| |
Collapse
|
4
|
Hersby DS, Schejbel L, Breinholt MF, Høgdall E, Nørgaard P, Nielsen TH, Pedersen LM, Gang AO. Mutational heterogeneity in large B-cell lymphoma: insights from paired biopsies. Ann Hematol 2024:10.1007/s00277-024-06108-w. [PMID: 39644335 DOI: 10.1007/s00277-024-06108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Large B-cell lymphoma (LBCL) exhibits striking clinical and molecular heterogeneity. New approaches have emerged to explore tumor heterogeneity and classify LBCL into biological categories. Consequently, the informational requirements from diagnostic samples to provide the necessary information have increased, but the adequacy of single-site biopsies to provide such information is largely unknown. Here we describe spatial and temporal intra-patient variations in the mutational landscape of paired biopsies. METHODS Paired biopsies from 30 patients with LBCL were obtained from spatially distinct sites at the time of primary diagnosis before treatment and/or at a subsequent relapse. The samples were sequenced using a custom designed 59-gene next generation sequencing (NGS) lymphoma panel. RESULTS Differences in detected mutations of pathogenic or likely pathogenic significance were frequent both when comparing paired diagnostic biopsies, 2/6 (33%), and when comparing paired biopsies at primary diagnosis and relapse, 8/16 (50%). Mutational heterogeneity tended to increase with longer time interval between biopsies. Analysis of paired diagnostic and relapse biopsies revealed that certain clones present at diagnosis disappeared, while new clones emerged at relapse. Notably, TP53 mutations were detected in six out of seven patients in an extranodal location. In two cases, TP53 mutation was only detected in the relapse biopsy. Several of the mutations identified in this study are used or under investigation as targets for cancer treatments. CONCLUSION Multi-site biopsies revealed spatial and temporal mutational heterogeneity in patients with LBCL. Our findings indicate that mutational differences between biopsy pairs can occur at all timepoints examined. This underscores the necessity of performing repeat biopsies with each relapse to capture the full spectrum of genetic aberrations.
Collapse
Affiliation(s)
| | - Lone Schejbel
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Fredslund Breinholt
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Nørgaard
- Department of Pathology, Hvidovre Hospitalet, Hvidovre, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| | - Lars Møller Pedersen
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Gao Q, Wang X, Zhang Y, Wen J, Wang F, Lin Z, Feng Y, Huang J, Li Q, Luo H, Liu X, Zhai X, Li L, He S, Mi Z, Zhang L, Niu T, Xu C, Zheng Y. Ferroptosis-related prognostic model of mantle cell lymphoma. Open Med (Wars) 2024; 19:20241090. [PMID: 39588389 PMCID: PMC11587922 DOI: 10.1515/med-2024-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell non-Hodgkin's lymphoma. Ferroptosis, an iron-dependent programmed cell death, is closely related to cancer prognosis. In this study, we established a model of ferroptosis related genes for prognostic evaluation of patients with MCL. Methods Using the single-cell RNA sequencing datasets GSE184031 and mRNA sequencing data GSE32018 from the Gene Expression Omnibus, we identified 139 ferroptosis-related genes in MCL. Next a prognostic model was constructed by Cox regression and Least absolute selection and shrinkage Operator regression analysis. Finally, we used CIBERSORT to analyze the immune microenvironment and the "oncoPredict" package to predict potential drugs. Results In our model, the prognosis of MCL patients was assessed by risk scoring using 7 genes ANXA1, IL1B, YBX1, CCND1, MS4A1, MFHAS1, and RILPL2. The patients were divided into high-risk and low-risk groups based on our model, and the high-risk patients had inferior overall survival. Finally, according to our model and computational drug sensitivity analysis, four small molecule compounds, BMS-754807, SB216763, Doramapimod, and Trametinib, were identified as potential therapeutic agents for patients with MCL. Conclusion In summary, we provide a prognostic model with ferroptosis-related gene signature for MCL. This study provides a prognostic model with ferroptosis-related gene signature for MCL. The results show that the model helps predict prognosis in MCL.
Collapse
Affiliation(s)
- Qianwen Gao
- Department of Biology, School of Life Science, Sichuan University, Chengdu, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, Mian-yang Central Hospital, Mianyang, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siyao He
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyue Mi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| |
Collapse
|
6
|
Choi J, Ceribelli M, Phelan JD, Häupl B, Huang DW, Wright GW, Hsiao T, Morris V, Ciccarese F, Wang B, Corcoran S, Scheich S, Yu X, Xu W, Yang Y, Zhao H, Zhou J, Zhang G, Muppidi J, Inghirami GG, Oellerich T, Wilson WH, Thomas CJ, Staudt LM. Molecular targets of glucocorticoids that elucidate their therapeutic efficacy in aggressive lymphomas. Cancer Cell 2024; 42:833-849.e12. [PMID: 38701792 PMCID: PMC11168741 DOI: 10.1016/j.ccell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4). GR directly represses transcription of CSK, a kinase that limits the activity of BCR-proximal Src-family kinases. CSK inhibition attenuates the constitutive BCR signaling of lymphomas by hyperactivating Src-family kinases, triggering their ubiquitination and degradation. With the knowledge that glucocorticoids disable oncogenic BCR signaling, they can now be deployed rationally to treat BCR-dependent aggressive lymphomas and used to construct mechanistically sound combination regimens with inhibitors of BTK, PI3 kinase, BCL2, and CSK.
Collapse
MESH Headings
- Humans
- Glucocorticoids/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Animals
- Signal Transduction/drug effects
- Receptors, Glucocorticoid/metabolism
- Mice
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Molecular Targeted Therapy/methods
- Phosphatidylinositol 3-Kinases/metabolism
- src-Family Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George W Wright
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Ciccarese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ren W, Wan H, Own SA, Berglund M, Wang X, Yang M, Li X, Liu D, Ye X, Sonnevi K, Enblad G, Amini RM, Sander B, Wu K, Zhang H, Wahlin BE, Smedby KE, Pan-Hammarström Q. Genetic and transcriptomic analyses of diffuse large B-cell lymphoma patients with poor outcomes within two years of diagnosis. Leukemia 2024; 38:610-620. [PMID: 38158444 PMCID: PMC10912034 DOI: 10.1038/s41375-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Despite the improvements in clinical outcomes for DLBCL, a significant proportion of patients still face challenges with refractory/relapsed (R/R) disease after receiving first-line R-CHOP treatment. To further elucidate the underlying mechanism of R/R disease and to develop methods for identifying patients at risk of early disease progression, we integrated clinical, genetic and transcriptomic data derived from 2805 R-CHOP-treated patients from seven independent cohorts. Among these, 887 patients exhibited R/R disease within two years (poor outcome), and 1918 patients remained in remission at two years (good outcome). Our analysis identified four preferentially mutated genes (TP53, MYD88, SPEN, MYC) in the untreated (diagnostic) tumor samples from patients with poor outcomes. Furthermore, transcriptomic analysis revealed a distinct gene expression pattern linked to poor outcomes, affecting pathways involved in cell adhesion/migration, T-cell activation/regulation, PI3K, and NF-κB signaling. Moreover, we developed and validated a 24-gene expression score as an independent prognostic predictor for treatment outcomes. This score also demonstrated efficacy in further stratifying high-risk patients when integrated with existing genetic or cell-of-origin subtypes, including the unclassified cases in these models. Finally, based on these findings, we developed an online analysis tool ( https://lymphprog.serve.scilifelab.se/app/lymphprog ) that can be used for prognostic prediction for DLBCL patients.
Collapse
Affiliation(s)
- Weicheng Ren
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sulaf Abd Own
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Berglund
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingyu Yang
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaobo Li
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Dongbing Liu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Kristina Sonnevi
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Kui Wu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Xia Y, Zhang L, He W, Pan H, Fang J, Cui G. Acquired resistance to crizotinib in novel CDK14-ALK and CLTC-ALK fusions of ALK-positive large B-cell lymphoma identified by next-generation sequencing. Cancer Biol Ther 2023; 24:2271212. [PMID: 37906510 PMCID: PMC10761012 DOI: 10.1080/15384047.2023.2271212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/27/2023] [Indexed: 11/02/2023] Open
Abstract
Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+ LBCL) is a rare subtype of non-Hodgkin lymphoma. ALK inhibitors are being tried to treat recurrent/refractory ALK+ LBCL. A majority of patients with ALK+ tumors respond to crizotinib, but partial cases ultimately develop resistance about a year later. Here, we report a case of ALK+ LBCL carrying a new fusion gene involving CDK14 and ALK, CLTC-ALK gene rearrangements and MTOR gene mutation. The patient had progressive disease after combination of crizotinib and chemotherapy treatment about 5.5 months later, accompanied by reduced abundance of CDK14-ALK, increased abundance of CLTC-ALK and a novel MFHAS1 gene mutation. However, MTOR mutation turned negative. The patient received alectinib combined with hyper-CVAD, then followed by alectinib as monotherapy for 21 months. The patient achieved partial response and remained in a stable condition. This case suggests that CDK14-ALK fusion gene may be more sensitive to crizotinib than CLTC-ALK fusion gene. MTOR is associated with the anti-tumor mechanism of ALK inhibitors. MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib. Furthermore, alectinib may inhibit the carcinogenicity of these gene changes and improve the prognosis of ALK+ LBCL.
