1
|
Dong B, Wang M, Li K, Li Z, Liu L, Shen S. Plasma proteometabolome in lung cancer: exploring biomarkers through bidirectional Mendelian randomization and colocalization analysis. Hum Mol Genet 2024; 33:1688-1696. [PMID: 39011643 DOI: 10.1093/hmg/ddae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Bo Dong
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyao Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaixiu Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zuwei Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Sumera, Anwer F, Waseem M, Fatima A, Malik N, Ali A, Zahid S. Molecular Docking and Molecular Dynamics Studies Reveal Secretory Proteins as Novel Targets of Temozolomide in Glioblastoma Multiforme. Molecules 2022; 27:7198. [PMID: 36364024 PMCID: PMC9653723 DOI: 10.3390/molecules27217198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 10/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a tumor of glial origin and is the most malignant, aggressive and prevalent type, with the highest mortality rate in adult brain cancer. Surgical resection of the tumor followed by Temozolomide (TMZ) therapy is currently available, but the development of resistance to TMZ is a common limiting factor in effective treatment. The present study investigated the potential interactions of TMZ with several secretory proteins involved in various molecular and cellular processes in GBM. Automated docking studies were performed using AutoDock 4.2, which showed an encouraging binding affinity of TMZ towards all targeted proteins, with the strongest interaction and binding affinity with GDF1 and SLIT1, followed by NPTX1, CREG2 and SERPINI, among the selected proteins. Molecular dynamics (MD) simulations of protein-ligand complexes were performed via CABS-flex V2.0 and the iMOD server to evaluate the root-mean-square fluctuations (RMSFs) and measure protein stability, respectively. The results showed that docked models were more flexible and stable with TMZ, suggesting that it may be able to target putative proteins implicated in gliomagenesis that may impact radioresistance. However, additional in vitro and in vivo investigations can ascertain the potential of the selected proteins to serve as novel targets for TMZ for GBM treatment.
Collapse
Affiliation(s)
- Sumera
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Farha Anwer
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Maaz Waseem
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Areeba Fatima
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Nishat Malik
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Amjad Ali
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Differential Expression of a Panel of Ten CNTN1-Associated Genes during Prostate Cancer Progression and the Predictive Properties of the Panel Towards Prostate Cancer Relapse. Genes (Basel) 2021; 12:genes12020257. [PMID: 33578925 PMCID: PMC7916715 DOI: 10.3390/genes12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Contactin 1 (CNTN1) is a new oncogenic protein of prostate cancer (PC); its impact on PC remains incompletely understood. We observed CNTN1 upregulation in LNCaP cell-derived castration-resistant PCs (CRPC) and CNTN1-mediated enhancement of LNCaP cell proliferation. CNTN1 overexpression in LNCaP cells resulted in enrichment of the CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_3 gene set that facilitates endocrine resistance in breast cancer. The leading-edge (LE) genes (n = 10) of this enrichment consist of four genes with limited knowledge on PC and six genes novel to PC. These LE genes display differential expression during PC initiation, metastatic progression, and CRPC development, and they predict PC relapse following curative therapies at hazard ratio (HR) 2.72, 95% confidence interval (CI) 1.96–3.77, and p = 1.77 × 10−9 in The Cancer Genome Atlas (TCGA) PanCancer cohort (n = 492) and HR 2.72, 95% CI 1.84–4.01, and p = 4.99 × 10−7 in Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 140). The LE gene panel classifies high-, moderate-, and low-risk of PC relapse in both cohorts. Additionally, the gene panel robustly predicts poor overall survival in clear cell renal cell carcinoma (ccRCC, p = 1.13 × 10−11), consistent with ccRCC and PC both being urogenital cancers. Collectively, we report multiple CNTN1-related genes relevant to PC and their biomarker values in predicting PC relapse.
Collapse
|
4
|
Gu Y, Li T, Kapoor A, Major P, Tang D. Contactin 1: An Important and Emerging Oncogenic Protein Promoting Cancer Progression and Metastasis. Genes (Basel) 2020; 11:E874. [PMID: 32752094 PMCID: PMC7465769 DOI: 10.3390/genes11080874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Even with recent progress, cancer remains the second leading cause of death, outlining a need to widen the current understanding on oncogenic factors. Accumulating evidence from recent years suggest Contactin 1 (CNTN1)'s possession of multiple oncogenic activities in a variety of cancer types. CNTN1 is a cell adhesion molecule that is dysregulated in many human carcinomas and plays important roles in cancer progression and metastases. Abnormalities in CNTN1 expression associate with cancer progression and poor prognosis. Mechanistically, CNTN1 functions in various signaling pathways frequently altered in cancer, such as the vascular endothelial growth factor C (VEGFC)-VEGF receptor 3 (VEFGR3)/fms-related tyrosine kinase 4 (Flt4) axis, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), Notch signaling pathway and epithelial-mesenchymal transition (EMT) process. These oncogenic events are resulted via interactions between tumor and stroma, which can be contributed by CNTN1, an adhesion protein. CNTN1 expression in breast cancer correlates with the expression of genes functioning in cancer-stroma interactions and skeletal system development. Evidence supports that CNTN1 promotes cancer-stromal interaction, resulting in activation of a complex network required for cancer progression and metastasis (bone metastasis for breast cancer). CNTN1 inhibitions has been proven to be effective in experimental models to reduce oncogenesis. In this paper, we will review CNTN1's alterations in cancer, its main biochemical mechanisms and interactions with its relevant cancer pathways.
