1
|
Dustin E, Suarez-Pozos E, Stotesberry C, Qiu S, Palavicini JP, Han X, Dupree JL. Compromised Myelin and Axonal Molecular Organization Following Adult-Onset Sulfatide Depletion. Biomedicines 2023; 11:1431. [PMID: 37239102 PMCID: PMC10216104 DOI: 10.3390/biomedicines11051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
3-O-sulfogalactosylceramide, or sulfatide, is a prominent myelin glycosphingolipid reduced in the normal appearing white matter (NAWM) in Multiple Sclerosis (MS), indicating that sulfatide reduction precedes demyelination. Using a mouse model that is constitutively depleted of sulfatide, we previously demonstrated that sulfatide is essential during development for the establishment and maintenance of myelin and axonal integrity and for the stable tethering of certain myelin proteins in the sheath. Here, using an adult-onset depletion model of sulfatide, we employ a combination of ultrastructural, immunohistochemical and biochemical approaches to analyze the consequence of sulfatide depletion from the adult CNS. Our findings show a progressive loss of axonal protein domain organization, which is accompanied by axonal degeneration, with myelin sparing. Similar to our previous work, we also observe differential myelin protein anchoring stabilities that are both sulfatide dependent and independent. Most notably, stable anchoring of neurofascin155, a myelin paranodal protein that binds the axonal paranodal complex of contactin/Caspr1, requires sulfatide. Together, our findings show that adult-onset sulfatide depletion, independent of demyelination, is sufficient to trigger progressive axonal degeneration. Although the pathologic mechanism is unknown, we propose that sulfatide is required for maintaining myelin organization and subsequent myelin-axon interactions and disruptions in these interactions results in compromised axon structure and function.
Collapse
Affiliation(s)
- Elizabeth Dustin
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Edna Suarez-Pozos
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Camryn Stotesberry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shulan Qiu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juan Pablo Palavicini
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey L. Dupree
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| |
Collapse
|
2
|
Zhang X, Huang N, Xiao L, Wang F, Li T. Replenishing the Aged Brains: Targeting Oligodendrocytes and Myelination? Front Aging Neurosci 2021; 13:760200. [PMID: 34899272 PMCID: PMC8656359 DOI: 10.3389/fnagi.2021.760200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging affects almost all the aspects of brain functions, but the mechanisms remain largely undefined. Increasing number of literatures have manifested the important role of glial cells in regulating the aging process. Oligodendroglial lineage cell is a major type of glia in central nervous system (CNS), composed of mature oligodendrocytes (OLs), and oligodendroglia precursor cells (OPCs). OLs produce myelin sheaths that insulate axons and provide metabolic support to meet the energy demand. OPCs maintain the population throughout lifetime with the abilities to proliferate and differentiate into OLs. Increasing evidence has shown that oligodendroglial cells display active dynamics in adult and aging CNS, which is extensively involved in age-related brain function decline in the elderly. In this review, we summarized present knowledge about dynamic changes of oligodendroglial lineage cells during normal aging and discussed their potential roles in age-related functional decline. Especially, focused on declined myelinogenesis during aging and underlying mechanisms. Clarifying those oligodendroglial changes and their effects on neurofunctional decline may provide new insights in understanding aging associated brain function declines.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Nanxin Huang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Liu W, Rohlman AR, Vetreno R, Crews FT. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol 2021; 12:651418. [PMID: 34025418 PMCID: PMC8134748 DOI: 10.3389/fphar.2021.651418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Adolescent development of prefrontal cortex (PFC) parallels maturation of executive functions as well as increasing white matter and myelination. Studies using MRI and other methods find that PFC white matter increases across adolescence into adulthood in both humans and rodents. Adolescent binge drinking is common and has been found to alter adult behaviors and PFC functions. This study examines development of oligoprogenitor (OPC) and oligodendrocytes (OLs) in Wistar rats from adolescence to adulthood within PFC white matter, corpus callosum forceps minor (fmi), PFC gray matter, and the neurogenic subventricular zone (SVZ) using immunohistochemistry for marker proteins. In addition, the effects of adolescent intermittent ethanol exposure [AIE; 5.0 g/kg/day, intragastric, 2 days on/2 days off on postnatal day (P)25-54], which is a weekend binge drinking model, were determined. OPC markers NG2+, PDGFRα+ and Olig2+IHC were differentially impacted by both age and PFC region. In both fmi and SVZ, NG2+IHC cells declined from adolescence to adulthood with AIE increasing adult NG2+IHC cells and their association with microglial marker Iba1. PFC gray matter decline in NG2+IHC in adulthood was not altered by AIE. Both adult maturation and AIE impacted OL expression of PLP+, MBP+, MAG+, MOG+, CNPase+, Olig1+, and Olig2+IHC in all three PFC regions, but in region- and marker-specific patterns. These findings are consistent with PFC region-specific changes in OPC and OL markers from adolescence to adulthood as well as following AIE that could contribute to lasting changes in PFC function.
