1
|
Lu C, Lin S, Wen Z, Sun C, Ge Z, Chen W, Li Y, Zhang P, Wu Y, Wang W, Chen S, Zhou H, Li X, Li H, Tao L, Hu Y, Zhao Z, Chen Z, Wu X, Lai Y. Testing the accuracy of a four serum microRNA panel for the detection of primary bladder cancer: a discovery and validation study. Biomarkers 2024; 29:276-284. [PMID: 38767408 DOI: 10.1080/1354750x.2024.2358312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bladder cancer (BC) is one of the ten most common cancers worldwide with late detection and early age of diagnosis. There is abundant evidence that early detection and timely intervention can lead to a better prognosis of BC. Substantial evidence has indicated that microRNAs (miRNAs) are specific to different tumour types and are remarkably stable, indicating that serum miRNAs may serve as potential cancer diagnostic markers. This study aimed to identify suitable serum miRNAs to create a panel that can be used to diagnose primary BC. METHODS In this study, 18 miRNAs that were differentially expressed in BC were obtained from the PubMed or Gene Expression Omnibus database. Then, 18 BC-related-miRNAs were verified in screening and validation sets created using 56 (28 primary BC vs. 28 NCs) and 168 (84 primary BC vs. 84 NCs) serum samples, respectively. Quantitative reverse transcription-PCR (qRT-PCR) was performed to verify the identity of the differential miRNAs. A multi-miRNA panel with superior diagnostic performance was constructed. TCGA and KEGG databases were used to conduct the survival analysis and bioinformatics analysis, respectively. RESULTS Six serum miRNAs (miR-221-5p, miR-181a-5p, miR-98-5p, miR-15a-5p, miR-222-3p, and miR-197-3p) were significantly aberrantly expressed in the BC patients, while four miRNAs from among them (miR-221-5p, miR-181a-5p, miR-15a-5p, miR-222-3p) were assembled into a panel that showed high diagnostic value (AUC = 0.875, 95% CI: 0.815 - 0.921; sensitivity: 82.14%; and specificity: 85.71%) based on the logistic regression analysis. The survival analysis showed that miR-181a-5p was closely associated with BC prognosis (Log-rank p-value < 0.05). CONCLUSION The combination of the four miRNAs (miR-221-5p, miR-181a-5p, miR-15a-5p and miR-222-3p) may be a novel non-invasive serological biomarker for BC screening.
Collapse
Affiliation(s)
- Chong Lu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- The fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Shengjie Lin
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenyu Wen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chen Sun
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- The fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Zhenjian Ge
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Wenkang Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yingqi Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Pengwu Zhang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Peking University Health Science Center, Beijing, China
| | - Yutong Wu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Wuping Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Siwei Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Huimei Zhou
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- The fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xutai Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
- The fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| | - Lingzhi Tao
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| | - Yimin Hu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| | - Zhengping Zhao
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| | - Zebo Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| | - Xionghui Wu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
2
|
Torres-Bustamante MI, Vazquez-Urrutia JR, Solorzano-Ibarra F, Ortiz-Lazareno PC. The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. Int J Mol Sci 2024; 25:2178. [PMID: 38396855 PMCID: PMC10889402 DOI: 10.3390/ijms25042178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common types of cancer worldwide, with significant differences in survival depending on the degree of muscle and surrounding tissue invasion. For this reason, the timely detection and monitoring of the disease are important. Surveillance cystoscopy is an invasive, costly, and uncomfortable procedure to monitor BC, raising the need for new, less invasive alternatives. In this scenario, microRNAs (miRNAs) represent attractive prognostic tools given their role as gene regulators in different biological processes, tissue expression, and their ease of evaluation in liquid samples. In cancer, miRNA expression is dynamically modified depending on the tumor type and cancer staging, making them potential biomarkers. This review describes the most recent studies in the last five years exploring the utility of miRNA-based strategies to monitor progression, stratify, and predict relevant clinical outcomes of bladder cancer. Several studies have shown that multimarker miRNA models can better predict overall survival, recurrence, and progression in BC patients than traditional strategies, especially when combining miRNA expression with clinicopathological variables. Future studies should focus on validating their use in different cohorts and liquid samples.