Collapse
Affiliation(s)
- Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Taosha Li
- Life-Tech Industry Alliance, Shenzhen 518000, China
| | - Anil Kapoor
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
5
|
Luo X, Xu S, Zhong Y, Tu T, Xu Y, Li X, Wang B, Yang F. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis. Oncol Lett 2019; 18:6171-6179. [PMID: 31788092 PMCID: PMC6865749 DOI: 10.3892/ol.2019.10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to identify differentially regulated genes between the peritumoral brain zone (PBZ) and tumor core (TC) of glioblastoma (GBM), to elucidate the underlying molecular mechanisms and provide a target for the treatment of tumors. The GSE13276 and GSE116520 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) for the PBZ and TC were obtained using the GEO2R tool. The bioinformatics and evolutionary genomics online tool Venn was used to identify common DEGs between the two datasets. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to analyze enriched pathways of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The Search Tool for the Retrieval of Interacting Genes/Proteins online tool was used to construct a protein-protein interaction (PPI) network of DEGs. Hub genes were identified using Cytohubba, a plug-in for Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was utilized to perform survival analysis. In total, 75 DEGs, including 12 upregulated and 63 downregulated genes, were identified. In the GO term analysis, these DEGs were mainly enriched in ‘regulation of angiogenesis’ and ‘central nervous system development’. Furthermore, in the KEGG pathway analysis, the DEGs were mainly enriched in ‘bladder cancer’ and ‘endocytosis’. When filtering the results of the PPI network analysis using Cytohubba, a total of 10 hub genes, including proteolipid protein 1, myelin associated oligodendrocyte basic protein, contactin 2, myelin oligodendrocyte glycoprotein, myelin basic protein, myelin associated glycoprotein, SRY-box transcription factor 10, C-X-C motif chemokine ligand 8 (CXCL8), vascular endothelial growth factor A (VEGFA) and plasmolipin, were identified. These hub genes were further subjected to GO term and KEGG pathway analysis, and were revealed to be enriched in ‘central nervous system development’, ‘bladder cancer’ and ‘rheumatoid arthritis’. These hub genes were used to perform survival analysis using the GEPIA database, and it was determined that VEGFA and CXCL8 were significantly associated with a reduction in the overall survival of patients with GBM. In conclusion, the results suggest that the recurrence of GBM is associated with high gene expression levels VEGFA and CXCL8, and the development of the central nervous system.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yali Zhong
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R. China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Youlin Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xianglong Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
6
|
Chatterjee M, Schild D, Teunissen CE. Contactins in the central nervous system: role in health and disease. Neural Regen Res 2019; 14:206-216. [PMID: 30530999 PMCID: PMC6301169 DOI: 10.4103/1673-5374.244776] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Contactins are a group of cell adhesion molecules that are mainly expressed in the brain and play pivotal roles in the organization of axonal domains, axonal guidance, neuritogenesis, neuronal development, synapse formation and plasticity, axo-glia interactions and neural regeneration. Contactins comprise a family of six members. Their absence leads to malformed axons and impaired nerve conduction. Contactin mediated protein complex formation is critical for the organization of the axon in early central nervous system development. Mutations and differential expression of contactins have been identified in neuro-developmental or neurological disorders. Taken together, contactins are extensively studied in the context of nervous system development. This review summarizes the physiological roles of all six members of the Contactin family in neurodevelopment as well as their involvement in neurological/neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- DFG Excellence Cluster 171, University of Göttingen, Göttingen, Germany
| | - Charlotte E. Teunissen