Collapse
Affiliation(s)
- Yuxue Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hematology, Dabieshan District Medical Center, Huanggang, China
| | - Lu Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Cui
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Schleussner N, Cauchy P, Franke V, Giefing M, Fornes O, Vankadari N, Assi SA, Costanza M, Weniger MA, Akalin A, Anagnostopoulos I, Bukur T, Casarotto MG, Damm F, Daumke O, Edginton-White B, Gebhardt JCM, Grau M, Grunwald S, Hansmann ML, Hartmann S, Huber L, Kärgel E, Lusatis S, Noerenberg D, Obier N, Pannicke U, Fischer A, Reisser A, Rosenwald A, Schwarz K, Sundararaj S, Weilemann A, Winkler W, Xu W, Lenz G, Rajewsky K, Wasserman WW, Cockerill PN, Scheidereit C, Siebert R, Küppers R, Grosschedl R, Janz M, Bonifer C, Mathas S. Transcriptional reprogramming by mutated IRF4 in lymphoma. Nat Commun 2023; 14:6947. [PMID: 37935654 PMCID: PMC10630337 DOI: 10.1038/s41467-023-41954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Medical Center Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vedran Franke
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marco G Casarotto
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Benjamin Edginton-White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Michael Grau
- Department of Physics, University of Marburg, 35052, Marburg, Germany
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Grunwald
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lionel Huber
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simone Lusatis
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Daniel Noerenberg
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anja Reisser
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Srinivasan Sundararaj
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andre Weilemann
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wiebke Winkler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Wendan Xu
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125, Berlin, Germany
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Ralf Küppers
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany.
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Rodrigo JA, Song K, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse Timing Is Associated With Distinct Evolutionary Dynamics in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2023; 41:4164-4177. [PMID: 37319384 PMCID: PMC10852398 DOI: 10.1200/jco.23.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here, we sought to confirm the relationship between relapse timing and outcomes after second-line (immuno)chemotherapy and determine the evolutionary dynamics that underpin that relationship. PATIENTS AND METHODS Outcomes were examined in a population-based cohort of 221 patients with DLBCL who experienced progression/relapse after frontline treatment and were treated with second-line (immuno)chemotherapy with an intention-to-treat with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a partially overlapping cohort of 129 patients underwent molecular characterization, including whole-genome or whole-exome sequencing in 73 patients. RESULTS Outcomes to second-line therapy and ASCT are superior for late relapse (>2 years postdiagnosis) versus primary refractory (<9 months) or early relapse (9-24 months). Diagnostic and relapse biopsies were mostly concordant for cell-of-origin classification and genetics-based subgroup. Despite this concordance, the number of mutations exclusive to each biopsy increased with time since diagnosis, and late relapses shared few mutations with their diagnostic counterpart, demonstrating a branching evolution pattern. In patients with highly divergent tumors, many of the same genes acquired new mutations independently in each tumor, suggesting that the earliest mutations in a shared precursor cell constrain tumor evolution toward the same genetics-based subgroups at both diagnosis and relapse. CONCLUSION These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease and have implications for optimal patient management.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith A. Rodrigo
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin Song
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Maura F, Ziccheddu B, Xiang JZ, Bhinder B, Rosiene J, Abascal F, Maclachlan KH, Eng KW, Uppal M, He F, Zhang W, Gao Q, Yellapantula VD, Trujillo-Alonso V, Park SI, Oberley MJ, Ruckdeschel E, Lim MS, Wertheim GB, Barth MJ, Horton TM, Derkach A, Kovach AE, Forlenza CJ, Zhang Y, Landgren O, Moskowitz CH, Cesarman E, Imielinski M, Elemento O, Roshal M, Giulino-Roth L. Molecular Evolution of Classic Hodgkin Lymphoma Revealed Through Whole-Genome Sequencing of Hodgkin and Reed Sternberg Cells. Blood Cancer Discov 2023; 4:208-227. [PMID: 36723991 PMCID: PMC10150291 DOI: 10.1158/2643-3230.bcd-22-0128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Bachisio Ziccheddu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jenny Z. Xiang
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Joel Rosiene
- Weill Cornell Medical College, New York, New York
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Manik Uppal
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Feng He
- Weill Cornell Medical College, New York, New York
| | - Wei Zhang
- Weill Cornell Medical College, New York, New York
| | - Qi Gao
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D. Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology and Laboratory Medicine at Children's Hospital Los Angeles, Los Angeles, California
| | | | - Sunita I. Park
- Department of Pathology, Children's Hospital of Atlanta, Atlanta, Georgia
| | | | | | - Megan S. Lim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Gerald B. Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Matthew J. Barth
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Andriy Derkach
- Department of Epidemiology and Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Yanming Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Craig H. Moskowitz
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Marcin Imielinski
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Mikhail Roshal
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
12
|
Michot JM, Quivoron C, Sarkozy C, Danu A, Lazarovici J, Saleh K, El-Dakdouki Y, Goldschmidt V, Bigenwald C, Dragani M, Bahleda R, Baldini C, Arfi-Rouche J, Martin-Romano P, Tselikas L, Gazzah A, Hollebecque A, Lacroix L, Ghez D, Vergé V, Marzac C, Cotteret S, Rahali W, Soria JC, Massard C, Bernard OA, Dartigues P, Camara-Clayette V, Ribrag V. Sequence analyses of relapsed or refractory diffuse large B-cell lymphomas unravel three genetic subgroups of patients and the GNA13 mutant as poor prognostic biomarker, results of LNH-EP1 study. Am J Hematol 2023; 98:645-657. [PMID: 36606708 DOI: 10.1002/ajh.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Advances in molecular profiling of newly diagnosed diffuse large B-cell lymphoma (DLBCL) have recently refine genetic subgroups. Genetic subgroups remain undetermined at the time of relapse or refractory (RR) disease. This study aims to decipher genetic subgroups and search for prognostic molecular biomarkers in patients with RR-DLBCL. From 2015 to 2021, targeted next-generation sequencing analyses of germline-matched tumor samples and fresh tissue from RR-DLBCL patients were performed. Unsupervised clustering of somatic mutations was performed and correlations with patient outcome were sought. A number of 120 patients with RR-DLBCL were included in LNH-EP1 study and a molecular tumor landscape was successfully analyzed in 87% of patients (104/120 tumor samples). The median age was 67.5 years (range 27.4-87.4), median number of previous treatments was 2 (range 1-9). The most frequently mutated genes were TP53 (n = 53 mutations; 42% of samples), CREBBP (n = 39; 32%), BCL2 (n = 86; 31%), KMT2D (n = 39; 28%) and PIM1 (n = 54; 22%). Unsupervised clustering separated three genetic subgroups entitled BST (enriched in BCL2, SOCS1, and TNFRSF14 mutations); TKS (enriched in TP53, KMT2D, and STAT6 mutations); and PCM (enriched in PIM1, CD79B, and MYD88 mutations). Median overall survival (OS) was 11.0 (95% confidence interval [CI]: 8.1-12.6) months. OS was not significantly different between the three genetic subgroups. GNA13 mutant was significantly associated with an increased risk of death (hazard ratio: 6.6 [95% CI: 2.1-20.6]; p = .0011) and shorter OS (p = .0340). At the time of relapse or refractory disease, three genetic subgroups of DLBCL patients were delineated, which could help advance precision molecular medicine programs.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Clémentine Sarkozy
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Alina Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Khalil Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Vincent Goldschmidt
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | - Matteo Dragani
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | | | | | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - David Ghez
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Veronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Wassila Rahali
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Peggy Dartigues
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
13
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse timing is associated with distinct evolutionary dynamics in DLBCL. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286584. [PMID: 36945587 PMCID: PMC10029038 DOI: 10.1101/2023.03.06.23286584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is cured in over 60% of patients, but outcomes are poor for patients with relapsed or refractory disease (rrDLBCL). Here, we performed whole genome/exome sequencing (WGS/WES) on tumors from 73 serially-biopsied patients with rrDLBCL. Based on the observation that outcomes to salvage therapy/autologous stem cell transplantation are related to time-to-relapse, we stratified patients into groups according to relapse timing to explore the relationship to genetic divergence and sensitivity to salvage immunochemotherapy. The degree of mutational divergence increased with time between biopsies, yet tumor pairs were mostly concordant for cell-of-origin, oncogene rearrangement status and genetics-based subgroup. In patients with highly divergent tumors, several genes acquired exclusive mutations independently in each tumor, which, along with concordance of genetics-based subgroups, suggests that the earliest mutations in a shared precursor cell constrain tumor evolution. These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Bende RJ, Slot LM, Kwakkenbos MJ, Wormhoudt TA, Jongejan A, Verstappen GM, van Kampen AC, Guikema JE, Kroese FG, van Noesel CJ. Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome. J Pathol 2023; 259:264-275. [PMID: 36426826 PMCID: PMC10108009 DOI: 10.1002/path.6039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Linda M Slot
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | | | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoine Cm van Kampen
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Biosystems Data analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Frans Gm Kroese
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
15
|
Mamgain G, Naithani M, Patra P, Mamgain M, Morang S, Nayak J, Kumar K, Singh S, Bakliwal A, Rajoreya A, Vaniyath S, Chattopadhyay D, Chetia R, Gupta A, Dhingra G, Sundriyal D, Nath UK. Next-Generation Sequencing Highlights of Diffuse Large B-cell Lymphoma in a Tertiary Care Hospital in North India. Cureus 2022; 14:e28241. [PMID: 36158348 PMCID: PMC9489829 DOI: 10.7759/cureus.28241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Next-generation sequencing (NGS) elucidates the diffuse large B-cell lymphoma (DLBCL) genetic characteristics by finding recurrent and novel somatic mutations. This observational study attempted to create an NGS panel with a focus on identifying novel somatic mutations which could have potential clinical and therapeutic implications. This panel was created to look for mutations in 133 genes chosen on basis of a literature review and it was used to sequence the tumor DNA of 20 DLBCL patients after a centralized histopathologic review. Methods: The study included 20 patients having DLBCL. The quality and quantity of tumor cells were accessed by H&E staining and correlated with histopathology and Immunohistochemistry (IHC) status. Patients were grouped as ABC (activated B-cell), PMBL (primary mediastinal large B-cell lymphoma), and other or unclassified subtypes. The lymphoma panel of 133 was designed on targeted sequencing of multiple genes for the coding regions through NGS. The libraries were prepared and sequenced using the Illumina platform. The alignment of obtained sequences was performed using Burrows-Wheeler Aligner and identification of somatic mutations was done using LoFreq (version 2) variant caller. The mutations were annotated using an annotation pipeline (VariMAT). Previously published literature and databases were used for the annotation of clinically relevant mutations. The common variants were filtered for reporting based on the presence in various population databases (1000G, ExAC, EVS, 1000Japanese, dbSNP, UK10K, MedVarDb). A custom read-depth-based algorithm was used to determine CNV (Copy Number Variants) from targeted sequencing experiments. Rare CNVs were detected using a comparison of the test data read-depths with the matched reference dataset. Reportable mutations were prioritized and prepared based on AMP-ASCO-CAP (Association for Molecular Pathology-American Society of Clinical Oncology-College of American Pathologists), WHO guidelines, and also based on annotation metrics from OncoMD (a knowledge base of genomic alterations). Results: The informativity of the panel was 95 percent. NOTCH 1 was the most frequently mutated gene in 16.1% of patients followed by 12.9% who had ARID1A mutations. MYD88 and TP53 mutations were detected in 9.6% of the patient while 6.4% of patients had CSF3R mutations. NOTCH 1 and TP 53 are the most frequently reported gene in the middle age group (40-60). Mutation in MYD88 is reported in every age group. MYD88 (51%) is the most common mutation in ABC subtypes of DLBCL, followed by NOTCH 1 (44%) and SOCS 1 (33%) according to our findings. NOTCH 1 mutations are frequent in ABC and PMBL subtypes. Closer investigation reveals missense mutation is the most frequent mutation observed in the total cohort targeting 68.4% followed by frameshift deletion reported in 26.3%. Six novel variants have been discovered in this study. Conclusions: This study demonstrates the high yield of information in DLBCL using the NGS Lymphoma panel. Results also highlight the molecular heterogeneity of DLBCL subtypes which indicates the need for further studies to make the results of the NGS more clinically relevant.