Collapse
Affiliation(s)
| | - Jorge Raul Vazquez-Urrutia
- Department of Medicine, The Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Fabiola Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Estancias Posdoctorales por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONACYT), México City 03940, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
3
|
Yang Z, Hou Y, Li J, Xu D, Yang Z, Wang X. Activating transcription factor 3 is a new biomarker correlation with renal clear cell carcinoma progression. Int J Immunopathol Pharmacol 2024; 38:3946320241227320. [PMID: 38248871 PMCID: PMC10804930 DOI: 10.1177/03946320241227320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most invasive type of cancer, with a high risk of metastasis and recurrence. Therefore, there is an urgent need to identify novel prognostic predictors and therapeutic targets of ccRCC. Activating transcription factor 3 (ATF3), a tumor oncogene or repressor, has rarely been examined in ccRCC. In the present study, we comprehensively elucidate the prognostic value and potential functions of ATF3 in ccRCC.Methods: Several TCGA-based online databases were used to analyze ATF3 expression in ccRCC and determine ccRCC prognosis. The upstream-binding micro (mi) RNAs of ATF3 and long non-coding (lnc)RNAs were predicted using the StarBase database.Results: Analysis of several TCGA-based online databases showed that ATF3 expression is decreased in ccRCC, suggesting a significant association with the prognosis of patients with ccRCC. Furthermore, we found hsa-miR-221-3p to be potential regulatory miRNA of ATF3 in ccRCC. Prediction and analysis of the upstream lncRNAs indicated that PAXIP1-AS2 and OIP5-AS1 were the most potent upstream lncRNAs of the hsa-miR-221-3p/ATF3 axis in ccRCC. The results of the GO and KEGG analyses implied that ATF3 is likely involved in the regulation of apoptotic signaling in response to endoplasmic reticulum (ER) stress in ccRCC. Correlation analysis revealed a positive relationship between ATF3 expression and ER stress.Conclusions: Our in silico findings highlighted that ATF3 expression was low in ccRCC and negatively correlated with poor prognosis. Furthermore, PAXIP1-AS2 and the OIP5-AS1/hsa-miR-221-3p/ATF3 axis were identified as significant potential regulators of ER stress-mediated apoptosis in ccRCC.
Collapse
Affiliation(s)
- Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jingqi Li
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhichao Yang
- Clinical Department, North China University of Science and Technology, Tangshan, China
| | - Xinsheng Wang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
4
|
Jiang L, Sun G, Zou L, Guan Y, Hang Y, Liu Y, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:325-334. [PMID: 36970945 DOI: 10.1080/14737159.2023.2195554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The relationship between noncoding RNAs and the prognosis of bladder cancer (BC) is still controversial. The purpose of this study is to evaluate the relationship between noncoding RNAs and prognosis by meta-analysis. METHODS Comprehensive retrieval of PubMed, Embase, the Cochrane Library, the Web of Science, CNKI, and WanFang databases is related to the correlation between noncoding RNAs and the prognosis of BC. Data were extracted, and the literature quality was evaluated. STATA16.0 served for the meta-analysis. RESULTS 1. CircRNAs: High circ-ZFR expression led to poor overall survival (OS) of BC. 2. LncRNAs: Low lnc-GAS5 expression predicted poor OS of BC, high lnc-TUG1 expression predicted poor OS of BC. 3. MiRNAs: High miR-21 expression predicted poor OS of BC, high miR-222 expression led to poor OS of BC, high miR-155 expression predicted poor progression-free survival (PFS) of BC, high miR-143 expression caused poor PFS of BC, low miR-214 expression could result in poor recurrence-free survival (RFS) of BC. CONCLUSIONS High circ-ZFR, lnc-TUG1, miR-222, and miR-21 expressions were correlated with poor OS of BC; high miR-155 and miR-143 expression predicted poor PFS of BC; low lnc-GAS5 expression predicted poor OS of BC; low miR-214 expression predicted poor RFS of BC.
Collapse
|
5
|
Tantray I, Ojha R, Sharma AP. Non-coding RNA and autophagy: Finding novel ways to improve the diagnostic management of bladder cancer. Front Genet 2023; 13:1051762. [PMID: 36685879 PMCID: PMC9845264 DOI: 10.3389/fgene.2022.1051762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Major fraction of the human genome is transcribed in to the RNA but is not translated in to any specific functional protein. These transcribed but not translated RNA molecules are called as non-coding RNA (ncRNA). There are thousands of different non-coding RNAs present inside the cells, each regulating different cellular pathway/pathways. Over the last few decades non-coding RNAs have been found to be involved in various diseases including cancer. Non-coding RNAs are reported to function both as tumor enhancer and/or tumor suppressor in almost each type of cancer. Urothelial carcinoma of the urinary bladder is the second most common urogenital malignancy in the world. Over the last few decades, non-coding RNAs were demonstrated to be linked with bladder cancer progression by modulating different signalling pathways and cellular processes such as autophagy, metastasis, drug resistance and tumor proliferation. Due to the heterogeneity of bladder cancer cells more in-depth molecular characterization is needed to identify new diagnostic and treatment options. This review emphasizes the current findings on non-coding RNAs and their relationship with various oncological processes such as autophagy, and their applicability to the pathophysiology of bladder cancer. This may offer an understanding of evolving non-coding RNA-targeted diagnostic tools and new therapeutic approaches for bladder cancer management in the future.