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Dettling S, Stamova S, Warta R, Schnölzer M, Rapp C, Rathinasamy A, Reuss D, Pocha K, Roesch S, Jungk C, Warnken U, Eckstein V, Grabe N, Schramm C, Weigand MA, von Deimling A, Unterberg A, Beckhove P, Herold-Mende C. Identification of CRKII, CFL1, CNTN1, NME2, and TKT as Novel and Frequent T-Cell Targets in Human IDH-Mutant Glioma. Clin Cancer Res 2018; 24:2951-2962. [PMID: 29563135 DOI: 10.1158/1078-0432.ccr-17-1839] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/23/2017] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Successful immunotherapies for IDHmut gliomas require better knowledge of T-cell target antigens. Here, we elucidated their antigen repertoire recognized by spontaneous T-cell responses using an unbiased proteomic approach.Experimental Design: Protein fractionations of tissue lysates from IDHmut gliomas (n = 4) were performed. Fractions were tested by IFNγ ELISpot assay for recognition through patients' T cells. Proteins of immunogenic fractions were identified by mass spectrometry and validated by in silico-predicted synthetic long peptides in patients of origin, additional IDHmut glioma patients (n = 16), and healthy donors (n = 13). mRNA and protein expression of immunogenic antigens was analyzed in tumor tissues and IDHmut glioma stem-like cells (GSC). HLA-A*02-restricted T-cell epitopes were functionally determined by short peptides and numbers of antigen-specific T cells by HLA-peptide tetramer analysis.Results: A total of 2,897 proteins were identified in immunogenic tumor fractions. Based on a thorough filter process, 79 proteins were selected as potential T-cell antigens. Twenty-six of these were recognized by the patients' T cells, and five of them (CRKII, CFL1, CNTN1, NME2, and TKT) in up to 56% unrelated IDHmut glioma patients. Most immunogenic tumor-associated antigens (TAA) were expressed in IDHmut gliomas and GSCs, while being almost absent in normal brain tissues. Finally, we identified HLA-A*02-restricted epitopes for CRKII, NME2, and TKT that were recognized by up to 2.82% of antigen-specific peripheral cytotoxic T cells in IDHmut glioma patients.Conclusions: By analyzing the repertoire of T-cell target antigens in IDHmut glioma patients, we identified five novel immunogenic TAAs and confirmed their expression on IDHmut tumors and GSCs. Clin Cancer Res; 24(12); 2951-62. ©2018 AACR.
Collapse
Affiliation(s)
- Steffen Dettling
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Slava Stamova
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Anchana Rathinasamy
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kolja Pocha
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Eckstein
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schramm
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Evenepoel L, van Nederveen FH, Oudijk L, Papathomas TG, Restuccia DF, Belt EJT, de Herder WW, Feelders RA, Franssen GJH, Hamoir M, Maiter D, Ghayee HK, Shay JW, Perren A, Timmers HJLM, van Eeden S, Vroonen L, Aydin S, Robledo M, Vikkula M, de Krijger RR, Dinjens WNM, Persu A, Korpershoek E. Expression of Contactin 4 Is Associated With Malignant Behavior in Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab 2018; 103:46-55. [PMID: 28938490 DOI: 10.1210/jc.2017-01314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine, usually benign, tumors. Currently, the only reliable criterion of malignancy is the presence of metastases. OBJECTIVE The aim of this study was to identify genes associated with malignancy in PPGLs. DESIGN Transcriptomic profiling was performed on 40 benign and 11 malignant PPGLs. Genes showing a significantly different expression between benign and malignant PPGLs with a ratio ≥4 were confirmed and tested in an independent series by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry was performed for the validated genes on 109 benign and 32 malignant PPGLs. Functional assays were performed with hPheo1 cells. SETTING This study was conducted at the Department of Pathology of the Erasmus MC University Medical Center Rotterdam Human Molecular Genetics laboratory of the de Duve Institute, University of Louvain. PATIENTS PPGL samples from 179 patients, diagnosed between 1972 and 2015, were included. MAIN OUTCOME MEASURES Associations between gene expression and malignancy were tested using supervised clustering approaches. RESULTS Ten differentially expressed genes were selected based on messenger RNA (mRNA) expression array data. Contactin 4 (CNTN4) was overexpressed in malignant vs benign tumors [4.62-fold; false discovery rate (FDR), 0.001]. Overexpression at the mRNA level was confirmed using qRT-PCR (2.90-fold, P = 0.02; validation set: 4.26-fold, P = 0.005). Consistent findings were obtained in The Cancer Genome Atlas cohort (2.7-fold; FDR, 0.02). CNTN4 protein was more frequently expressed in malignant than in benign PPGLs by immunohistochemistry (58% vs 17%; P = 0.002). Survival after 7 days of culture under starvation conditions was significantly enhanced in hPheo1 cells transfected with CNTN4 complementary DNA. CONCLUSION CNTN4 expression is consistently associated with malignant behavior in PPGLs.