Collapse
|
16
|
Gill PS, Dweep H, Rose S, Wickramasinghe PJ, Vyas KK, McCullough S, Porter-Gill PA, Frye RE. Integrated microRNA–mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Autism. J Pers Med 2022; 12:jpm12060920. [PMID: 35743705 PMCID: PMC9225282 DOI: 10.3390/jpm12060920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets’ expression. The integration analysis found significantly dysregulated miRNA–gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA–gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
- Correspondence: ; Tel.: +1-501-364-2743
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA; (H.D.); (P.J.W.)
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | | | - Kanan K. Vyas
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Sandra McCullough
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Patricia A. Porter-Gill
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Richard E. Frye
- Barrow Neurological Institute at Phoenix Children′s Hospital, Phoenix, AZ 85016, USA;
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
17
|
Zhang X, Wu Z, Hao Y, Yu T, Li X, Liang Y, Li J, Huang L, Xu Y, Li X, Xu X, Wang W, Xu G, Zhang X, Lv Q, Fang Y, Xu R, Qian W. Aberrantly Activated APOBEC3B Is Associated With Mutant p53-Driven Refractory/Relapsed Diffuse Large B-Cell Lymphoma. Front Immunol 2022; 13:888250. [PMID: 35592333 PMCID: PMC9112561 DOI: 10.3389/fimmu.2022.888250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor protein 53 (TP53) mutation predicts an unfavorable prognosis in diffuse large B-cell lymphoma (DLBCL), but the molecular basis for this association remains unclear. In several malignancies, the cytidine deaminase apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) has been reported to be associated with the TP53 G/C-to-A/T mutation. Here, we show that the frequency of this mutation was significantly higher in relapsed/refractory (R/R) than in non-R/R DLBCL, which was positively associated with the APOBEC3B expression level. APOBEC3B overexpression induced the TP53 G/C-to-A/T mutation in vitro, resulting in a phenotype similar to that of DLBCL specimens. Additionally, APOBEC3B-induced p53 mutants promoted the growth of DLBCL cells and enhanced drug resistance. These results suggest that APOBEC3B is a critical factor in mutant p53-driven R/R DLBCL and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Xuzhao Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Zhaoxing Wu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Teng Yu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xian Li
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Liang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liansheng Huang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhen Li
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohua Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqin Wang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Genbo Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghua Lv
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rongzhen Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Gao F, Tian L, Shi H, Zheng P, Wang J, Dong F, Hu K, Ke X. Genetic Landscape of Relapsed and Refractory Diffuse Large B-Cell Lymphoma: A Systemic Review and Association Analysis With Next-Generation Sequencing. Front Genet 2021; 12:677650. [PMID: 34925435 PMCID: PMC8675234 DOI: 10.3389/fgene.2021.677650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
In our research, we screened 1,495 documents, compiled the whole-exome sequencing data of several studies, formed a data set including 92 observations of RRDLBCL (Relapsed and refractory diffuse large B-cell lymphoma), and performed association analysis on the high-frequency mutations among them. The most common mutations in the data set include TTN, KMT2D, TP53, IGLL5, CREBBP, BCL2, MYD88, and SOCS1 etc. Among these, CREBBP, KMT2D, and BCL2 have a strong association with each other, and SOCS1 has a strong association with genes such as STAT6, ACTB, CIITA, ITPKB, and GNA13. TP53 lacks significant associations with most genes. Through SOM clustering, expression-level analysis and protein interaction analysis of common gene mutations, we believe that RRDLBCL can be divided into five main types. We tested the function of the model and described the clinical characteristics of each subtype through a targeted sequencing RRDLBCL cohort of 96 patients. The classification is stated as follows: 1) JAK-STAT-related type: including STAT6, SOCS1, CIITA, etc. The genetic lineage is similar to PMBL and cHL. Retrospective analysis suggests that this subtype responds poorly to induction therapy (R-CHOP, p < 0.05). 2) BCL-CREBBP type: Epigenetic mutations such as KMT2D and CREBBP are more common in this type, and are often accompanied by BCL2 and EZH2 mutations. 3) MCD type: including MYD88 and CD79B, PIM1 is more common in this subtype. 4) TP53 mutation: TP53 mutant patients, which suggests the worst prognosis (p < 0.05) and worst response to CART treatment. 5) Undefined type (Sparse item type): Major Genetic Change Lacking Type, which has a better prognosis and better response to CART treatment. We also reviewed the literature from recent years concerning the previously mentioned common gene mutations.
Collapse
Affiliation(s)
- Fan Gao
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Hui Shi
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Peihao Zheng
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Wilson WH, Wright GW, Huang DW, Hodkinson B, Balasubramanian S, Fan Y, Vermeulen J, Shreeve M, Staudt LM. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 2021; 39:1643-1653.e3. [PMID: 34739844 PMCID: PMC8722194 DOI: 10.1016/j.ccell.2021.10.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
In diffuse large B cell lymphoma (DLBCL), tumors belonging to the ABC but not GCB gene expression subgroup rely upon chronic active B cell receptor signaling for viability, a dependency that is targetable by ibrutinib. A phase III trial ("Phoenix;" ClinicalTrials.gov: NCT01855750) showed a survival benefit of ibrutinib addition to R-CHOP chemotherapy in younger patients with non-GCB DLBCL, but the molecular basis for this benefit was unclear. Analysis of biopsies from Phoenix trial patients revealed three previously characterized genetic subtypes of DLBCL: MCD, BN2, and N1. The 3-year event-free survival of younger patients (age ≤60 years) treated with ibrutinib plus R-CHOP was 100% in the MCD and N1 subtypes while the survival of patients with these subtypes treated with R-CHOP alone was significantly inferior (42.9% and 50%, respectively). This work provides a mechanistic understanding of the benefit of ibrutinib addition to chemotherapy, supporting its use in younger patients with non-GCB DLBCL.
Collapse
Affiliation(s)
- Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brendan Hodkinson
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | | | - Yue Fan
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Jessica Vermeulen
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Martin Shreeve
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Dlouhy I, Karube K, Enjuanes A, Salaverria I, Nadeu F, Ramis-Zaldivar JE, Valero JG, Rivas-Delgado A, Magnano L, Martin-García D, Pérez-Galán P, Clot G, Rovira J, Jares P, Balagué O, Giné E, Mozas P, Briones J, Sancho JM, Salar A, Mercadal S, Alcoceba M, Valera A, Campo E, López-Guillermo A. Revised International Prognostic Index and genetic alterations are associated with early failure to R-CHOP in patients with diffuse large B-cell lymphoma. Br J Haematol 2021; 196:589-598. [PMID: 34632572 DOI: 10.1111/bjh.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
Relapsed or refractory diffuse large B-cell lymphoma (DLBCL) cases have a poor outcome. Here we analysed clinico-biological features in 373 DLBCL patients homogeneously treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), in order to identify variables associated with early failure to treatment (EF), defined as primary refractoriness or relapse within 12 months from diagnosis. In addition to clinical features, mutational status of 106 genes was studied by targeted next-generation sequencing in 111 cases, copy number alterations in 87, and gene expression profile (GEP) in 39. Ninety-seven cases (26%) were identified as EF and showed significantly shorter overall survival (OS). Patients with B symptoms, advanced stage, high levels of serum lactate dehydrogenase (LDH) or β2-microglobulin, low lymphocyte/monocyte ratio and higher Revised International Prognostic Index (R-IPI) scores, as well as those with BCL2 rearrangements more frequently showed EF, with R-IPI being the most important in logistic regression. Mutations in NOTCH2, gains in 5p15·33 (TERT), 12q13 (CDK2), 12q14·1 (CDK4) and 12q15 (MDM2) showed predictive importance for EF independently from R-IPI. GEP studies showed that EF cases were significantly enriched in sets related to cell cycle regulation and inflammatory response, while cases in response showed over-representation of gene sets related to extra-cellular matrix and tumour microenvironment.