Collapse
Affiliation(s)
- Ishaq Tantray
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| | - Aditya P. Sharma
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| |
Collapse
|
6
|
The Roles of miRNAs in Predicting Bladder Cancer Recurrence and Resistance to Treatment. Int J Mol Sci 2023; 24:ijms24020964. [PMID: 36674480 PMCID: PMC9864802 DOI: 10.3390/ijms24020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bladder cancer (BCa) is associated with significant morbidity, with development linked to environmental, lifestyle, and genetic causes. Recurrence presents a significant issue and is managed in the clinical setting with intravesical chemotherapy or immunotherapy. In order to address challenges such as a limited supply of BCG and identifying cases likely to recur, it would be advantageous to use molecular biomarkers to determine likelihood of recurrence and treatment response. Here, we review microRNAs (miRNAs) that have shown promise as predictors of BCa recurrence. MiRNAs are also discussed in the context of predicting resistance or susceptibility to BCa treatment.
Collapse
|
7
|
Bhanvadia RR, Lotan Y. Progress in the development of tissue-based biomarkers for urothelial cancer. Expert Rev Anticancer Ther 2022; 22:605-619. [PMID: 35459430 DOI: 10.1080/14737140.2022.2070154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION As the understanding of molecular mechanisms of bladder cancer advances, molecularly-guided precision medicine becomes increasingly relevant. Biomarkers play a critical role in this setting, predicting treatment response and identifying candidates for targeted therapies. AREAS COVERED Current literature on biomarkers in their role in disease prognosis, and response to neoadjuvant and adjuvant therapies. In non-muscle invasive bladder cancer, particular focus is on markers of disease progression, and response to intravesical therapy. In muscle invasive and advanced bladder cancer, particular emphasis is on markers associated with neoadjuvant chemotherapy, as well as systemic immunotherapy. We discuss current shortcomings and pitfalls in contemporary markers, and future avenues of prospective research. EXPERT OPINION The focus on biomarkers has moved from immunohistochemical analysis and tumor-related phenotypic changes to examining genetic alterations. Single marker analysis has been shown to be insufficient in predicting both disease course and response to therapy, and studies have shifted towards examining marker combinations and genetic classifiers. Ultimately, significant progress in implementing biomarkers into clinical guidelines remains elusive, largely due to lack of prospective studies in well-defined patient cohorts and with clinically-meaningful endpoints. Until then, despite their promising value, tissue markers should be limited to experimental settings and clinical trials.
Collapse
Affiliation(s)
- Raj R Bhanvadia
- Department of Urology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
8
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
9
|
Zhilong Huoxue Tongyu Capsule Alleviated the Pyroptosis of Vascular Endothelial Cells Induced by ox-LDL through miR-30b-5p/NLRP3. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3981350. [PMID: 35126599 PMCID: PMC8813228 DOI: 10.1155/2022/3981350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Background Our previous studies have demonstrated a protective role of Zhilong Huoxue Tongyu capsule in atherosclerosis (AS); however, the molecular mechanisms are unclear. Methods Human coronary artery endothelial cells (HCAECs) were induced with oxidized low-density lipoprotein (ox-LDL) to obtain cellular AS models. Then, the medicated serum of Zhilong Huoxue Tongyu capsule was obtained and used for treatment with ox-LDL-induced HCAECs. The cell viability was detected by CCK-8 assay. Besides, the binding between miR-30b-5p and NLRP3 was determined by the dual-luciferase reporter gene system assay. Furthermore, ox-LDL-induced HCAECs were transfected with miR-30b-5p mimic or miR-30b-5p inhibitor. The pyroptosis of HCAECs was assessed by flow cytometry, LDH content detection, and qRT-PCR assays. Results 10% medicated serum of Zhilong Huoxue Tongyu capsule was the maximum nontoxic concentration and it was used in subsequent assays. The rate of pyroptosis, LDH content, and the mRNA expression level of pyroptosis-related genes including NLRP3, ASC, Caspase 1, IL-1β, and IL-18 were prominently enhanced after HCAECs were induced by ox-LDL, which were markedly rescued with medicated serum of Zhilong Huoxue Tongyu capsule. In addition, the medicated serum of Zhilong Huoxue Tongyu capsule significantly enhanced the ox-LDL-induced reduction of miR-30b-5p level. NLRP3 could bind to miR-30b-5p and was negatively corrected with miR-30b-5p. Moreover, all the rates of pyroptosis, LDH content, and the mRNA expression levels of pyroptosis-related genes including NLRP3, ASC, Caspase 1, IL-1β, and IL-18 were further observably decreased after ox-LDL-induced HCAECs treated with medicated serum were transfected with miR-30b-5p mimic, while these were significantly rescued with transfection of miR-30b-5p inhibitor. Conclusion Zhilong Huoxue Tongyu capsule alleviated the pyroptosis of vascular endothelial cells induced by ox-LDL through miR-30b-5p/NLRP3.