Collapse
Affiliation(s)
| | | | | | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Campos FSO, Piña-Rodrigues FM, Reis A, Atella GC, Mermelstein CS, Allodi S, Cavalcante LA. Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cell Mol Neurobiol 2021; 41:525-536. [PMID: 32415577 PMCID: PMC11448638 DOI: 10.1007/s10571-020-00869-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and β1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with β1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.
Collapse
Affiliation(s)
- Fernanda S O Campos
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe M Piña-Rodrigues
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alice Reis
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia S Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil.
| | - Leny A Cavalcante
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
5
|
Hinman JD, Ngo KJ, Kim D, Chen C, Abraham CR, Ghanbari M, Ikram MA, Kushner SA, Kawaguchi R, Coppola G, Goth K, Bellusci S, Hernandez I, Kosik KS, Fogel BL. miR-142-3p regulates cortical oligodendrocyte gene co-expression networks associated with tauopathy. Hum Mol Genet 2021; 30:103-118. [PMID: 33555315 PMCID: PMC8496370 DOI: 10.1093/hmg/ddaa252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
Oligodendrocytes exist in a heterogenous state and are implicated in multiple neuropsychiatric diseases including dementia. Cortical oligodendrocytes are a glial population uniquely positioned to play a key role in neurodegeneration by synchronizing circuit connectivity but molecular pathways specific to this role are lacking. We utilized oligodendrocyte-specific translating ribosome affinity purification and RNA-seq (TRAP-seq) to transcriptionally profile adult mature oligodendrocytes from different regions of the central nervous system. Weighted gene co-expression network analysis reveals distinct region-specific gene networks. Two of these mature myelinating oligodendrocyte gene networks uniquely define cortical oligodendrocytes and differentially regulate cortical myelination (M8) and synaptic signaling (M4). These two cortical oligodendrocyte gene networks are enriched for genes associated with dementia including MAPT and include multiple gene targets of the regulatory microRNA, miR-142-3p. Using a combination of TRAP-qPCR, miR-142-3p overexpression in vitro, and miR-142-null mice, we show that miR-142-3p negatively regulates cortical myelination. In rTg4510 tau-overexpressing mice, cortical myelination is compromised, and tau-mediated neurodegeneration is associated with gene co-expression networks that recapitulate both the M8 and M4 cortical oligodendrocyte gene networks identified from normal cortex. We further demonstrate overlapping gene networks in mature oligodendrocytes present in normal cortex, rTg4510 and miR-142-null mice, and existing datasets from human tauopathies to provide evidence for a critical role of miR-142-3p-regulated cortical myelination and oligodendrocyte-mediated synaptic signaling in neurodegeneration.