Collapse
Affiliation(s)
- Ivan Dlouhy
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Kennosuke Karube
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Cell Biology & Pathology Department, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Anna Enjuanes
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Itziar Salaverria
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Enric Ramis-Zaldivar
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Valero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Laura Magnano
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - David Martin-García
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Galán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordina Rovira
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | - Pedro Jares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Balagué
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eva Giné
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Pablo Mozas
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Hospital Clínico Universitario, Salamanca, Spain
| | - Alexandra Valera
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Kim M, Kwon CH, Jang MH, Kim JM, Kim EH, Jeon YK, Kim SS, Choi KU, Kim IJ, Park M, Kim BH. Whole-Exome Sequencing in Papillary Microcarcinoma: Potential Early Biomarkers of Lateral Lymph Node Metastasis. Endocrinol Metab (Seoul) 2021; 36:1086-1094. [PMID: 34731936 PMCID: PMC8566127 DOI: 10.3803/enm.2021.1132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Early identification of patients with high-risk papillary thyroid microcarcinoma (PTMC) that is likely to progress has become a critical challenge. We aimed to identify somatic mutations associated with lateral neck lymph node (LN) metastasis (N1b) in patients with PTMC. METHODS Whole-exome sequencing (WES) of 14 PTMCs with no LN metastasis (N0) and 13 N1b PTMCs was performed using primary tumors and matched normal thyroid tissues. RESULTS The mutational burden was comparable in N0 and N1b tumors, as the median number of mutations was 23 (range, 12 to 46) in N0 and 24 (range, 12 to 50) in N1b PTMC (P=0.918). The most frequent mutations were detected in PGS1, SLC4A8, DAAM2, and HELZ in N1b PTMCs alone, and the K158Q mutation in PGS1 (four patients, Fisher's exact test P=0.041) was significantly enriched in N1b PTMCs. Based on pathway analysis, somatic mutations belonging to the receptor tyrosine kinase-RAS and NOTCH pathways were most frequently affected in N1b PTMCs. We identified four mutations that are predicted to be pathogenic in four genes based on Clinvar and Combined Annotation-Dependent Depletion score: BRAF, USH2A, CFTR, and PHIP. A missense mutation in CFTR and a nonsense mutation in PHIP were detected in N1b PTMCs only, although in one case each. BRAF mutation was detected in both N0 and N1b PTMCs. CONCLUSION This first comprehensive WES analysis of the mutational landscape of N0 and N1b PTMCs identified pathogenic genes that affect biological functions associated with the aggressive phenotype of PTMC.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Chae Hwa Kwon
- Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Min Hee Jang
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jeong Mi Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eun Heui Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Yun Kyung Jeon
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sang Soo Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Kyung-Un Choi
- Department of Pathology, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - In Joo Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Meeyoung Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Bo Hyun Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
22
|
Nesic M, Sønderkær M, Brøndum RF, El-Galaly TC, Pedersen IS, Bøgsted M, Dybkær K. The mutational profile of immune surveillance genes in diagnostic and refractory/relapsed DLBCLs. BMC Cancer 2021; 21:829. [PMID: 34275438 PMCID: PMC8286604 DOI: 10.1186/s12885-021-08556-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid neoplasm among adults,and approximately 30–40% of patients will experience relapse while 5–10% will suffer from primary refractory disease caused by different mechanisms, including treatment-induced resistance. For refractory and relapsed DLBCL (rrDLBCL) patients, early detection and understanding of the mechanisms controlling treatment resistance are of great importance to guide therapy decisions. Here, we have focused on genetic variations in immune surveillance genes in diagnostic DLBCL (dDLBCL) and rrDLBCL patients to elaborate on the suitability of new promising immunotherapies. Methods Biopsies from 30 dDLBCL patients who did not progress or relapse during follow up and 17 rrDLBCL patients with refractory disease or who relapsed during follow up were analyzed by whole-exome sequencing, including matched individual germline samples to include only somatic genetic variants in downstream analysis of a curated list of 58 genes involved in major immune surveillance pathways. Results More than 70% of both dDLBCLs and rrDLBCLs harbored alterations in immune surveillance genes, but rrDLBCL tumor samples have a lower number of genes affected compared to dDLBCL tumor samples. Increased gene mutation frequencies in rrDLBCLs were observed in more than half of the affected immune surveillance genes than dDLBCLs. Conclusion Genetic variants in the antigen-presenting genes affect a higher number of rrDLBCL patients supporting an important role for these genes in tumor progression and development of refractory disease and relapse. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08556-3.
Collapse
Affiliation(s)
- Marijana Nesic
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark
| | - Mads Sønderkær
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg, Denmark
| | - Rasmus Froberg Brøndum
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark. .,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
23
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
24
|
Bommier C, Mauduit C, Fontaine J, Bourbon E, Sujobert P, Huet S, Baseggio L, Hayette S, Laurent C, Bachy E, Ghesquières H, Thieblemont C, Salles G, Traverse-Glehen A. Real-life targeted next-generation sequencing for lymphoma diagnosis over 1 year from the French Lymphoma Network. Br J Haematol 2021; 193:1110-1122. [PMID: 33764507 DOI: 10.1111/bjh.17395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
As the impact of targeted next-generation sequencing (TNGS) on daily diagnosis has not been evaluated, we performed TNGS (46 genes) on lymphomas of unclear subtype following expert haematopathological review. The potential impact on patient care and modifications of final diagnosis were divided into major and minor changes according to the European Society of Medical Oncology (ESMO) guidelines. Among 229 patients [19 primary central nervous system lymphomas (PCNSL), 48 large B-cell lymphomas (LBCLs), 89 small BCLs (SBCLs), seven Hodgkin lymphomas (HL), 66 T-cell lymphomas], the overall concordance rate of histological and TNGS diagnosis was 89·5%. TNGS confirmed the histological diagnosis in 144 cases (62·9%), changed the diagnosis in 24 cases (10·5%) and did not help to clarify diagnosis in 61 cases (26·7%). Modifications to the final diagnosis had a clinical impact on patient care in 8·3% of cases. Diagnostic modifications occurred in all types of lymphoma except in PCNSL and HL; the modification rate was 14·6% in SBCL and 12·5% in LBCL. While comparing informative and uninformative cases, no differences were found in terms of DNA amplification, quality or depth of sequencing and biopsy type. The present study highlights that TNGS may directly contribute to a more accurate diagnosis in difficult-to-diagnose lymphomas, thus improving the clinical management in routine practice.
Collapse
Affiliation(s)
- Côme Bommier
- Pathology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Haemato-oncology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Saint Louis, Paris, France.,Université de Paris, Université Paris Descartes, Paris, France
| | - Claire Mauduit
- Pathology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Oullins, France.,Inserm U1065, C3M-Control of Gene Expression, Nice, France
| | - Juliette Fontaine
- Pathology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Oullins, France
| | - Estelle Bourbon
- Pathology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Oullins, France
| | - Pierre Sujobert
- Université Claude Bernard Lyon 1, Oullins, France.,Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Hématologie Biologique, Pierre-Bénite, France
| | - Sarah Huet
- Université Claude Bernard Lyon 1, Oullins, France.,Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Hématologie Biologique, Pierre-Bénite, France
| | - Lucile Baseggio
- Université Claude Bernard Lyon 1, Oullins, France.,Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Hématologie Biologique, Pierre-Bénite, France
| | - Sandrine Hayette
- Université Claude Bernard Lyon 1, Oullins, France.,Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Hématologie Biologique, Pierre-Bénite, France
| | - Camille Laurent
- Pathology Department, Institut Universitaire du Cancer-Oncopôle, Centre Hospitalier de Toulouse, Toulouse, France
| | - Emmanuel Bachy
- Université Claude Bernard Lyon 1, Oullins, France.,Haematology Department, Hospices Civils de Lyon, CHU Lyon-Sud, Pierre-Bénite, France
| | - Hervé Ghesquières
- Université Claude Bernard Lyon 1, Oullins, France.,Haematology Department, Hospices Civils de Lyon, CHU Lyon-Sud, Pierre-Bénite, France
| | - Catherine Thieblemont
- Haemato-oncology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Saint Louis, Paris, France
| | - Gilles Salles
- Université Claude Bernard Lyon 1, Oullins, France.,Haematology Department, Hospices Civils de Lyon, CHU Lyon-Sud, Pierre-Bénite, France
| | - Alexandra Traverse-Glehen
- Pathology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Oullins, France
| |
Collapse
|
25
|
Li J, Huang Y, Zhang Y, Wen J, Chen Y, Wang L, Jiang P, Hu J. Identification BCL6 and miR-30 family associating with Ibrutinib resistance in activated B-cell-like diffuse large B-cell lymphoma. Med Oncol 2021; 38:33. [PMID: 33629212 PMCID: PMC7904539 DOI: 10.1007/s12032-021-01470-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/23/2021] [Indexed: 02/08/2023]
Abstract
Ibrutinib has clear efficacy for activated B-cell-like diffuse large B cell lymphoma (ABC-DLBCL) in previous clinical researches. However, the resistance of Ibrutinib has limited its therapeutic benefit and the potential mechanism remains unclear. This study was aimed to identify potential candidate genes and miRNA targets to overcome Ibrutinib resistance in ABC-DLBCL. First, two expression profiles were downloaded from the GEO database, which used to identify the DEGs related to Ibrutinib resistance in ABC-DLBCL cell lines by GEO2R analysis separately. And the common DEGs were obtained though Venn diagram. Then Gene ontology (GO) and pathway enrichment analysis were conducted by DAVID database. From STRING database, BCL6, IL10, IL2RB, IRF4, CD80, PRDM1and GZMB were determined to be the hub genes by protein-protein interaction (PPI) network. Through miRNA-mRNA targeting network, we found that BCL6, IRF4, CD80, and PRDM1 were common target genes of miR-30 family. The cBioPortal database showed that BCL6 had the highest level of genetic alterations among DLBCL. In addition, another expression profile from GEO database showed that BCL6 was significantly high expression in no responsive patients after Ibrutinib treatment, and the receiver operating characteristic (ROC) curve which was used to evaluate the relationship between BCL6 expression and its effect was 0.67. MTT assay showed that treatment with FX1 (a BCL6 inhibitor) can enhance the sensitivity of Ibrutinib in C481S BTK HBL-1 cells. The results suggested that BCL6 and miR-30 family maybe associate with Ibrutinib resistance in ABC-DLBCL.