Collapse
|
10
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
11
|
Liu W, Hu K, Zhang F, Lu S, Chen R, Ren Z, Yin X. The prognostic significance of microRNA-221 in hepatocellular carcinoma: An updated meta-analysis. Int J Biol Markers 2021; 36:17246008211032689. [PMID: 34374576 DOI: 10.1177/17246008211032689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recently, microRNA-221 has been found to be abnormally expressed in hepatocellular carcinoma; however, its clinical value has not been summarised. This meta-analysis aimed to assess the prognostic significance of miR-221 in hepatocellular carcinoma. MATERIAL AND METHODS PubMed, Science Direct, Web of Science, Scopus, Ovid MEDLINE, EMbase, Google Scholar, the Cochrane Library, CNKI, CBM, VIP and Wanfang databases were searched for eligible articles. The endpoints included overall survival, progression-free survival, recurrence-free survival, metastasis-free survival, disease-free survival. Hazard ratios with 95% confidence intervals were used to explore the relationship between miR-221 expression and clinical survival results of liver cancer patients. Subgroup analysis and sensitivity analysis were performed. Begg's test and Egger's test were conducted to evaluate publication bias. RESULTS A total of nine studies including 607 patients were recruited for this meta-analysis. The pooled hazard ratios displayed that high miR-221 expression was remarkably associated with poorer overall survival (hazard ratio = 1.91, 95% confidence interval: 1.53-2.38, p < 0.01) and unfavourable progression-free survival/recurrence-free survival/metastasis-free survival/disease-free survival (hazard ratio = 2.02, 95% confidence interval: 1.58-2.57, p < 0.01). The results of Begg's test and Egger's test did not exhibit obvious publication bias. CONCLUSIONS High expression of miR-221 can predict poor outcome of hepatocellular carcinoma. miR-221 can be used as a promising prognostic biomarker of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wenfeng Liu
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| | - Keshu Hu
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| | - Feng Zhang
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| | - Shenxin Lu
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| | - Rongxin Chen
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| | - Zhenggang Ren
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| | - Xin Yin
- Liver Cancer Institute, 92323Zhongshan Hospital, Fudan University, China
| |
Collapse
|
12
|
Shen M, Li X, Qian B, Wang Q, Lin S, Wu W, Zhu S, Zhu R, Zhao S. Crucial Roles of microRNA-Mediated Autophagy in Urologic Malignancies. Int J Biol Sci 2021; 17:3356-3368. [PMID: 34512152 PMCID: PMC8416737 DOI: 10.7150/ijbs.61175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple cancers, including urologic malignancies. In this review, we have summarized the related studies and found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenhao Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shuai Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Rui Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| |
Collapse
|
13
|
Wang Q, Zheng D, Li Y, Zhang Y, Sui R, Chen Y, Liang H, Shi J, Pan R, Xu X, Sun D. Circular RNA circ_0001588 sponges miR-211-5p to facilitate the progression of glioblastoma via up-regulating YY1 expression. J Gene Med 2021; 23:e3371. [PMID: 34105224 DOI: 10.1002/jgm.3371] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As the most common and detrimental brain tumor with high invasiveness and poor prognosis, glioblastoma (GBM) has severely threatened people's health globally. Therefore, it is of great importance and necessary to identify the molecular mechanisms involved in tumorigenesis and development, thus contributing to potential therapeutic targets and strategies. METHODS The level of circ_0001588 was detected in 68 pairs of GBM tissues and adjacent normal tissues and human glioma cell lines via a real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Then, the effect of circ_0001588 on the proliferation, migration and invasion of glioma cells was evaluated. In addition, potential downstream targets of circ_0001588 were forecasted by circBANK and Starbase. Their interaction was confirmed by introducing luciferase reporter assays. Moreover, sh-circ_0001588 transfected U251 cells were used to form tumors in vivo. Finally, the functional mechanism of circ_0001588 was identified by qRT-PCR, western blotting, xenograft and immunohistochemistry (IHC) assays. RESULTS The expression of circ_0001588 is markedly up-regulated in GBM tissues and human gliomas cells. Additionally, increased expression of circ_0001588 is positively relevant with poor survival in GBM patients. The down-regulation of circ_0001588 distinctly inhibits the proliferation, migration and invasion of GBM in vitro, as well as tumor growth in vivo. Moreover, knockdown of circ_0001588 reduces the tumor volume and weight, enhances the relative IHC staining index of E-cadherin and decreases the relative IHC staining index of Ki-67, Yin Yang 1 (YY1) and vinmentin in vivo. Mechanistically, circ_0001588 locates in the cytoplasm, which is directly bound with miR-211-5p. Furthermore, circ_0001588 can positively regulate YY1 via sponging miR-211-5p. Moreover, circ_0001588 accelerates the proliferation, migration and invasion of GBM by modulating miR-211-5p/YY1 signaling. CONCLUSIONS These results illustrate a new circ_0001588/miR-211-5p/YY1 regulatory signaling axis in GBM.