Collapse
Affiliation(s)
- Lucie Evenepoel
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Lindsey Oudijk
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Thomas G Papathomas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
- Department of Histopathology, King's College Hospital, London, United Kingdom
| | - David F Restuccia
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Eric J T Belt
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wouter W de Herder
- Internal Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Richard A Feelders
- Internal Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Gaston J H Franssen
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Marc Hamoir
- Otolaryngology Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Maiter
- Endocrinology Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Hans K Ghayee
- Department of Internal Medicine, Division of Endocrinology, University of Florida, Gainesville, Florida
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aurel Perren
- Clinical Pathology Division, University of Bern, Bern, Switzerland
| | - Henri J L M Timmers
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Susanne van Eeden
- Department of Pathology, Academic Medical Center, Amsterdam, Netherlands
| | - Laurent Vroonen
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Selda Aydin
- Department of Pathology, Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ronald R de Krijger
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Reinier de Graaf Hospital, Delft, Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Esther Korpershoek
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Guo Y, Zhang P, Zhang H, Zhang P, Xu R. RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1. Onco Targets Ther 2017; 10:791-801. [PMID: 28243115 PMCID: PMC5315346 DOI: 10.2147/ott.s113390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid β precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas.
Collapse
Affiliation(s)
| | - Peidong Zhang
- Department of Cardiovascular Medicine, Zhujiang Hospital; Second Clinical Medical College, Southern Medical University, Guangzhou
| | - Hongtian Zhang
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, The Bayi Clinical Medical Institute of Southern Medical University, Beijing, People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, The Bayi Clinical Medical Institute of Southern Medical University, Beijing, People's Republic of China
| | - Ruxiang Xu
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, The Bayi Clinical Medical Institute of Southern Medical University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
11
|
Wang J, Huang Y, Zhang J, Wei Y, Mahoud S, Bakheet AMH, Wang L, Zhou S, Tang J. Pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic metastasis. Clin Chim Acta 2016; 461:165-71. [PMID: 27527412 DOI: 10.1016/j.cca.2016.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
Precondition for tumor lymphatic metastasis is that tumor cells induce formation of original and newborn lymphatic vessels and invade surrounding lymphatic vessels in tumor stroma, while some pathway-related molecules play an important role in mechanisms associated with proliferation and migration of lymphatic endothelial cells (LECs) and tumor cells. In lymphangiogenesis and lymphatic metastasis, the pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis, such as Furin-like enzyme, CNTN1, Prox1, LYVE-1, Podoplanin, SOX18, SDF1 and CXCR4, are direct constitutors as a portion of VEGFC/D-VEGFR3/NRP2 axis, and their biological activities rely on this ligand-receptor system. These axis-related signal molecules could gradually produce waterfall-like cascading effects, mediate differentiation and maturation of LECs, remodel original and neonatal lymphatic vessels, as well as ultimately promote tumor cell chemotaxis, migration, invasion and metastasis to lymphoid tracts. This review summarizes the structure and function features of pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis, the expression changes of these molecules in different anatomic organs or histopathologic types or development stages of various tumors, the characteristics of transduction, implementation, integration of signal networks, the interactive effects on biological behaviors between tumor cells and lymphatic endothelial cells, and their molecular mechanisms and significances in tumor lymphangiogenesis and lymphatic metastasis.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Yuanyi Wei
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Salma Mahoud
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Ahmed Musa Hago Bakheet
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Li Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Shuting Zhou
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China.
| |
Collapse
|
12
|
Chen DH, Yu JW, Jiang BJ. Roles of contactin-1 in solid tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:4785-4791. [DOI: 10.11569/wcjd.v23.i30.4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The neural cell adhesion molecule contactin-1 (CNTN1), first identified as a member of the contactin subpopulation of the immunoglobulin superfamily, is associated with many other cell surface proteins expressed on a variety of neurocytes, contributing to their functions and maturation. It has been recently found that the abnormal expression of CNTN1 has a close correlation with tumor initiation, development, invasiveness, metastasis and prognosis. The acquired metastatic ability of malignant tumors is caused by a population of cancer cells with the capacities of invasiveness, metastasis, adherence and proliferation, in which abnormal gene expression may play an important role. This review focuses on the current advances in research of CNTN1 in the nerve system, and mainly in the malignant tumors, with an aim to provide new clues to clinical prevention, diagnosis and treatment of these malignancies.