Collapse
Affiliation(s)
- Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kathie J Ngo
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Deborah Kim
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Cidi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad 13131 - 99137, Iran
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Riki Kawaguchi
- Informatics Center for Neurogenetics and Neurogenomics, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Giovanni Coppola
- Informatics Center for Neurogenetics and Neurogenomics, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kerstin Goth
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, 35392 Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, 35392 Giessen, Germany
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Israel Hernandez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
6
|
Linial M, Stern A, Weinstock M. Effect of ladostigil treatment of aging rats on gene expression in four brain areas associated with regulation of memory. Neuropharmacology 2020; 177:108229. [PMID: 32738309 DOI: 10.1016/j.neuropharm.2020.108229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 02/09/2023]
Abstract
Episodic and spatial memory decline in aging and are controlled by the hippocampus, perirhinal, frontal and parietal cortices and the connections between them. Ladostigil, a drug with antioxidant and anti-inflammatory activity, was shown to prevent the loss of episodic and spatial memory in aging rats. To better understand the molecular effects of aging and ladostigil on these brain regions we characterized the changes in gene expression using RNA-sequencing technology in rats aged 6 and 22 months. We found that the changes induced by aging and chronic ladostigil treatment were brain region specific. In the hippocampus, frontal and perirhinal cortex, ladostigil decreased the overexpression of genes regulating calcium homeostasis, ion channels and those adversely affecting synaptic function. In the parietal cortex, ladostigil increased the expression of several genes that provide neurotrophic support, while reducing that of pro-apoptotic genes and those encoding pro-inflammatory cytokines and their receptors. Ladostigil also decreased the expression of axonal growth inhibitors and those impairing mitochondrial function. Together, these actions could explain the protection by ladostigil against age-related memory decline.
Collapse
Affiliation(s)
- Michal Linial
- Department of Biological Chemistry, Life Science Institute, Israel; The Rachel and Selim Benin School of Computer Science and Engineering, Israel
| | - Amos Stern
- Department of Biological Chemistry, Life Science Institute, Israel
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
7
|
Olga K, Yulia B, Vassilios P. The Functions of Mitochondrial 2',3'-Cyclic Nucleotide-3'-Phosphodiesterase and Prospects for Its Future. Int J Mol Sci 2020; 21:ijms21093217. [PMID: 32370072 PMCID: PMC7246452 DOI: 10.3390/ijms21093217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) is a myelin-associated enzyme that catalyzes the phosphodiester hydrolysis of 2’,3’-cyclic nucleotides to 2’-nucleotides. However, its presence is also found in unmyelinated cells and other cellular structures. Understanding of its specific physiological functions, particularly in unmyelinated cells, is still incomplete. This review concentrates on the role of mitochondrial CNPase (mtCNPase), independent of myelin. mtCNPase is able to regulate the functioning of the mitochondrial permeability transition pore (mPTP), and thus is involved in the mechanisms of cell death, both apoptosis and necrosis. Its participation in the development of various diseases and pathological conditions, such as aging, heart disease and alcohol dependence, is also reviewed. As such, mtCNPase can be considered as a potential target for the development of therapeutic strategies in the treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Krestinina Olga
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow region, Russia;
- Correspondence:
| | - Baburina Yulia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow region, Russia;
| | - Papadopoulos Vassilios
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA;
| |
Collapse
|
8
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
9
|
Mages B, Aleithe S, Blietz A, Krueger M, Härtig W, Michalski D. Simultaneous alterations of oligodendrocyte-specific CNP, astrocyte-specific AQP4 and neuronal NF-L demarcate ischemic tissue after experimental stroke in mice. Neurosci Lett 2019; 711:134405. [PMID: 31374325 DOI: 10.1016/j.neulet.2019.134405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022]
Abstract