Collapse
Affiliation(s)
- Qian Wang
- Radiation Oncology Department of Gastrointestinal & Urinary & Musculoskeletal, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| | - Dahai Zheng
- Department of Neurosurgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong Province, 528300, PR China
| | - Yuhan Li
- Department of Neurosurgery, Shanghai Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, 201101, PR China
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| | - Rui Sui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| | - Yi Chen
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| | - Haiyang Liang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| | - Renlong Pan
- Department of Neurosurgery, Shanghai Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, 201101, PR China
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong Province, 528300, PR China
| | - Deyu Sun
- Radiation Oncology Department of Gastrointestinal & Urinary & Musculoskeletal, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province, 110042, PR China
| |
Collapse
|
14
|
Ye T, Zhong L, Ye X, Liu J, Li L, Yi H. miR-221-3p and miR-222-3p regulate the SOCS3/STAT3 signaling pathway to downregulate the expression of NIS and reduce radiosensitivity in thyroid cancer. Exp Ther Med 2021; 21:652. [PMID: 33968182 PMCID: PMC8097237 DOI: 10.3892/etm.2021.10084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
The expression levels of microRNA (miR)-221-3p and miR-222-3p in thyroid cancer have been found to be upregulated compared with those in normal tissues. The present study aimed to determine the effects and potential underlying mechanisms of miR-221-3p and miR-222-3p on the regulation of radioactive iodine (131I) uptake and radiosensitivity of thyroid cancer cells. The potential regulatory target genes of miR-221-3p and miR-222-3p were predicted by bioinformatics analysis, and reverse transcription-quantitative polymerase chain reaction was used to verify miR-221-3p, miR-222-3p and target gene expression levels in thyroid cancer tissues and cell lines. Overexpression of miR-221-3p or miR-222-3p in cell models was performed using lentivirus infection. Knockdown of miR-221-3p and miR-222-3p in cells was achieved using oligonucleotide inhibitor transfection. Western blotting was used to analyze the expression levels of target proteins. In addition, the effects of miR-221-3p and miR-222-3p on the radiosensitivity of thyroid cancer cells were verified using a colony formation assay. The results of the present study revealed that the expression levels of miR-221-3p and miR-222-3p were significantly upregulated, while the expression levels of suppressor of cytokine signaling 3 (SOCS3) were downregulated in thyroid cancer tissues. Furthermore, miR-221-3p and miR-222-3p overexpression downregulated the expression levels of SOCS3, E-cadherin and solute carrier family 5 member 5 (NIS), and upregulated the expression levels of phosphorylated STAT3 and vimentin. Following the overexpression of miR-221-3p or miR-222-3p in the FTC133 and TPC1 cell lines, their radiosensitivity was suppressed. In conclusion, the findings of the present study suggested that miR-221-3p and miR-222-3p may downregulate the expression levels of NIS and promote radioresistance. The potential mechanism was hypothesized to be associated with the miR-221-3p and miR-222-3p targeting of the SOCS3 gene, which may subsequently activate the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ting Ye
- Department of Nuclear Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310021, P.R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Xuemei Ye
- Department of Nuclear Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310021, P.R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Jie Liu
- Department of Nuclear Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310021, P.R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Linfa Li
- Department of Nuclear Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310021, P.R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Heqing Yi
- Department of Nuclear Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310021, P.R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310021, P.R. China
| |
Collapse
|
15
|
Lower mutant-allele tumor heterogeneity is a biomarker in FGFR3-mutant bladder cancer for better prognosis. World J Surg Oncol 2020; 18:310. [PMID: 33243261 PMCID: PMC7694425 DOI: 10.1186/s12957-020-02084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Bladder cancer displays a broad mutational spectrum and intratumor heterogeneity (ITH), which results in difference in molecular phenotypes and resistance to therapies. However, there are currently no clinically available measures to predict patient prognosis using ITH. We aimed to establish a clinically relevant biomarker by using ITH for informing predictive of outcomes. Methods We used the Bioconductor R package Maftools to efficiently and comprehensively analyze somatic variants of muscle-invasive bladder cancer (MIBC) from The Cancer Genome Atlas (TCGA). We then used a mutant-allele tumor heterogeneity (MATH) algorithm to measure ITH and explored its correlation with clinical parameters as well as mutational subtypes. Results We observed a broad range of somatic mutations in MIBC from TCGA. MATH value was higher for the high-grade group than for the low-grade group (p < 0.05). There was a strong correlation between higher MATH value and presence of TP53 mutations (p = 0.008), as well as between lower MATH value and presence of FGFR3 mutations (p = 0.006). Patients with FGFR3 mutation and low MATH value exhibit longer overall survival time than that of all BLCA patients (p = 0.044), which was replicated in another bladder cancer database composed of 109 BLCA patients. Conclusion Measures of tumor heterogeneity may be useful biomarkers for identifying patients with bladder cancer. Low MATH value was an independent risk factor that predicted better prognosis for patients with FGFR3 mutation compared to all BLCA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-020-02084-3.