Collapse
|
13
|
Chen DH, Yu JW, Jiang BJ. Contactin 1: A potential therapeutic target and biomarker in gastric cancer. World J Gastroenterol 2015; 21:9707-9716. [PMID: 26361417 PMCID: PMC4562954 DOI: 10.3748/wjg.v21.i33.9707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains one of the most common malignant tumors worldwide, and early diagnosis remains a challenge. The lack of effective methods to detect these tumors early is a major factor contributing to the high mortality in patients with gastric cancer, who are typically diagnosed at an advanced stage. Additionally, the early detection of metastases and the curative treatment of gastric cancer are difficult to achieve, and the detailed mechanisms remain to be fully elucidated. Thus, the identification of valuable predictive biomarkers and therapeutic targets to improve the prognosis of patients with gastric cancer is becoming increasingly important. Contactin 1 (CNTN1), a cell adhesion molecule, is a glycosylphosphatidylinositol-anchored neuronal membrane protein that plays an important role in cancer progression. The expression of CNTN1 is upregulated in primary lesions, and its expression level correlates with tumor metastasis in cancer patients. The current evidence reveals that the functions of CNTN1 in the development and progression of cancer likely promote the invasion and metastasis of cancer cells via the VEGFC/FLT4 axis, the RHOA-dependent pathway, the Notch signaling pathway and the epithelial-mesenchymal transition progression. Therefore, CNTN1 may be a novel biomarker and a possible therapeutic target in cancer treatment in the near future.
Collapse
|
14
|
Expression and significances of contactin-1 in human gastric cancer. Gastroenterol Res Pract 2013; 2013:210205. [PMID: 23606831 PMCID: PMC3626361 DOI: 10.1155/2013/210205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 02/19/2013] [Indexed: 01/30/2023] Open
Abstract
Background. This study aimed at determining the relationship between vascular endothelial growth factor-C (VEGF-C), vascular endothelial growth factor receptor-3 (VEGFR-3), and contactin-1 (CNTN-1) expression in gastric cancer (GC). Methods. The expression level of CNTN-1 mRNA and CNTN-1 protein of 33 cases was determined using RT-PCR and Western Blot. And 105 cases were immunohistochemically examined for VEGF-C, VEGFR-3, and CNTN-1 expressions. Assessment of lymphatic vessel density (LVD) was also performed by D2-40 immunostaining. Then we analyzed the relationships between VEGF-C, VEGFR-3, and CNTN-1, as well as their correlations with clinicopathologic features, LVD, and survival time. Results. The positivity rate of VEGF-C, VEGFR-3, and CNTN-1 in primary tumor was 56.19%, 64.76%, and 58.09%. The expression of CNTN-1 significantly correlated with VEGF-C (P < 0.001) and VEGFR-3 (P < 0.001). All of them were closely related to TNM stage, lymphatic invasion, and lymph node involvement (P < 0.05). LVD was significantly correlated with VEGF-C (P = 0.001), VEGFR-3 (P = 0.011), and CNTN-1 expression (P < 0.001). VEGF-C, VEGFR-3, and CNTN-1 expression significantly associated with poorer prognosis (P < 0.001, P = 0.034, P = 0.012, resp.). Conclusion. CNTN-1 associated with VEGF-C and VEGFR-3 expression in GC. All of them correlated with lymphatic metastasis, which might play an important role in the lymphatic invasion via lymphangiogenesis pathway in GC.
Collapse
|
15
|
Cunningham R, Jany P, Messing A, Li L. Protein changes in immunodepleted cerebrospinal fluid from a transgenic mouse model of Alexander disease detected using mass spectrometry. J Proteome Res 2013; 12:719-28. [PMID: 23272901 DOI: 10.1021/pr300785h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebrospinal fluid (CSF) is a low protein content biological fluid with a dynamic range spanning at least 9 orders of magnitude in protein content and is in direct contact with the brain. A modified IgY-14 immunodepletion treatment was performed to enhance analysis of the low volumes of CSF that are obtainable from mice. As a model system in which to test this approach, we utilized transgenic mice that overexpress the intermediate filament glial fibrillary acidic protein (GFAP). These mice are models for Alexander disease (AxD), a severe leukodystrophy in humans. From the CSF of control and transgenic mice we report the identification of 289 proteins, with relative quantification of 103 proteins. Biological and technical triplicates were performed to address animal variability as well as reproducibility in mass spectrometric analysis. Relative quantitation was performed using distributive normalized spectral abundance factor (dNSAF) spectral counting analysis. A panel of biomarker proteins with significant changes in the CSF of GFAP transgenic mice has been identified with validation from enzyme-linked immunosorbent assay (ELISA) and microarray data, demonstrating the utility of our methodology and providing interesting targets for future investigations on the molecular and pathological aspects of AxD.
