1
|
Shah A, Lo YC, Torres-Mora J. Primary Cutaneous Spindle Cell Sarcoma With FN1::FGFR1 Fusion. J Cutan Pathol 2025; 52:353-361. [PMID: 39945063 DOI: 10.1111/cup.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 04/17/2025]
Abstract
We report a case of a primary cutaneous spindle cell sarcoma (SCS) with FN1::FGFR1 fusion. The tumor lacked the typical histologic and immunohistochemical features associated with other FN1-rearranged neoplasms, such as phosphaturic mesenchymal tumors (PMT) and calcified chondroid mesenchymal neoplasms (CCMN). Unlike PMTs, which often feature a cartilaginous matrix and are associated with tumor-induced osteomalacia (TIO), the present case lacked these characteristics and did not show FGF23 mRNA expression. Immunohistochemically, the tumor cells showed patchy staining for CD34 but were negative for markers such as ERG, desmin, S100, and pan-TRK. The fusion event in this case involves the loss of the FGFR1 Ig1 (D1) domain, a mechanism proposed to drive oncogenesis by releasing FGFR1 from autoinhibition. Despite the preservation of other FGFR1 domains, no evidence of FGF23 signaling was detected, and the patient had no clinical history of TIO. This case underscores the complexity of oncogenesis in FN1::FGFR1-rearranged neoplasms, a form of "promiscuous" gene fusion, where similar fusions lead to diverse tumor phenotypes. It emphasizes the importance of incorporating molecular testing in diagnosing spindle cell sarcomas, particularly those occurring in acral sites, to identify this underrecognized entity.
Collapse
Affiliation(s)
- Ahmed Shah
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Al-Ibraheemi A, Zhou Y, Rullo E, Alaggio R. What is new in fibroblastic/myofibroblastic tumors in children. Virchows Arch 2025; 486:127-141. [PMID: 39499317 DOI: 10.1007/s00428-024-03964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Fibroblastic and myofibroblastic neoplasms represent about 12% of pediatric soft tissue tumors. Most of these neoplasms in children are either benign or locally aggressive with rare metastasis, while malignant cases are uncommon. Diagnosing these tumors is challenging due to overlapping morphologies and the limited utility of immunohistochemistry. Advances in molecular techniques, especially RNA sequencing, have improved our understanding of the molecular drivers of these tumors, leading to better classification. Key molecular alterations, such as RTK and MAPK activation, are central in the development of tumors like infantile fibrosarcoma (IFS) and inflammatory myofibroblastic tumors (IMT). The identification of alternative fusions in IFS and IMT underscores the importance of an integrated diagnostic approach. Furthermore, new RTK-driven lesions, now included in the WHO's "NTRK-rearranged mesenchymal neoplasms", have been identified. This review provides an update on recent findings in RTK-driven myofibroblastic tumors and highlights novel entities still in need of classification.
Collapse
Affiliation(s)
- Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Yan Zhou
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emma Rullo
- IRCCS Ospedale Pediatrico Bambino Gesù, Pathology Unit (Rome), Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Rita Alaggio
- IRCCS Ospedale Pediatrico Bambino Gesù, Pathology Unit (Rome), Piazza Sant'Onofrio 4, 00165, Rome, Italy.
- Department of Medical-Surgical Biotechnological Sciences, Sapienza University of Rome, Polo Pontino, 00185, Rome, Italy.
| |
Collapse
|
3
|
Nakamura H, Kukita Y, Yoshida KI, Tamiya H, Kadonaga S, Takenaka S, Yagi T. Aggressive Spindle Cell Sarcoma in Young Woman With the FGFR1::EBF2 Fusion. Genes Chromosomes Cancer 2024; 63:e70000. [PMID: 39422338 DOI: 10.1002/gcc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
- Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Ken-Ichi Yoshida
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Hironari Tamiya
- Department of Orthopaedics, Osaka International Cancer Institute, Osaka, Japan
| | - Shigeki Kadonaga
- Department of Orthopaedics, Osaka International Cancer Institute, Osaka, Japan
| | - Satoshi Takenaka
- Department of Orthopaedics, Osaka International Cancer Institute, Osaka, Japan
| | - Toshinari Yagi
- Department of Outpatient Chemotherapy, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
4
|
Motta M, Barresi S, Pizzi S, Bifano D, Lopez Marti J, Garrido-Pontnou M, Flex E, Bruselles A, Giovannoni I, Rotundo G, Fragale A, Tirelli V, Vallese S, Ciolfi A, Bisogno G, Alaggio R, Tartaglia M. RAF1 gene fusions are recurrent driver events in infantile fibrosarcoma-like mesenchymal tumors. J Pathol 2024; 263:166-177. [PMID: 38629245 DOI: 10.1002/path.6272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024]
Abstract
Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marialetizia Motta
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Delfina Bifano
- Pathology Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Jennifer Lopez Marti
- Department of Pathology, Hospital Nacional de Pediatria Juan P. Garrahan, Buenos Aires, Argentina
| | | | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovannina Rotundo
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Fragale
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gianni Bisogno
- Pediatric Hematology-Oncology Division, University Hospital, Padova, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
de Traux De Wardin H, Cyrta J, Dermawan JK, Guillemot D, Orbach D, Aerts I, Pierron G, Antonescu CR. FGFR1 fusions as a novel molecular driver in rhabdomyosarcoma. Genes Chromosomes Cancer 2024; 63:e23232. [PMID: 38607246 PMCID: PMC11385681 DOI: 10.1002/gcc.23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.