Ischemic stroke not only affects neurons, but also glial and vascular elements. The development of novel neuroprotective strategies thus requires an improved pathophysiological understanding of ischemia-affected cell types that comprise the 'neurovascular unit' (NVU). To explore spatiotemporal alterations of oligodendrocytes, astrocytes and neurons after experimental ischemic stroke, we applied a permanent middle cerebral artery occlusion model in mice for 4 and 24 h. Using fluorescence microscopy, the oligodendrocyte marker 2',3'-cyclic nucleotide phosphodiesterase (CNP), the neuronal neurofilament light chain (NF-L) and the astroglial aquaporin-4 (AQP4) were analyzed in regional relation to one another. Immunofluorescence intensities of CNP and NF-L were simultaneously increased in the ischemic neocortex and striatum. AQP4 immunoreactivity was decreased in the ischemic striatum, which represents the initial and potentially strongest affected site of infarction. The more distant ischemic neocortex and infarct border zones exhibited areas with alternately increased or decreased AQP4 immunoreactivity, leading to an increase of fluorescence intensity in total. Further, deformed CNP-immunopositive processes were found around axonal spheroids, indicating a combined affection of oligodendrocytes and neurons due to ischemia. Importantly, altered AQP4 immunosignals were not limited to the ischemic core, but were also detectable in penumbral areas. This applies for CNP and NF-L also, since altered immunosignals of all three markers coincided regionally at both time points. In conclusion, the present study provides evidence for a simultaneous affection of oligodendrocytes, astrocytes and neurons after experimental focal cerebral ischemia. Consequently, CNP, AQP4 and NF-L immunofluorescence alterations can be utilized to identify ischemia-affected tissue. The simultaneity of the described alterations further strengthens the concept of interdependent NVU components and distinguishes NF-L, CNP and AQP4 as highly ischemia-sensitive elements. Consequently, future therapeutic approaches might influence stroke evolution via strategies simultaneously addressing both neuronal and glial functions.
Collapse
Affiliation(s)
- Bianca Mages
- Department of Neurology, University of Leipzig, Germany; Institute of Anatomy, University of Leipzig, Germany.
| | | | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Germany
| | | |
Collapse
|
10
|
Mao XW, Sandberg LB, Gridley DS, Herrmann EC, Zhang G, Raghavan R, Zubarev RA, Zhang B, Stodieck LS, Ferguson VL, Bateman TA, Pecaut MJ. Proteomic Analysis of Mouse Brain Subjected to Spaceflight. Int J Mol Sci 2018; 20:ijms20010007. [PMID: 30577490 PMCID: PMC6337482 DOI: 10.3390/ijms20010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
There is evidence that spaceflight poses acute and late risks to the central nervous system. To explore possible mechanisms, the proteomic changes following spaceflight in mouse brain were characterized. Space Shuttle Atlantis (STS-135) was launched from the Kennedy Space Center (KSC) on a 13-day mission. Within 3–5 h after landing, brain tissue was collected to evaluate protein expression profiles using quantitative proteomic analysis. Our results showed that there were 26 proteins that were significantly altered after spaceflight in the gray and/or white matter. While there was no overlap between the white and gray matter in terms of individual proteins, there was overlap in terms of function, synaptic plasticity, vesical activity, protein/organelle transport, and metabolism. Our data demonstrate that exposure to the spaceflight environment induces significant changes in protein expression related to neuronal structure and metabolic function. This might lead to a significant impact on brain structural and functional integrity that could affect the outcome of space missions.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Lawrence B Sandberg
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Daila S Gridley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - E Clifford Herrmann
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Guangyu Zhang
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Ravi Raghavan
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, SE 17177 Stockholm, Sweden.
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Bo Zhang
- Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, SE 17177 Stockholm, Sweden.
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Louis S Stodieck
- BioServe Space Technologies, University of Colorado at Boulder, Boulder, CO 80303, USA.
| | - Virginia L Ferguson
- BioServe Space Technologies, University of Colorado at Boulder, Boulder, CO 80303, USA.