Collapse
Affiliation(s)
- Robert Cunningham
- Department of Chemistry & School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
16
|
WU HEMING, CAO WEI, YE DONGXIA, REN GUOXIN, WU YUNONG, GUO WEI. Contactin 1 (CNTN1) expression associates with regional lymph node metastasis and is a novel predictor of prognosis in patients with oral squamous cell carcinoma. Mol Med Rep 2012; 6:265-270. [PMID: 22580838 PMCID: PMC3493082 DOI: 10.3892/mmr.2012.910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/12/2012] [Indexed: 02/05/2023] Open
Abstract
The contactin 1 (CNTN1) gene exerts oncogene‑like activities and its expression has been linked to several human malignancies. In this study, a possible association between CNTN1 expression and clinicopathological parameters and clinical outcomes in patients with oral squamous cell carcinoma (OSCC) was examined. CNTN1 protein expression was evaluated by immunohistochemistry in OSCC tissues of 45 patients. For the immunohistochemical assessment of CNTN1 expression, the cytoplasmic staining labeling index was analyzed using a semiquantitative score. The association between CNTN1 protein levels and clinicopathological factors was analyzed using the Mann-Whitney U test for categorical variables and the Kruskal-Wallis test for continuous variables. The effects of CNTN1 expression on overall and disease-free survival were assessed by using univariate survival analysis. The transcript levels of CNTN1 were detected in OSCC cell lines. In addition, specific siRNA against CNTN1 was applied to investigate the effect exerted by CNTN1 ablation on OSCC cell lines by proliferation and invasion assays in vitro. During follow-up, 16 patients (35.56%) had succumbed to OSCC; the median follow-up of patients was 5.0 years (range, 0.2-8.3). A high expression of CNTN1 was markedly associated with the regional lymph node metastasis of patients with OSCC (P=0.006). CNTN1 expression was significantly associated with overall survival of patients with OSCC (P=0.032; log-rank test) and disease-free survival of patients with OSCC (P=0.038; log-rank test). In addition, CNTN1 ablation notably suppressed the invasion potential of OSCC cell lines, but there was no significant change in the proliferation of OSCC cell lines by CNTN1 knockdown in vitro. The study supports CNTN1 as a novel predictor of regional lymph node metastasis in patients with OSCC and a prognostic marker for OSCC in patients.
Collapse
Affiliation(s)
- HE-MING WU
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011
| | - WEI CAO
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011
| | - DONGXIA YE
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011
| | - GUO-XIN REN
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011
| | - YU-NONG WU
- Institute of Stomatology, Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - WEI GUO
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011
| |
Collapse
|
17
|
Nikolaienko RM, Agyekum B, Bouyain S. Receptor protein tyrosine phosphatases and cancer: new insights from structural biology. Cell Adh Migr 2012; 6:356-64. [PMID: 22796942 DOI: 10.4161/cam.21242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.
Collapse
Affiliation(s)
- Roman M Nikolaienko
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | |
Collapse
|
18
|
Vinarskaja A, Yamanaka M, Ingenwerth M, Schulz WA. DNA Methylation and the HOXC6 Paradox in Prostate Cancer. Cancers (Basel) 2011; 3:3714-25. [PMID: 24213107 PMCID: PMC3763392 DOI: 10.3390/cancers3043714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the classical homeobox transcription factor HOXC6 is frequent in prostate cancers and correlates with adverse clinical parameters. Since surprisingly many HOXC6 target genes are downregulated in prostate cancer, it has been posited that oncogenic effects of HOXC6 in prostate cancer may be unmasked by concurrent epigenetic downregulation of target genes exerting tumor suppressive effects. To test this hypothesis, we have studied the expression of three HOXC6 target genes, CNTN1 (encoding a cell adhesion protein), DKK3 and WIF1 (encoding WNT growth factor antagonists) as well as DNA methylation of DKK3 and WIF1. HOXC6 upregulation and association with poor prognosis were confirmed in our tissue series. The three target genes were each significantly downregulated in cancer tissues and expression of each one correlated inversely with that of HOXC6. Cases with lower WIF1 expression showed significantly earlier recurrence (p = 0.021), whereas no statistical significance was reached for CNTN1 and DKK3. Hypermethylation of DKK3 or WIF1 gene promoters was observed in a subset of cancers with downregulated expression, but was often weak. Our data support the hypothesis that HOXC6 target genes exerting tumor-suppressive effects are epigenetically downregulated in prostate cancer, but DNA methylation appears to follow or bolster rather than to cause their transcriptional inactivation.