Collapse
Affiliation(s)
- Jiazheng Li
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yan Huang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yun Zhang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jingjing Wen
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yanxin Chen
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Lingyan Wang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Peifang Jiang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jianda Hu
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
26
|
Jones CL, Degasperi A, Grandi V, Amarante TD, Mitchell TJ, Nik-Zainal S, Whittaker SJ. Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci Rep 2021; 11:3962. [PMID: 33597573 PMCID: PMC7889847 DOI: 10.1038/s41598-021-83352-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/27/2021] [Indexed: 12/02/2022] Open
Abstract
T-cell non-Hodgkin's lymphomas develop following transformation of tissue resident T-cells. We performed a meta-analysis of whole exome sequencing data from 403 patients with eight subtypes of T-cell non-Hodgkin's lymphoma to identify mutational signatures and associated recurrent gene mutations. Signature 1, indicative of age-related deamination, was prevalent across all T-cell lymphomas, reflecting the derivation of these malignancies from memory T-cells. Adult T-cell leukemia-lymphoma was specifically associated with signature 17, which was found to correlate with the IRF4 K59R mutation that is exclusive to Adult T-cell leukemia-lymphoma. Signature 7, implicating UV exposure was uniquely identified in cutaneous T-cell lymphoma (CTCL), contributing 52% of the mutational burden in mycosis fungoides and 23% in Sezary syndrome. Importantly this UV signature was observed in CD4 + T-cells isolated from the blood of Sezary syndrome patients suggesting extensive re-circulation of these T-cells through skin and blood. Analysis of non-Hodgkin's T-cell lymphoma cases submitted to the national 100,000 WGS project confirmed that signature 7 was only identified in CTCL strongly implicating UV radiation in the pathogenesis of cutaneous T-cell lymphoma.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/metabolism
- Databases, Genetic
- Humans
- Interferon Regulatory Factors
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell, Cutaneous/etiology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Mutation/genetics
- Sezary Syndrome/blood
- Skin Neoplasms/pathology
- Ultraviolet Rays/adverse effects
Collapse
Affiliation(s)
- Christine L Jones
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Andrea Degasperi
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Box 238, Cambridge, CB2 0QQ, UK
| | - Vieri Grandi
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Tauanne D Amarante
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Box 238, Cambridge, CB2 0QQ, UK
| | - Tracey J Mitchell
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Serena Nik-Zainal
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Box 238, Cambridge, CB2 0QQ, UK
| | - Sean J Whittaker
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
27
|
Lv X, Wang Q, Ge X, Xue C, Liu X. Application of high-throughput gene sequencing in lymphoma. Exp Mol Pathol 2021; 119:104606. [PMID: 33493455 DOI: 10.1016/j.yexmp.2021.104606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
As a malignant tumor originating from the lymphoid hematopoietic tissues, lymphoma has an increased incidence in recent years and has ranked among the top ten malignant tumors in the world. But until now, due to the multiple pathological subtypes and the unclear molecular mechanism, it's still difficult to make rapid diagnosis and accurate prognosis assessment for lymphoma patients. Recently, the development of high-throughput gene sequencing technology has provided the possibility to solve these clinical problems. This technology has realized large-scale screening of specific markers for lymphoma at the molecular biology level, followed by discovery of prognostic indicators and biological targets for new drug research. In this paper, we summarize the results of large-scale high-throughput gene sequencing research, and introduce the genetic changes associated with occurrence and prognosis of lymphomas with different pathological subtypes, hoping to further promote the application of this technology in clinical research of lymphoma.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Qian Wang
- State Grid Electronic Commerce CO.,LTD, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Chao Xue
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| |
Collapse
|
28
|
Xia Z, Zhang X, Liu P, Zhang R, Huang Z, Li D, Xiao X, Wu M, Ning N, Zhang Q, Zhang J, Liu M, Jiao B, Ren R. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death Dis 2021; 12:54. [PMID: 33423045 PMCID: PMC7797003 DOI: 10.1038/s41419-020-03311-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
GNA13, encoding one of the G protein alpha subunits of heterotrimeric G proteins that transduce signals of G protein-coupled receptors (GPCR), is frequently mutated in germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) with poor prognostic outcomes. Due to the "undruggable" nature of GNA13, targeted therapy for these patients is not available. In this study, we found that palmitoylation of GNA13 not only regulates its plasma membrane localization, but also regulates GNA13's stability. It is essential for the tumor suppressor function of GNA13 in GCB-DLBCL cells. Interestingly, GNA13 negatively regulates BCL2 expression in GCB-DLBCL cells in a palmitoylation-dependent manner. Consistently, BCL2 inhibitors were found to be effective in killing GNA13-deficient GCB-DLBCL cells in a cell-based chemical screen. Furthermore, we demonstrate that inactivating GNA13 by targeting its palmitoylation enhanced the sensitivity of GCB-DLBCL to the BCL2 inhibitor. These studies indicate that the loss-of-function mutation of GNA13 is a biomarker for BCL2 inhibitor therapy of GCB-DLBCL and that GNA13 palmitoylation is a potential target for combination therapy with BCL2 inhibitors to treat GCB-DLBCL with wild-type GNA13.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Biphenyl Compounds/pharmacology
- Cell Line, Tumor
- Cell Proliferation/physiology
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- HeLa Cells
- Humans
- Lipoylation
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mice
- Mice, Inbred NOD
- Nitrophenols/pharmacology
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Zhizhou Xia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuli Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangsen Huang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Xiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Ning
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen B. Molecular Genetics of Relapsed Diffuse Large B-Cell Lymphoma: Insight into Mechanisms of Therapy Resistance. Cancers (Basel) 2020; 12:E3553. [PMID: 33260693 PMCID: PMC7760867 DOI: 10.3390/cancers12123553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with diffuse large B-cell lymphoma (DLBCL) can be treated successfully with a combination of chemotherapy and the monoclonal anti-CD20 antibody rituximab. Nonetheless, approximately one-third of the patients with DLBCL still experience relapse or refractory (R/R) disease after first-line immunochemotherapy. Whole-exome sequencing on large cohorts of primary DLBCL has revealed the mutational landscape of DLBCL, which has provided a framework to define novel prognostic subtypes in DLBCL. Several studies have investigated the genetic alterations specifically associated with R/R DLBCL, thereby uncovering molecular pathways linked to therapy resistance. Here, we summarize the current state of knowledge regarding the genetic alterations that are enriched in R/R DLBCL, and the corresponding pathways affected by these gene mutations. Furthermore, we elaborate on their potential role in mediating therapy resistance, also in connection with findings in other B-cell malignancies, and discuss alternative treatment options. Hence, this review provides a comprehensive overview on the gene lesions and molecular mechanisms underlying R/R DLBCL, which are considered valuable parameters to guide treatment.
Collapse
Affiliation(s)
- Madeleine R. Berendsen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Pathology-DNA, Rijnstate Hospital, 6815AD Arnhem, The Netherlands
| | - J. Han van Krieken
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
30
|
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, Armstrong M, Ashrafian H, Cutcutache I, Ebetsberger-Dachs G, Elliott KS, Durieu I, Fabien N, Fusaro M, Heeg M, Schmitt Y, Bras M, Knight JC, Lega JC, Lesca G, Mathieu AL, Moreews M, Moreira B, Nosbaum A, Page M, Picard C, Ronan Leahy T, Rouvet I, Ryan E, Sanlaville D, Schwarz K, Skelton A, Viallard JF, Viel S, Villard M, Callebaut I, Picard C, Walzer T, Ehl S, Fischer A, Neven B, Belot A, Rieux-Laucat F. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun 2020; 11:5341. [PMID: 33087723 PMCID: PMC7578789 DOI: 10.1038/s41467-020-18925-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Autoimmunity can occur when a checkpoint of self-tolerance fails. The study of familial autoimmune diseases can reveal pathophysiological mechanisms involved in more common autoimmune diseases. Here, by whole-exome/genome sequencing we identify heterozygous, autosomal-dominant, germline loss-of-function mutations in the SOCS1 gene in ten patients from five unrelated families with early onset autoimmune manifestations. The intracellular protein SOCS1 is known to downregulate cytokine signaling by inhibiting the JAK-STAT pathway. Accordingly, patient-derived lymphocytes exhibit increased STAT activation in vitro in response to interferon-γ, IL-2 and IL-4 that is reverted by the JAK1/JAK2 inhibitor ruxolitinib. This effect is associated with a series of in vitro and in vivo immune abnormalities consistent with lymphocyte hyperactivity. Hence, SOCS1 haploinsufficiency causes a dominantly inherited predisposition to early onset autoimmune diseases related to cytokine hypersensitivity of immune cells.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marie-Claude Stolzenberg
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Fabienne Mazerolles
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), CIC 1401, Inserm CICP, Bordeaux, France.,Pediatric Oncology Hematology Unit, University Hospital, place Amélie Raba Léon, CIC 1401, Inserm, CICP, Bordeaux, France
| | | | - Houman Ashrafian
- Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Georg Ebetsberger-Dachs
- Department of Pediatrics, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria
| | | | - Isabelle Durieu
- Internal Medicine and Vascular Pathology Department, Adult Cystic Fibrosis Center, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,EA 7425 HESPER. Université de Lyon, Lyon, France
| | - Nicole Fabien
- Immunology laboratory; Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Fusaro
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yohan Schmitt
- Genomic Core Facility, INSERM UMR1163, Imagine Institute, Paris, France
| | - Marc Bras
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jean-Christophe Lega
- Department of Internal and Vascular Medicine, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France.,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France.,UMR 5558, Equipe Evaluation et Modélisation des Effets Thérapeutiques, Laboratoire de Biométrie et Biologie Evolutive, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marion Moreews
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Baptiste Moreira
- Immunology Laboratory, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Allergy and Clinical Immunology department, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Matthew Page
- Translational Medicine, UCB Pharma, Braine-l'Alleud, Belgium
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, UCBL Lyon 1 University, Lyon, France
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Isabelle Rouvet
- Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Ethel Ryan
- Department of Paediatrics, University Hospital Galway, Co, Galway, Ireland
| | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Klaus Schwarz
- Institute for Transfusion Medicin, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, 89081, Ulm, Germany
| | - Andrew Skelton
- Translational Medicine, UCB Pharma, Slough, United Kingdom
| | - Jean-Francois Viallard
- Département de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire Haut Lévêque, Université de Bordeaux, Pessac, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Service d'Immunologie Biologique, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Imagine institute, laboratory of Iymphocyte activation and susceptibility to EBV, INSERM UMR 1163, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alain Fischer
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Collège de France, Paris, France
| | - Bénédicte Neven
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France. .,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France. .,Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France.