Collapse
|
16
|
Zhang S, Wang Y, Wang Y, Peng J, Yuan C, Zhou L, Xu S, Lin Y, Du Y, Yang F, Zhang J, Dai H, Yin W, Lu J. Serum miR-222-3p as a Double-Edged Sword in Predicting Efficacy and Trastuzumab-Induced Cardiotoxicity for HER2-Positive Breast Cancer Patients Receiving Neoadjuvant Target Therapy. Front Oncol 2020; 10:631. [PMID: 32426280 PMCID: PMC7212359 DOI: 10.3389/fonc.2020.00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background: We aimed to explore whether the expression of serum miR-222-3p might contribute to early prediction of therapeutic response, clinical outcomes, and adverse events for HER2-positive breast cancer patients receiving neoadjuvant therapy (NAT). Methods: A total of 65 HER2-positive breast cancer patients receiving NAT were analyzed. The concentration of serum miR-222-3p was detected by quantitative real-time PCR. Logistic regression analysis was used to identify the association of serum miR-222-3p with pathological complete response (pCR). The relationship of serum miR-222-3p with disease-free survival (DFS) and overall survival (OS) was examined via log-rank test and Cox proportional hazards analysis. The ordered logistic regression was applied to evaluate the association between serum miR-222-3p and adverse events. Results: The miR-222-3p low group was more likely to achieve pCR [odds ratio (OR) = 0.258, P = 0.043]. The interaction between miR-222-3p and presenting Ki67 level was also detected for pCR (OR = 49.230, Pinteraction = 0.025). The miR-222-3p low group was correlated with superior DFS (P = 0.029) and OS (P = 0.0037). The expression of serum miR-222-3p was the independent protective factor for trastuzumab-induced cardiotoxicity (P < 0.05) and anemia (P = 0.013). Conclusions: Serum miR-222-3p is the potential factor to predict pCR, survival benefit and trastuzumab-induced cardiotoxicity for HER2-positive breast cancer patients receiving NAT.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Papadimitriou MA, Avgeris M, Levis PK, Tokas T, Stravodimos K, Scorilas A. ΔNp63 transcript loss in bladder cancer constitutes an independent molecular predictor of TaT1 patients post-treatment relapse and progression. J Cancer Res Clin Oncol 2019; 145:3075-3087. [PMID: 31595333 DOI: 10.1007/s00432-019-03028-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Bladder cancer represents a major cause of malignancy-related morbidity and the most expensive per-patient-to-treat cancer, due to the lifelong surveillance of the patients. Accurate disease prognosis is essential in establishing personalized treatment decisions; yet optimum tools for precise risk stratification remain a competing task. In the present study, we have performed the complete evaluation of TP63 clinical significance in improving disease prognosis. METHODS The levels of ΔNp63 and TAp63 transcripts of TP63 were quantified in 342 bladder tissue specimens of our screening cohort (n = 182). Hedegaard et al. (Cancer Cell 30:27-42. doi:10.1016/j.ccell.2016.05.004, 2016) (n = 476) and TCGA provisional (n = 413) were used as validation cohorts for NMIBC and MIBC, respectively. Survival analysis was performed using recurrence and progression for NMIBC or mortality for MIBC as endpoint events. Bootstrap analysis was performed for internal validation, while decision curve analysis was used for the evaluation of the clinical net benefit on disease prognosis. RESULTS ΔNp63 was significantly expressed in bladder tissues, and was found to be over-expressed in bladder tumors. Interestingly, reduced ΔNp63 levels were correlated with muscle-invasive disease, high-grade tumors and high-EORTC-risk NMIBC patients. Moreover, ΔNp63 loss was independently associated with higher risk for NMIBC relapse (HR = 2.730; p = 0.007) and progression (HR = 7.757; p = 0.016). Hedegaard et al. and TCGA validation cohorts confirmed our findings. Finally, multivariate models combining ΔΝp63 loss with established prognostic markers led to a superior clinical benefit for NMIBC prognosis and risk stratification. CONCLUSIONS ΔΝp63 loss is associated with adverse outcome of NMIBC resulting in superior prediction of NMIBC early relapse and progression.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodostrian University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodostrian University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Panagiotis K Levis
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodostrian University of Athens, Agiou Thoma 17, 11527, Athens, Greece
| | - Theodoros Tokas
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodostrian University of Athens, Agiou Thoma 17, 11527, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodostrian University of Athens, Agiou Thoma 17, 11527, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodostrian University of Athens, Panepistimiopolis, 157 01, Athens, Greece.