Collapse
Affiliation(s)
- Henry de Traux De Wardin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Brussels University Hospital, Academic Children’s Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Joanna Cyrta
- Department of Pathology, Institut Curie, PSL University, Paris, France
| | - Josephine K. Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Institut Curie,Paris, France
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Vernemmen AIP, Samarska IV, Speel EJM, Riedl RG, Goudkade D, de Bruïne AP, Wouda S, van Marion AM, Verlinden IV, van Lijnschoten I, Friederich P, Winnepenninckx VJL, Zur Hausen A, Sciot RME, van den Hout MFCM. Abdominal inflammatory myofibroblastic tumour: Clinicopathological and molecular analysis of 20 cases, highlighting potential therapeutic targets. Histopathology 2024; 84:794-809. [PMID: 38155480 DOI: 10.1111/his.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
AIMS Inflammatory myofibroblastic tumour (IMT) is a rare mesenchymal neoplasm of intermediate malignant potential, occurring at any age and at multiple sites. Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is an aggressive subtype of IMT, typically involving the abdomen. Most IMTs harbour kinase gene fusions, especially involving ALK and ROS1, but 20-30% of IMTs show no detectable translocations. The aim of this study is to further delineate clinicopathological and molecular characteristics of abdominal IMT and discover potential new therapeutic targets. METHODS AND RESULTS In 20 IMTs, including four EIMS, RNA fusion analysis was performed, followed by multiplex DNA analysis if no ALK or ROS1 fusion was detected. Fourteen IMTs (70.0%) had an ALK translocation and the fusion partner was identified in 11, including a RRBP1::ALK fusion, not previously described in classical (non-EIMS) IMT. RANBP2::ALK fusion was demonstrated in all EIMS. One IMT had a ROS1 fusion. In all ALK/ROS1 translocation-negative IMTs mutations or fusions - as yet unreported in primary IMT - were found in genes related to the receptor tyrosine kinase (RTK)/PI3K/AKT pathway. Three of four patients with EIMS died of disease [mean survival 8 months (4-15 months)], whereas only one of 14 classical IMT patients succumbed to disease [mean follow-up time 52 months (2-204 months); P < 0.01]. CONCLUSION This study shows the wide clinical spectrum of abdominal IMTs and affirms the poor prognosis of EIMS, raising discussion about its status as IMT subtype. Furthermore, the newly detected alterations of the RTK/PI3K/AKT pathway expand the molecular landscape of IMTs and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Astrid I P Vernemmen
- Department of Pathology, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Iryna V Samarska
- Department of Pathology, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ernst-Jan M Speel
- Department of Pathology, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert G Riedl
- Department of Pathology, Zuyderland Medical Center, Geleen, The Netherlands
| | - Danny Goudkade
- Department of Pathology, Zuyderland Medical Center, Geleen, The Netherlands
| | | | - Siep Wouda
- Department of Pathology, VieCuri Medical Center, Venlo, The Netherlands
| | | | - Ivana V Verlinden
- Department of Pathology, Laurentius Hospital, Roermond, The Netherlands
| | - Ineke van Lijnschoten
- Department of Pathology, PAMM Laboratory for Pathology and Medical Microbiology, Eindhoven, The Netherlands
| | - Pieter Friederich
- Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, The Netherlands
| | - Véronique J L Winnepenninckx
- Department of Pathology, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raf M E Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Mari F C M van den Hout
- Department of Pathology, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|