| | - Frédéric Rieux-Laucat
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France. .,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.
| |
Collapse
|
31
|
Rushton CK, Arthur SE, Alcaide M, Cheung M, Jiang A, Coyle KM, Cleary KLS, Thomas N, Hilton LK, Michaud N, Daigle S, Davidson J, Bushell K, Yu S, Rys RN, Jain M, Shepherd L, Marra MA, Kuruvilla J, Crump M, Mann K, Assouline S, Connors JM, Steidl C, Cragg MS, Scott DW, Johnson NA, Morin RD. Genetic and evolutionary patterns of treatment resistance in relapsed B-cell lymphoma. Blood Adv 2020; 4:2886-2898. [PMID: 32589730 PMCID: PMC7362366 DOI: 10.1182/bloodadvances.2020001696] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.
Collapse
Affiliation(s)
- Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Matthew Cheung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kirstie L S Cleary
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicole Thomas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Jordan Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Marco A Marra
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Michael Crump
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Koren Mann
- Lady Davis Institute for Medical Research
- Jewish General Hospital, Montreal, QC, Canada
| | | | | | | | - Mark S Cragg
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
32
|
Targeted deep sequencing reveals clonal and subclonal mutational signatures in Adult T-cell leukemia/lymphoma and defines an unfavorable indolent subtype. Leukemia 2020; 35:764-776. [PMID: 32555298 DOI: 10.1038/s41375-020-0900-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) carries a poor prognosis even in indolent subtypes. We performed targeted deep sequencing combined with mapping of HTLV-1 proviral integration sites of 61 ATL patients of African and Caribbean origin. This revealed mutations mainly affecting TCR/NF-kB (74%), T-cell trafficking (46%), immune escape (29%), and cell cycle (26%) related pathways, consistent with the genomic landscape previously reported in a large Japanese cohort. To examine the evolution of mutational signatures upon disease progression while tracking the viral integration architecture of the malignant clone, we carried out a longitudinal study of patients who either relapsed or progressed from an indolent to an aggressive subtype. Serial analysis of relapsing patients identified several patterns of clonal evolution. In progressing patients, the longitudinal study revealed NF-kB/NFAT mutations at progression that were present at a subclonal level at diagnosis (allelic frequency < 5%). Moreover, the presence in indolent subtypes of mutations affecting the TCR/NF-kB pathway, whether clonal or subclonal, was associated with significantly shorter time to progression and overall survival. Our observations reveal the clonal dynamics of ATL mutational signatures at relapse and during progression. Our study defines a new subgroup of indolent ATLs characterized by a mutational signature at high risk of transformation.
Collapse
|
33
|
Zhou H, Hu P, Yan X, Zhang Y, Shi W. Ibrutinib in Chronic Lymphocytic Leukemia: Clinical Applications, Drug Resistance, and Prospects. Onco Targets Ther 2020; 13:4877-4892. [PMID: 32581549 PMCID: PMC7266824 DOI: 10.2147/ott.s249586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK), a pivotal component of B-cell receptor (BCR) signaling, has been recognized as an important driver of the pathogenesis of chronic lymphocytic leukemia. Ibrutinib is a highly active and selectively irreversible inhibitor of BTK, which has been approved to be effective in both frontline and recurrent therapy of CLL. Acquired resistance has become a greater problem than initially anticipated with the widespread use of ibrutinib. An ongoing exploration of the mechanisms of ibrutinib resistance (IR) in CLL has revealed potentially useful therapeutic targets. New drugs expected to overcome IR in CLL are in the early stages of clinical development. This study aimed to summarize the possible mechanisms of IR and retrospectively analyze promising therapies that might have superior efficacy in overcoming IR.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Pan Hu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Xiyue Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
34
|
Nesic M, El-Galaly TC, Bøgsted M, Pedersen IS, Dybkær K. Mutational landscape of immune surveillance genes in diffuse large B-cell lymphoma. Expert Rev Hematol 2020; 13:655-668. [PMID: 32293210 DOI: 10.1080/17474086.2020.1755958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Immune surveillance is the dynamic process whereby the immune system identifies and kills tumor cells based on their aberrant expression of stress-related surface molecules or presentation of tumor neoantigens. It plays a crucial role in controlling the initiation and progression of hematologic cancers such as leukemia and lymphoma, and it has been reported that diffuse large B-cell lymphoma (DLBCL) fails to express specific cell-surface molecules that are necessary for the recognition and elimination of tumor cells. AREAS COVERED This review is based on a systematic search strategy to identify relevant literature in the PubMed and Embase databases. Ten candidate genes are identified based on mutational frequency, and functions with detailed mapping performed for hotspot alterations that may have a functional impact on malignant transformation and decreased immune surveillance efficacy. EXPERT OPINION Ongoing development of technology and bioinformatics tools combined with data from large clinical cohorts have the potential to define the mutational landscape associated with immune surveillance in DLBCL. Specific functional studies are required to make an unambiguous link between genetic aberrations and biological impact on impaired immune surveillance.
Collapse
Affiliation(s)
- Marijana Nesic
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University , Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg University Hospital , Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| |
Collapse
|
35
|
Lymphoid Neoplasms With Plasmablastic Differentiation: A Comprehensive Review and Diagnostic Approaches. Adv Anat Pathol 2020; 27:61-74. [PMID: 31725418 DOI: 10.1097/pap.0000000000000253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmablastic neoplasms encompass several entities including plasmablastic lymphoma, plasmablastic plasmacytoma/multiple myeloma, primary effusion lymphoma and its extracavitary variant, anaplastic lymphoma kinase-positive large B-cell lymphoma, and Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 (HHV8)-positive diffuse large B-cell lymphoma, not otherwise specified. Morphologically, the tumor cells are large with eccentrically located nuclei, prominent nucleoli, and basophilic/amphophilic cytoplasm. Immunophenotypically, the tumor cells express plasma cell-related antigens including CD38, CD138, interferon regulatory factor-4 (IRF4)/MUM1, PR domain zinc finger protein-1 (PRDM1), and/or X-box binding protein-1 (XBP1), with frequent loss of CD20. These tumors are diagnostically challenging for general pathologists due to their overlapping morphology and immunophenotype, and due to their rarity, and particularly so when clinical and radiologic information is insufficient. We also discuss HHV8-negative effusion-based lymphoma due to its overlapping features with primary effusion lymphoma. In this review, we focus on the useful diagnostic markers and pertinent molecular findings in these distinct entities and propose a practical diagnostic algorithm using anaplastic lymphoma kinase, HHV8, in situ hybridization for Epstein-Barr virus-encoded small RNA, immunoglobulin M, light chain stains, and clinicoradiologic criteria to avoid misdiagnosis. At the molecular level, MYC protein overexpression with or without MYC rearrangement and PRDM1-inactivating mutations or deletions are noted in a subset of such tumors, especially in plasmablastic lymphoma. Prognosis in these entities is dismal with conventional CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) chemotherapy. Therefore, novel target therapies, such as anti-CD30 agents, and/or immune blockade therapy, are potential treatment options in the future.
Collapse
|
36
|
Patel SP, Harkins RA, Lee MJ, Flowers CR, Koff JL. Using Informatics Tools to Identify Opportunities for Precision Medicine in Diffuse Large B-cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:234-243.e10. [PMID: 32063526 DOI: 10.1016/j.clml.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) is genetically and clinically heterogeneous. Despite advances in genomic subtyping, standard frontline chemoimmunotherapy has remained unchanged for years. As high-throughput analysis becomes more accessible, characterizing drug-gene interactions in DLBCL could support patient-specific treatment strategies. MATERIALS AND METHODS From our systematic literature review, we compiled a comprehensive list of somatic mutations implicated in DLBCL. We extracted reported and primary sequencing data for these mutations and assessed their association with signaling pathways, cell-of-origin subtypes, and clinical outcomes. RESULTS Twenty-two targetable mutations present in ≥ 5% of patients with DLBCL were associated with unfavorable outcomes, yielding a predicted population of 31.7% of DLBCL cases with poor-risk disease and candidacy for targeted therapy. A second review identified 256 studies that had characterized the drug-gene interactions for these mutations via in vitro studies, mouse models, and/or clinical trials. CONCLUSIONS Our novel approach linking the data from our systematic reviews with informatics tools identified high-risk DLBCL subgroups, DLBCL-specific drug-gene interactions, and potential populations for precision medicine trials.
Collapse
Affiliation(s)
| | | | | | | | - Jean L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA.
| |
Collapse
|
37
|
Abstract
The technique of cell-free DNA (cfDNA) analysis, also called liquid biopsy, has been developed over the past several years to serve as a minimal residual disease tool, as has already been done with reliability and robustness in acute leukemias. This technique has important theoretical advantages, including the simplicity of acquiring blood samples, which can easily be repeated over time, its noninvasive and quantitative nature, which provides results consistent with the results obtained from tumor genomic DNA, and its speed and low cost. cfDNA analysis, as the leading tool to quantify somatic mutations, is a major technological leap in the noninvasive management of lymphomas. This technology may empower monitoring and treatment adjustment in real time and enable the quick detection of refractory lymphomas and resistance to routine therapies. Here, we summarize the results that have established the clinical relevance of cfDNA in diagnostic and prognostic stratification and the monitoring of lymphoma treatments.