Collapse
Affiliation(s)
- Anna Vinarskaja
- Department of Urology, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
19
|
Tektonidis M, Hatzikirou H, Chauvière A, Simon M, Schaller K, Deutsch A. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J Theor Biol 2011; 287:131-47. [PMID: 21816160 DOI: 10.1016/j.jtbi.2011.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/27/2011] [Accepted: 07/20/2011] [Indexed: 12/18/2022]
Abstract
Invasion of malignant glioma is a highly complex phenomenon involving molecular and cellular processes at various spatio-temporal scales, whose precise interplay is still not fully understood. In order to identify the intrinsic cellular mechanisms of glioma invasion, we study an in vitro culture of glioma cells. By means of a computational approach, based on a cellular automaton model, we compare simulation results to the experimental data and deduce cellular mechanisms from microscopic and macroscopic observables (experimental data). For the first time, it is shown that the migration/proliferation dichotomy plays a central role in the invasion of glioma cells. Interestingly, we conclude that a diverging invasive zone is a consequence of this dichotomy. Additionally, we observe that radial persistence of glioma cells in the vicinity of dense areas accelerates the invasion process. We argue that this persistence results from a cell-cell repulsion mechanism. If glioma cell behavior is regulated through a migration/proliferation dichotomy and a self-repellent mechanism, our simulations faithfully reproduce all the experimental observations.
Collapse
Affiliation(s)
- Marco Tektonidis
- Biomedical Computer Vision Group, University of Heidelberg, BIOQUANT, IPMB, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Yoo HJ, Yoon SS, Park SY, Lee EY, Lee EB, Kim JH, Song YW. Gene expression profile during chondrogenesis in human bone marrow derived mesenchymal stem cells using a cDNA microarray. J Korean Med Sci 2011; 26:851-8. [PMID: 21738335 PMCID: PMC3124712 DOI: 10.3346/jkms.2011.26.7.851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/27/2011] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to proliferate and differentiate into multiple connective tissue lineages, which include cartilage, bone, and fat. Cartilage differentiation and chondrocyte maturation are required for normal skeletal development, but the intracellular pathways regulating this process remain largely unclear. This study was designed to identify novel genes that might help clarify the molecular mechanisms of chondrogenesis. Chondrogenesis was induced by culturing human bone marrow (BM) derived MSCs in micromass pellets in the presence of defined medium for 3, 7, 14 or 21 days. Several genes regulated during chondrogenesis were then identified by reverse transcriptase-polymerase chain reaction (RT-PCR). Using an ABI microarray system, we determined the differential gene expression profiles of differentiated chondrocytes and BM-MSCs. Normalization of this data resulted in the identification of 1,486 differentially expressed genes. To verify gene expression profiles determined by microarray analysis, the expression levels of 10 genes with high fold changes were confirmed by RT-PCR. Gene expression patterns of 9 genes (Hrad6B, annexinA2, BMP-7, contactin-1, peroxiredoxin-1, heat shock transcription factor-2, synaptotagmin IV, serotonin receptor-7, Axl) in RT-PCR were similar to the microarray gene expression patterns. These findings provide novel information concerning genes involved in the chondrogenesis of human BM-MSCs.
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Internal Medicine, Rheumatism Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Soo Yoon
- Department of Internal Medicine, Rheumatism Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seon Yang Park
- Department of Internal Medicine, Rheumatism Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Rheumatism Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Bong Lee
- Department of Internal Medicine, Rheumatism Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Han Kim
- Graduate Course of Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul, Korea
| | - Yeong Wook Song
- Department of Internal Medicine, Rheumatism Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol 2010; 45:17-23. [PMID: 19802518 DOI: 10.1007/s00535-009-0135-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 08/28/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric cancer is a worldwide cancer with poor prognosis. Identification of diagnostic biomarkers and effective therapeutic targets is important in the treatment and diagnosis of gastric cancer. Recently, researchers have found that microRNAs play several important roles in carcinogenesis. The purpose of this study was to investigate the relationships between miR-421 expression patterns in human gastric cancer tissues with clinicopathological features. METHODS Sixty gastric carcinoma and 18 non-tumor tissues were collected from the Secondary Hospital of Ningbo, China. For quantitative detection of the expression level of miR-421, total RNA was extracted and then reverse transcription-polymerase chain reaction was performed. The relationship between miR-421 expression in gastric cancer and clinicopathological features was analyzed. After miR-421 inhibitor was transfected into gastric cancer cells, cell growth was measured by MTT assay. Finally, the expression of its target genes was detected by Western blotting. RESULTS The miR-421 was over-expressed in 73.33% (44/60) of the gastric cancer samples examined. Over-expression of miR-421 in gastric cancer tissues was not found associated with clinicopathological features. The positive detection rate of miR-421 was higher than that of serum carcino-embryonic antigen (chi(2) = 39.811, P < 0.001). Inhibition of miR-421 expression decreased the growth of both MGC-803 and SGC-7901 gastric cancer cells in vitro, with up-regulating the expression of its cancer-related target genes, CBX7 and RBMXL1. CONCLUSIONS miR-421 may involve in the early stage of stomach carcinogenesis and could be used as an efficient diagnostic biomarker.