| | - Ted A Bateman
- Department of Bioengineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
11
|
Robinson AA, Abraham CR, Rosene DL. Candidate molecular pathways of white matter vulnerability in the brain of normal aging rhesus monkeys. GeroScience 2018; 40:31-47. [PMID: 29357021 PMCID: PMC5832663 DOI: 10.1007/s11357-018-0006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Mammalian aging is associated with decline in cognitive functions. Studies searching for a cause of cognitive aging initially focused on neuronal loss but quantitative investigations of rat, monkey, and human brain using stereology demonstrated that in normal aging, unlike in neurodegenerative disease, neurons are not lost. Instead, electron microscopic and MRI studies in normal aging monkeys revealed age-related damage to myelin sheaths, loss of axons, and reduction in white matter volume which correlates with cognitive impairments. However, little is known about the cause of myelin defects or associated axon loss. The present study investigates the effect of age on signaling pathways between oligodendroglia and neurons using a custom PCR array to assess the expression of 87 genes of interest in cortical gray matter and white matter from the inferior parietal lobe (IPL) of normal rhesus monkeys ranging in age from 4.2 to 30.4 years old. From this array data, five target genes of interest were selected for further analysis to confirm gene expression and measure protein expression. The most interesting target gene identified is brain-derived neurotrophic factor (BDNF), which was the only gene that was altered at both mRNA and protein levels. In gray matter, BDNF mRNA was decreased. While the level of the mature form of the protein was unchanged, there was a specific decrease in the precursor form of BDNF. These alterations in the BDNF in gray matter could contribute to the vulnerability and loss of the axons with age.
Collapse
Affiliation(s)
- Amy A. Robinson
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA
| | - Carmela R. Abraham
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118 USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
12
|
Jackson EK. Discovery and Roles of 2',3'-cAMP in Biological Systems. Handb Exp Pharmacol 2017; 238:229-252. [PMID: 26721674 DOI: 10.1007/164_2015_40] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2009, investigators using ultra-performance liquid chromatography-tandem mass spectrometry to measure, by selected reaction monitoring, 3',5'-cAMP in the renal venous perfusate from isolated, perfused kidneys detected a large signal at the same m/z transition (330 → 136) as 3',5'-cAMP but at a different retention time. Follow-up experiments demonstrated that this signal was due to a positional isomer of 3',5'-cAMP, namely, 2',3'-cAMP. Soon thereafter, investigative teams reported the detection of 2',3'-cAMP and other 2',3'-cNMPs (2',3'-cGMP, 2',3'-cCMP, and 2',3'-cUMP) in biological systems ranging from bacteria to plants to animals to humans. Injury appears to be the major stimulus for the release of these unique noncanonical cNMPs, which likely are formed by the breakdown of RNA. In mammalian cells in culture, in intact rat and mouse kidneys, and in mouse brains in vivo, 2',3'-cAMP is metabolized to 2'-AMP and 3'-AMP; and these AMPs are subsequently converted to adenosine. In rat and mouse kidneys and mouse brains, injury releases 2',3'-cAMP, 2'-AMP, and 3'-AMP into the extracellular compartment; and in humans, traumatic brain injury is associated with large increases in 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine in the cerebrospinal fluid. These findings motivate the extracellular 2',3'-cAMP-adenosine pathway hypothesis: intracellular production of 2',3'-cAMP → export of 2',3'-cAMP → extracellular metabolism of 2',3'-cAMP to 2'-AMP and 3'-AMP → extracellular metabolism of 2'-AMP and 3'-AMP to adenosine. Since 2',3'-cAMP has been shown to activate mitochondrial permeability transition pores (mPTPs) leading to apoptosis and necrosis and since adenosine is generally tissue protective, the extracellular 2',3'-cAMP-adenosine pathway may be a protective mechanism [i.e., removes 2',3'-cAMP (an intracellular toxin) and forms adenosine (a tissue protectant)]. This appears to be the case in the brain where deficiency in CNPase (the enzyme that metabolizes 2',3'-cAMP to 2-AMP) leads to increased susceptibility to brain injury and neurological diseases. Surprisingly, CNPase deficiency in the kidney actually protects against acute kidney injury, perhaps by preventing the formation of 2'-AMP (which turns out to be a renal vasoconstrictor) and by augmenting the mitophagy of damaged mitochondria. With regard to 2',3'-cNMPs and their downstream metabolites, there is no doubt much more to be discovered.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
13
|