Collapse
Affiliation(s)
- Vincent Camus
- Department of Hematology, Centre Henri Becquerel, 1 Rue D'Amiens, 76038 Rouen Cedex, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, 1 Rue D'Amiens, 76038 Rouen Cedex, France
| |
Collapse
|
38
|
Zhang J, Lin X, Li Y, Zhang R. Genomic Alterations In Primary Cardiac Diffuse Large B Cell Lymphoma: A Case Report And Literature Review. Onco Targets Ther 2019; 12:9085-9092. [PMID: 31806993 PMCID: PMC6839572 DOI: 10.2147/ott.s227122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/19/2019] [Indexed: 11/24/2022] Open
Abstract
Primary cardiac diffuse large B cell lymphoma (PC-DLBCL) is a rare kind of hematological malignancy, and its clinical and pathologic characteristics, especially in Eastern countries, remain unclear. Moreover, genomic alterations in PC-DLBCL have not been studied previously. We describe a case of a 57-year-old man who presented with exertional dyspnoea due to a heart mass in April 2018 and was diagnosed with PC-DLBCL characterized by immunohistochemical markers of the activated B cell (ABC) subtype and double expression of c-MYC and Bcl-2. Mutations in a total of 11 genes—TBL1XR1, CD79B, IGLL5, ZMYM3, MYD88, TMSB4X, PIM1, BTK, NRXN3, CUX1, and CSMD1—were detected via next-generation sequencing (NGS), while 19 copy number variations (CNVs) such as 1q+, 3p+, 3q+(*2), 5p+, 6p−, 6q−, 7q+, +11, 12q−, 15q−, 17q+, 17p−, +18, 19q+, 19p−, 19q−, X q+, and −Y and 4 copy-neutral loss of heterozygosity (CN-LOH) lesions located at 1q21.1q44, 3p26.3q11.2, 3q13.11q29 and 6p22.2p21.32 were identified by single nucleotide polymorphism (SNP) array karyotyping. Some key gene alterations in lymphoma, such as PRDM1 deletion and Bcl-2 amplification, were identified using SNP array analysis. The patient received 6 courses of chemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone, R-CHOP regimen) after surgery and is currently in remission. In summary, the present case was diagnosed as PC-DLBCL, ABC subtype by the Hans algorithm and double expression lymphoma, with co-occurrence of the MYD88L265P and CD79B mutations (MCD) subtype by genetic alteration analysis. This study presents a unique PC-DLBCL case in which complex genomic alterations were revealed by NGS and SNP array analysis, which has never been reported in the literature, and these findings could provide new insight into the genomic characterization of PC-DLBCL.
Collapse
Affiliation(s)
- Jinjing Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xuyong Lin
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
39
|
Dubois S, Tesson B, Mareschal S, Viailly PJ, Bohers E, Ruminy P, Etancelin P, Peyrouze P, Copie-Bergman C, Fabiani B, Petrella T, Jais JP, Haioun C, Salles G, Molina TJ, Leroy K, Tilly H, Jardin F. Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles. EBioMedicine 2019; 48:58-69. [PMID: 31648986 PMCID: PMC6838437 DOI: 10.1016/j.ebiom.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. Methods 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. Findings ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. Interpretation The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Sylvain Mareschal
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Pierre-Julien Viailly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France; Normandie Univ, EdN BISE 497, Normandy, France
| | - Elodie Bohers
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pascaline Etancelin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Christiane Copie-Bergman
- Department of Pathology, Henri Mondor Hospital, APHP, INSERM U955, Université Paris-Est, Créteil, France
| | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | - Tony Petrella
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada
| | - Jean-Philippe Jais
- Institut Imagine HGID, Inserm U1163, AP-HP Hôpital Necker, Université Paris Descartes, Paris, France
| | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Thierry Jo Molina
- Pathology, AP-HP, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Karen Leroy
- Inserm U1016 - CNRS UMR8104 - Université Paris Descartes Groupe Hospitalier Cochin, Paris, France
| | - Hervé Tilly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Fabrice Jardin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| | | |
Collapse
|
40
|
Miao Y, Medeiros LJ, Li Y, Li J, Young KH. Genetic alterations and their clinical implications in DLBCL. Nat Rev Clin Oncol 2019; 16:634-652. [PMID: 31127191 DOI: 10.1038/s41571-019-0225-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous lymphoid neoplasm with variations in gene expression profiles and genetic alterations, which lead to substantial variations in clinical course and response to therapy. The advent of high-throughput genome sequencing platforms, and especially whole-exome sequencing, has helped to define the genetic landscape of DLBCL. In the past 10 years, these studies have identified many genetic alterations in DLBCL, some of which are specific to B cell lymphomas, whereas others can also be observed in other types of cancer. These aberrations result in altered activation of a wide range of signalling pathways and other cellular processes, including those involved in B cell differentiation, B cell receptor signalling, activation of the NF-κB pathway, apoptosis and epigenetic regulation. Further elaboration of the genetics of DLBCL will not only improve our understanding of disease pathogenesis but also provide further insight into disease classification, prognostication and therapeutic targets. In this Review, we describe the current understanding of the prevalence and causes of specific genetic alterations in DLBCL and their role in disease development and progression. We also summarize the available clinical data on therapies designed to target the aberrant pathways driven by these alterations.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
41
|
Penther D, Viailly PJ, Latour S, Etancelin P, Bohers E, Vellemans H, Camus V, Menard AL, Coutant S, Lanic H, Lemasle E, Drieux F, Veresezan L, Ruminy P, Raimbault A, Soulier J, Frebourg T, Tilly H, Jardin F. A recurrent clonally distinct Burkitt lymphoma case highlights genetic key events contributing to oncogenesis. Genes Chromosomes Cancer 2019; 58:595-601. [PMID: 30779244 PMCID: PMC6790587 DOI: 10.1002/gcc.22743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023] Open
Abstract
Burkitt lymphoma (BL) is characterized by a translocation of the MYC oncogene that leads to the upregulation of MYC expression, cell growth and proliferation. It is well-established that MYC translocation is not a sufficient genetic event to cause BL. Next-generation sequencing has recently provided a comprehensive analysis of the landscape of additional genetic events that contribute to BL lymphomagenesis. Refractory BL or relapsing BL are almost always incurable as a result of the selection of a highly chemoresistant clonally related cell population. Conversely, a few BL recurrence cases arising from clonally distinct tumors have been reported and were associated with a favorable outcome similar to that reported for first-line treatment. Here, we used an unusual case of recurrent but clonally distinct EBV+ BL to highlight the key genetic events that drive BL lymphomagenesis. By whole exome sequencing, we established that ID3 gene was targeted by distinct mutations in the two clonally unrelated diseases, highlighting the crucial role of this gene during lymphomagenesis. We also detected a heterozygous E1021K PIK3CD mutation, thus increasing the spectrum of somatic mutations altering the PI3K signaling pathway in BL. Interestingly, this mutation is known to be associated with activated phosphoinositide 3-kinase delta syndrome (APDS). Finally, we also identified an inherited heterozygous truncating c.5791CT FANCM mutation that may contribute to the unusual recurrence of BL.
Collapse
Affiliation(s)
| | | | - Sylvain Latour
- INSERM UMR_S1163, Institut Imagine Université Paris Descartes, Paris, France
| | | | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Hélène Vellemans
- Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Vincent Camus
- Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Anne Lise Menard
- Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Sophie Coutant
- Department of Genetics, Rouen University Hospital, F76000 and Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Hélène Lanic
- Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Emilie Lemasle
- Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Fanny Drieux
- Department of Biopathology, Centre Henri Becquerel, Rouen, France
| | - Liana Veresezan
- Department of Biopathology, Centre Henri Becquerel, Rouen, France
| | - Philippe Ruminy
- INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Anna Raimbault
- INSERM U944/CNRS UMR7212, Saint Louis Hospital, Paris, France
| | - Jean Soulier
- INSERM U944/CNRS UMR7212, Saint Louis Hospital, Paris, France
| | - Thierry Frebourg
- Department of Genetics, Rouen University Hospital, F76000 and Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Hervé Tilly
- INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France.,Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Fabrice Jardin
- INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France.,Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| |
Collapse
|
42
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
43
|
De novo gene mutations in normal human memory B cells. Leukemia 2018; 33:1219-1230. [PMID: 30353030 DOI: 10.1038/s41375-018-0289-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
In the past years, the genomes of thousands of tumors have been elucidated. To date however, our knowledge on somatic gene alterations in normal cells is very limited. In this study, we demonstrate that tetanus-specific human memory B lymphocytes carry a substantial number of somatic mutations in the coding regions of the genome. Interestingly, we observed a statistically significant correlation between the number of exome mutations and those present in the immunoglobulin heavy variable regions. Our findings indicate that the majority of these genomic mutations arise in an antigen-dependent fashion, most likely during clonal expansion in germinal centers. The knowledge that normal B cells accumulate genomic alterations outside the immunoglobulin loci during development is relevant for our understanding of the process of lymphomagenesis.