Collapse
|
22
|
Sugimoto C, Maekawa S, Miyata S. OBCAM, an immunoglobulin superfamily cell adhesion molecule, regulates morphology and proliferation of cerebral astrocytes. J Neurochem 2010; 112:818-28. [DOI: 10.1111/j.1471-4159.2009.06513.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Bizzoca A, Corsi P, Gennarini G. The mouse F3/contactin glycoprotein: structural features, functional properties and developmental significance of its regulated expression. Cell Adh Migr 2009; 3:53-63. [PMID: 19372728 PMCID: PMC2675150 DOI: 10.4161/cam.3.1.7462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 11/19/2008] [Indexed: 12/18/2022] Open
Abstract
F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | |
Collapse
|
24
|
Aubert M, Badoual M, Grammaticos B. A model for short- and long-range interactions of migrating tumour cell. Acta Biotheor 2008; 56:297-314. [PMID: 18843538 DOI: 10.1007/s10441-008-9061-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/22/2008] [Indexed: 01/06/2023]
Abstract
We examine the consequences of long-range effects on tumour cell migration. Our starting point are previous results of ours where we have shown that the migration patterns of glioma cells are best interpreted if one assumes attractive interactions between cells. Here we complement the cellular automaton model previously introduced by the assumption of the existence of a chemorepellent produced by the main bulk of large spheroids (in the hypoxic/necrotic areas). Visible effects due to the presence of such a substance can be found in the density profiles of cells migrating out of a single spheroid as well as in the angular distribution of cells coming from two close-lying spheroids. These effects depend crucially on the diffusion speed of the chemorepellent. A comparison of the simulation results to experimental data of Werbowetski et al. allows to draw (tentative) conclusions on the existence of a chemorepellent and its properties.
Collapse
|
25
|
Rome C, Loiseau H, Arsaut J, Roullot V, Couillaud F. Diversity of contactin mRNA in human brain tumors. Mol Carcinog 2006; 45:774-85. [PMID: 16865674 DOI: 10.1002/mc.20244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to address the molecular signature of human glioma, we investigated the polymorphism of 5'UTR of the mRNA of Contactin, an adhesion molecule which plays a role in the invasive behavior of these tumors. Contactin mRNA is identified by RT-PCR and a strategy based on rapid amplification of cDNA ends (RACE) reveals different 5'UTRs resulting from both an alternative use of two types of leader exons and a splicing mechanism within the 5'UTR. The spliced exon is an Alu-containing element specific to the primate lineage, thus indicating a recent evolution of regulatory processes specific to the simian line that occurs on this gene. Each 5'UTR exhibits different transcription/translation efficiencies and contains features that allow translation to occur independently of the classic cap-dependent mechanism. These data illustrate the complex regulation of Contactin expression in human brain tumors occurring at both transcriptional and translation levels. The different 5'UTRs are differentially expressed in diverse types of human tumors. Thus, the polymorphism occurring within the non-coding part of the Contactin mRNA reveals new opportunities to explore deregulation that occurs during the oncogenic process.
Collapse
Affiliation(s)
- Claire Rome
- Molecular and Functional Imaging, ERT-CNRS 5543, Université Victor Segalen, Bordeaux, France
| | | | | | | | | |
Collapse
|
26
|
De Benedictis L, Bizzoca A, Corsi P, Albieri I, Consalez GG, Gennarini G. Activation profile of the F3/Contactin gene in the developing mouse cerebellum. Mol Cell Neurosci 2006; 32:403-18. [PMID: 16857383 DOI: 10.1016/j.mcn.2006.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 05/04/2006] [Accepted: 06/09/2006] [Indexed: 01/06/2023] Open
Abstract
In this study, we address the activation profile of the gene encoding the mouse axonal glycoprotein F3/Contactin. Promoter sequences previously characterized in vitro are used to drive an Enhanced Green Fluorescent Protein reporter in transgenic mice. In developing cerebellum, differential transgene expression occurs within distinct cell populations. At P0 the transgene is activated in postmitotic granule neurons undergoing radial migration, a sharp upregulation occurring at P6-P8, with a gradual decline from this stage onward. In Purkinje cells, promoter activation, first detected at P3, peaks at around P6 and is fully downregulated by P16. The transgene is also expressed in Ng2- and O4-positive cells, mostly at the end of the first postnatal week, suggesting correlation with early oligodendrocyte differentiation. These data indicate that the complex organization of the regulatory region of the F3/Contactin gene is necessary for directing its articulated expression in different neural cells types and for its developmental function.
Collapse
Affiliation(s)
- Leonarda De Benedictis
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|