| |
Collapse
|
18
|
Cao W, Zhao Y, Wang L, Huang X. Circ0001429 regulates progression of bladder cancer through binding miR-205-5p and promoting VEGFA expression. Cancer Biomark 2019; 25:101-113. [PMID: 30909190 DOI: 10.3233/cbm-182380] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study investigates expressions of circ0001429, miR-205-5p and vascular endothelial growth factor (VEGFA) in bladder cancer tissues and their effects on the proliferation, migration and apoptosis. METHODS Arraystar Human CircRNA chip was applied to analyzing the differential expression of circRNA in four bladder cancer tissues and paired adjacent normal bladder tissues. Real time quantitative PCR was utilized to detect the expression of circ0001429 in tissue specimens. Bioinformatics, RNA immunoprecipitation and luciferase reporter assays were used to verify the relationship among circ0001429, miR-205-5p and VEGFA in bladder cancer. Cell propagation was determined by CCK8 assay and roles of circ0001429 and miR-205-5p in cell migration were verified with transwell migration assay. Flow cytometry and TUNEL staining were conducted to observe the impact on cell apoptosis ability. Xenograft experiment was also performed to validate the influence of circ0001429 on tumor growth in vivo. RESULTS Expressions of circ0001429 and VEGFA were up-regulated, whereas miR-205-5p expression was down-regulated in bladder cancer tissues in comparison with paired adjacent normal bladder tissues. Circ0001429 enhanced the propagation and metastasis abilities of T24 cells and 5637 cells in vitro, but reduced cell apoptosis. In vivo experiments revealed the inhibitor role of sh-circ0001429 in tumor growth and lung metastasis. Circ0001429 sponged miR-205-5p that targeted VEGFA, thereby modulating the protein level of VEGFA. Meanwhile, miR-205-5p restrained the cell viability and mobility and promoted the apoptosis in bladder cancer. Circ0001429 could accelerate cell propagation, migration and invasiveness through increasing VEGFA expression via miR-205-5p. CONCLUSION Circ0001429 and VEGFA were highly expressed in bladder cancer, while miR-205-5p were lowly expressed in bladder cancer. The circ0001429 could target at miR-205-5p to regulate VEGFA and promote the development of bladder cancer.
Collapse
|
19
|
Liu K, Wang L, Sun E. Prognostic value of miR-221 in human malignancy: evidence from 3041 subjects. BMC Cancer 2019; 19:867. [PMID: 31470827 PMCID: PMC6717359 DOI: 10.1186/s12885-019-6079-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/23/2019] [Indexed: 01/05/2023] Open
Abstract
Background MiR-221, acting as onco-miR or oncosuppressor-miR, plays an important role in tumor progression; however, the prognostic value of miR-221 in human carcinomas is controversial and inconclusive. The objective of our study was to conducted a systematic review and meta-analysis of miR-221 in various types of human cancers. Methods An online search of up-to-date electronic databases, including PubMed and Embase, was conducted to identify as many relevant papers as possible. 32 papers involving 3041 patients with different carcinomas were included in the analysis. Hazard ratios (HRs) of miR-221 were used to evaluate prognostic values. Results Thirty-two papers involving 15 cancers were included. MiR-221 was associated with a worse overall survival (OS) in patients, and a combined HR was 1.93 (95% CI of 1.43–2.60, 2080 patients, 22 studies, I-squared = 80.4%, P = 0.000); however, the combined HR for relapse-free survival (RFS) was 1.37 (95% CI of 0.75–2.48, 625 patients, 7 studies, I-squared = 78.8%, P = 0.000), and disease-free survival (DFS) was 1.24 (95% CI of 0.60–2.56, 539 patients, 5 studies, I-squared = 81.8%, P = 0.000). Conclusion MiR-221 was shown to be associated with a poor OS in human carcinomas, and thus may serve as a useful predictor of clinical outcomes. Electronic supplementary material The online version of this article (10.1186/s12885-019-6079-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kangkang Liu
- Department of Urology, Tianjin institute of urology, The 2nd Hospital of Tianjin Medical University, No 23, PingJiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Lining Wang
- Department of Urology, Tianjin institute of urology, The 2nd Hospital of Tianjin Medical University, No 23, PingJiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Erlin Sun
- Department of Urology, Tianjin institute of urology, The 2nd Hospital of Tianjin Medical University, No 23, PingJiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
20
|
Prognostic Role of miR-221 and miR-222 Expression in Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:cancers11070970. [PMID: 31336701 PMCID: PMC6678869 DOI: 10.3390/cancers11070970] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: A wealth of evidence has shown that microRNAs (miRNAs) can modulate specific genes, increasing our knowledge on the fine-tuning regulation of protein expression. miR-221 and miR-222 have been frequently identified as deregulated across different cancer types; however, their prognostic significance in cancer remains controversial. In view of these considerations, we performed an updated systematic review and meta-analysis of published data investigating the effects of miR-221/222 on overall survival (OS) and other secondary outcomes among cancer patients. A systematic search of PubMed, Web of Knowledge, and Cochrane Library databases was performed. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to assess the strength of association. Results: Fifty studies, analyzing 6086 patients, were included in the systematic review. Twenty-five studies for miR-221 and 17 studies for miR-222 which assessed OS were included in the meta-analysis. High expression of miR-221 and miR-222 significantly predicted poor OS (HR: 1.48, 95% CI: 1.14–1.93, p = 0.003 and HR: 1.90, 95% CI: 1.43–2.54, p < 0.001, respectively). Subgroup analysis revealed that the finding on miR-221 was not as robust as the one on miR-222. Furthermore, high miR-222 expression was also associated with worse progression-free survival and disease-free survival pooled with recurrence-free survival. Conclusions: The meta-analysis demonstrated that high expression of miR-222 is associated with poor prognosis in cancer patients, whereas the significance of miR-221 remains unclear. More work is required to fully elucidate the role of miR-221 and miR-222 in cancer prognosis, particularly in view of the limitations of existing results, including the significant heterogeneity and limited number of studies for some cancers.