Collapse
|
44
|
Schuhmacher B, Bein J, Rausch T, Benes V, Tousseyn T, Vornanen M, Ponzoni M, Thurner L, Gascoyne R, Steidl C, Küppers R, Hansmann ML, Hartmann S. JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma. Haematologica 2018; 104:330-337. [PMID: 30213827 PMCID: PMC6355500 DOI: 10.3324/haematol.2018.203224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
T-cell/histiocyte-rich large B-cell lymphoma is a rare aggressive lymphoma showing histopathological overlap with nodular lymphocyte-predominant Hodgkin lymphoma. Despite differences in tumor microenvironment and clinical behavior, the tumor cells of both entities show remarkable similarities, suggesting that both lymphomas might represent a spectrum of the same disease. To address this issue, we investigated whether these entities share mutations. Ultra-deep targeted resequencing of six typical and 11 histopathological variants of nodular lymphocyte-predominant Hodgkin lymphoma, and nine cases of T-cell/histiocyte-rich large B-cell lymphoma revealed that genes recurrently mutated in nodular lymphocyte-predominant Hodgkin lymphoma are affected by mutations at similar frequencies in T-cell/histiocyte-rich large B-cell lymphoma. The most recurrently mutated genes were JUNB, DUSP2, SGK1, SOCS1 and CREBBP, which harbored mutations more frequently in T-cell/histiocyte-rich large B-cell lymphoma and the histopathological variants of nodular lymphocyte-predominant Hodgkin lymphoma than in its typical form. Mutations in JUNB, DUSP2, SGK1 and SOCS1 were highly enriched for somatic hypermutation hotspot sites, suggesting an important role of aberrant somatic hypermutation in the generation of these somatic mutations and thus in the pathogenesis of both lymphoma entities. Mutations in JUNB are generally rarely observed in malignant lymphomas and thus are relatively specific for nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B-cell lymphoma at such high frequencies (5/17 and 5/9 cases with JUNB mutations, respectively). Taken together, the findings of the present study further support a close relationship between T-cell/histiocyte-rich large B-cell lymphoma and nodular lymphocyte-predominant Hodgkin lymphoma by showing that they share highly recurrent genetic lesions.
Collapse
Affiliation(s)
- Bianca Schuhmacher
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Julia Bein
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Tobias Rausch
- Genecore, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genecore, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals K.U. Leuven, Belgium
| | - Martine Vornanen
- Department of Pathology, Tampere University Hospital and University of Tampere, Finland
| | - Maurilio Ponzoni
- Unit of Lymphoid Malignancies, Department of Pathology, Scientific Institute San Raffaele, Milan, Italy
| | - Lorenz Thurner
- José Carreras Center for Immuno and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany.,Department of Internal Medicine 2, Hospital of the J. W. Goethe University, Frankfurt am Main, Germany
| | - Randy Gascoyne
- Department of Pathology and Laboratory Medicine and the Centre for Lymphoid Cancer, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Christian Steidl
- Department of Pathology and Laboratory Medicine and the Centre for Lymphoid Cancer, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany.,Reference and Consultant Center for Lymphoma and Lymph Node Diagnostics, Goethe University, Frankfurt am Main, Germany.,Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany .,Reference and Consultant Center for Lymphoma and Lymph Node Diagnostics, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Mareschal S, Ruminy P, Alcantara M, Villenet C, Figeac M, Dubois S, Bertrand P, Bouzelfen A, Viailly PJ, Penther D, Tilly H, Bastard C, Jardin F. Application of the cghRA framework to the genomic characterization of Diffuse Large B-Cell Lymphoma. Bioinformatics 2018; 33:2977-2985. [PMID: 28481978 DOI: 10.1093/bioinformatics/btx309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation Although sequencing-based technologies are becoming the new reference in genome analysis, comparative genomic hybridization arrays (aCGH) still constitute a simple and reliable approach for copy number analysis. The most powerful algorithms to analyze such data have been freely provided by the scientific community for many years, but combining them is a complex scripting task. Results The cghRA framework combines a user-friendly graphical interface and a powerful object-oriented command-line interface to handle a full aCGH analysis, as is illustrated in an original series of 107 Diffuse Large B-Cell Lymphomas. New algorithms for copy-number calling, polymorphism detection and minimal common region prioritization were also developed and validated. While their performances will only be demonstrated with aCGH, these algorithms could actually prove useful to any copy-number analysis, whatever the technique used. Availability and implementation R package and source for Linux, MS Windows and MacOS are freely available at http://bioinformatics.ovsa.fr/cghRA. Contact mareschal@ovsa.fr or fabrice.jardin@chb.unicancer.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylvain Mareschal
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Ruminy
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Marion Alcantara
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Céline Villenet
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France
| | - Martin Figeac
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France.,Cellule de Bioinformatique du Plateau Commun de Séquençage, CHRU de Lille, 59000 Lille, France
| | - Sydney Dubois
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Bertrand
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Abdelilah Bouzelfen
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Pierre-Julien Viailly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Dominique Penther
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Hervé Tilly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France
| | - Christian Bastard
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Fabrice Jardin
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| |
Collapse
|
46
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW We review the genetic foundations of different rare lymphomas to examine their shared origins. These data indicate the potential application of genomics to improve the diagnosis and treatment of these rare diseases. RECENT FINDINGS Next generation sequencing technologies have provided an important window into the genetic underpinnings of lymphomas. A growing body of evidence indicates that although some genetic alterations are specific to certain diseases, others are shared across different lymphomas. Many such genetic events have already demonstrated clinical utility, such as BRAF V600E that confers sensitivity to vemurafenib in patients with hairy cell leukemia. SUMMARY The rareness of many lymphoma subtypes makes the conduct of clinical trials and recruitment of significant numbers of patients impractical. However, a knowledge of the shared genetic origins of these rare lymphomas has the potential to inform 'basket' clinical trials in which multiple lymphoma subtypes are included. These trials would include patients based on the presence of alterations in targetable driver genes. Such approaches would be greatly strengthened by a systematic assessment of significant patient numbers from each subtype using next generation sequencing.
Collapse
|
48
|
Dobashi A, Togashi Y, Tanaka N, Yokoyama M, Tsuyama N, Baba S, Mori S, Hatake K, Yamaguchi T, Noda T, Takeuchi K. TP53 and OSBPL10 alterations in diffuse large B-cell lymphoma: prognostic markers identified via exome analysis of cases with extreme prognosis. Oncotarget 2018; 9:19555-19568. [PMID: 29731965 PMCID: PMC5929408 DOI: 10.18632/oncotarget.24656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype characterized by both biological and clinical heterogeneity. In refractory cases, complete response/complete response unconfirmed rates in salvage therapy remain low. We performed whole-exome sequencing of DLBCL in a discovery cohort comprising 26 good and nine poor prognosis cases. After candidate genes were identified, prognoses were examined in 85 individuals in the DLBCL validation cohort. In the discovery cohort, five patients in the poor prognosis group harbored both a TP53 mutation and 17p deletion. Sixteen mutations were identified in OSBPL10 in nine patients in the good prognosis group, but none in the poor prognosis group. In the validation cohort, TP53 mutations and TP53 deletions were confirmed to be poor prognostic factors for overall survival (OS) (P = 0.016) and progression-free survival (PFS) (P = 0.023) only when both aberrations co-existed. OSBPL10 mutations were validated as prognostic markers for excellent OS (P = 0.037) and PFS (P = 0.041). Significant differences in OS and PFS were observed when patients were stratified into three groups-OSBPL10 mutation (best prognosis), the coexistence of both TP53 mutation and TP53 deletion (poorest prognosis), and others. In this study, the presence of both TP53 mutation and 17p/TP53 deletion, but not the individual variants, was associated with poor prognosis in DLBCL patients after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) or similar regimens. We also identified OSBPL10 mutation as a marker for patients with excellent prognosis in the R-CHOP era.
Collapse
Affiliation(s)
- Akito Dobashi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Yuki Togashi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan.,Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Norio Tanaka
- The Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Masahiro Yokoyama
- Department of Hematology and Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Naoko Tsuyama
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Seiichi Mori
- The Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Kiyohiko Hatake
- Department of Hematology and Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Toshiharu Yamaguchi
- The Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Tetsuo Noda
- The Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan.,Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| |
Collapse
|
49
|
Chan FC, Lim E, Kridel R, Steidl C. Novel insights into the disease dynamics of B-cell lymphomas in the Genomics Era. J Pathol 2018; 244:598-609. [DOI: 10.1002/path.5043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Fong Chun Chan
- Centre for Lymphoid Cancer; British Columbia Cancer Agency; Vancouver British Columbia Canada
| | - Emilia Lim
- Centre for Lymphoid Cancer; British Columbia Cancer Agency; Vancouver British Columbia Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre; University Health Network; Toronto Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer; British Columbia Cancer Agency; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
50
|
Whole-exome and transcriptome sequencing of refractory diffuse large B-cell lymphoma. Oncotarget 2018; 7:86433-86445. [PMID: 27835906 PMCID: PMC5349924 DOI: 10.18632/oncotarget.13239] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although rituximab therapy improves clinical outcome, some patients develop resistant DLBCL; however, the genetic alterations in these patients are not well documented. To identify the genetic background of refractory DLBCL, we conducted whole-exome sequencing and transcriptome sequencing for six patients with refractory and seven with responsive DLBCL. The average numbers of pathogenic somatic single nucleotide variants and indels in coding regions were 71 in refractory patients (range 28–120) and 38 (range 19–66) in responsive patients. Missense mutations of TP53 were exclusive in 50% (3/6) of refractory patients and involved the DNA-binding domain of TP53. All missense mutations of TP53 were accompanied by copy number deletions. RAB11FIP5, PRKCB, PRDM15, FNBP4, AHR, CEP128, BRE, DHX16, MYO6, and NMT1 mutations were recurrent in refractory patients. MYD88, B2M, SORCS3, and WDFY3 mutations were more frequent in refractory patients than in responsive patients. REL–BCL11A fusion was found in two refractory patients; one had both fusion and copy number gain. Recurrent copy gains of POU2AF1, SLC1A4, REL11, FANCL, CACNA1D, TRRAP, and CUX1 with significantly increased average expression were found in refractory patients. The expression profile revealed enriched gene sets associated with treatment resistance, including oxidative phosphorylation and ATP-binding cassette transporters. In conclusion, this study integrated both genomic and transcriptomic alterations associated with refractory DLBCL and found several treatment-resistance alterations that may contribute to refractoriness.
Collapse
|