Collapse
|
21
|
Kourtis A, Adamopoulos PG, Papalois A, Iliopoulos DC, Babis GC, Scorilas A. Quantitative analysis and study of the mRNA expression levels of apoptotic genes BCL2, BAX and BCL2L12 in the articular cartilage of an animal model of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:243. [PMID: 30069445 DOI: 10.21037/atm.2018.05.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Given that apoptosis of chondrocytes is one of the most important factors related to the pathogenesis of osteoarthritis (OA), the recent research interest adds progress not only to the knowledge of the molecular signals that mediate apoptosis but also to find new therapeutic targets. This study attempts to investigate the differential expression of BCL2 family genes in the articular cartilage of an experimental animal model of OA. Methods In total, 26 New Zealand white rabbits underwent an anterior cruciate ligament transaction, 26 more were subjected to a placebo surgery and 18 specimens constituted the control non-operated group. Thirteen weeks later, samples of cartilage from the osteoarthritic and non-osteoarthritic knees were collected and subjected to analysis of the BCL2, BAX and BCL2L12 gene expression at the mRNA level. Results Installed osteoarthritic alterations of varied intensity and of grade 1 up to grade 5, were confirmed according to the OARSI system. Contrary to the physiologically healthy samples, in the osteoarthritic samples the mRNA expression levels of BAX and BCL2L12 genes were found significantly upregulated by signals which can activate apoptosis. However, the difference between BCL2 mRNA expression levels in healthy and osteoarthritic samples was not supported statistically. Conclusions Since apoptosis is the main feature of the cartilage degeneration in OA, the effective inhibition of apoptosis of chondrocytes can provide novel and interesting therapeutic strategies for the treatment of OA. Therefore, BAX and BCL2L12 are highlighted as potential therapeutic targets in OA.
Collapse
Affiliation(s)
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - George C Babis
- Second Orthopaedic Department, National and Kapodistrian University of Athens Medical School, Konstantopouleio General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Yang C, Zheng J, Xue Y, Yu H, Liu X, Ma J, Liu L, Wang P, Li Z, Cai H, Liu Y. The Effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis Regulating Glioblastoma Angiogenesis. Front Mol Neurosci 2018; 10:437. [PMID: 29375300 PMCID: PMC5767169 DOI: 10.3389/fnmol.2017.00437] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary tumor. Angiogenesis plays a critical role in the progression of GBM. Previous studies have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in various cancers and participate in the regulation of the malignant behaviors of tumors. The present study demonstrated that lncRNA antisense 1 to Micro-chromosome maintenance protein 3-associated protein (MCM3AP-AS1) was upregulated whereas miR-211 was downregulated in glioma-associated endothelial cells (GECs). Knockdown of MCM3AP-AS1 suppressed the cell viability, migration, and tube formation of GECs and played a role in inhibiting angiogenesis of GBM in vitro. Furthermore, knockdown of MCM3AP-AS1 increased the expression of miR-211. Luciferase reporter assay implicated that miR-211 targeted KLF5 3'-UTR and consequently inhibited KLF5 expression. Besides, in this study we found that MCM3AP-AS1 knockdown decreased KLF5 and AGGF1 expression by upregulating miR-211. In addition, KLF5 was associated with the promoter region of AGGF1. Knockdown of KLF5 decreased AGGF1 expression by transcriptional repression, and also inhibited the activation of PI3K/AKT and ERK1/2 signaling pathways. Overall, this study reveals that MCM3AP-AS1/miR-211/KLF5/AGGF1 axis plays a prominent role in the regulation of GBM angiogenesis and also serves as new therapeutic target for the anti-angiogenic therapy of glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|