Krestinina OV, Myakisheva SN, Baburina YL, Fadeev RS, Azarashvili TS, Akatov VS. The effects of isoquinoline carboxamide and melatonin on the differentiation of N1Е-115 mouse neuroblastoma cells (clone C-1300) and on the expression of the TSPO translocation protein and 2’,3’-cyclonucleotide-3’-phosphodiesterase in these cells. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mir S, Ali F, Chauhan D, Arora R, Khan HA. Accumulation of reactivity to MBP sensitizes TRAIL mediated oligodendrocyte apoptosis in adult sub cortical white matter in a model for human multiple sclerosis. Metab Brain Dis 2016; 31:299-309. [PMID: 26477945 DOI: 10.1007/s11011-015-9750-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
Reactivity to myelin associated proteins is the hallmark of human multiple sclerosis (M.S) and its experimental counterparts. However, the nature of such reactivity has not been described fully. Herein, we report that myelin basic protein (MBP) reactivity accumulates in a rat model for M.S. over a period of time and sensitizes TRAIL mediated progressive oligodendrocyte apoptosis. We used active immunization by Myelin Oligodendrocyte Glycoprotein (MOG, 50 μg) to study chronic remitting relapsing encephalomyelitis in rats. A time point analysis of the progressive disease revealed cumulative accumulation of anti myelin basic protein antibodies during the disease progression with minimal change in the anti-MOG antibodies. Increased reactivity to MBP was studied to sensitize TNF related apoptosis-inducing ligand (TRAIL) and other proinflammatory cytokines in a cumulative fashion leading to the Caspase dependent apoptosis of oligodendrocytes and myelin loss. In a rescue experiment, we could limit the demyelination and prevent disease progression by neutralizing the effector, TRAIL in an early stage of the disease. This is the first study to identify the accumulation of MBP antibodies in MOG induced EAE which possibly leads to TRAIL sensitized oligodendrocyte apoptosis in the white mater of EAE rats. This finding stresses on the need to study MBP antibody titers in M.S. patients and therefore might serve as an alternate marker for progressive demyelination.
Collapse
Affiliation(s)
- Sajad Mir
- Clinical Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
- School of Medicine, University of Kentucky, 741 S Limestone St., Lexington, KY, 40536, USA.
| | - Farrah Ali
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Deepika Chauhan
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Rajesh Arora
- Radiation Biology Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, 110054, India
| | - Haider A Khan
- Clinical Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
15
|
Xu B, Xiong F, Tian R, Zhan S, Gao Y, Qiu W, Wang R, Ge W, Ma C. Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank. Exp Gerontol 2016; 73:31-41. [PMID: 26631761 DOI: 10.1016/j.exger.2015.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/25/2023]
Abstract
The temporal lobe is a portion of the cerebral cortex with critical functionality. The age-related protein profile changes in the human temporal lobe have not been previously studied. This 4-plex tandem mass tag labeled proteomic study was performed on samples of temporal lobe from Chinese donors. Tissue samples were assigned to four age groups: Group A (the young, age: 34±13 years); Group B (the elderly, 62±5 years); Group C (the aged, 84±4 years) and Group D (the old, 95±1 years). Pooled samples from the different groups were subjected to proteomics and bioinformatics analysis to identify age-related changes in protein expression and associated pathways. We isolated 5072 proteins, and found that 67 proteins were downregulated and 109 proteins were upregulated in one or more groups during the aging process. Western blotting assays were performed to verify the proteomic results. Bioinformatic analysis identified proteins involved in neuronal degeneration, including proteins involved in neuronal firing, myelin sheath damage, and cell structure stability. We also observed the accumulation of extracellular matrix and lysosomal proteins which imply the occurrence of fibrosis and autophagy. Our results suggest a series of changes across a wide range of proteins in the human temporal lobe that may relate to aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Benhong Xu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Feng Xiong
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Rui Tian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yanpan Gao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, and Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, and Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
16
|
Krestinina O, Azarashvili T, Baburina Y, Galvita A, Grachev D, Stricker R, Reiser G. In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. Neurochem Int 2014; 80:41-50. [PMID: 25277077 DOI: 10.1016/j.neuint.2014.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/30/2022]
Abstract
Aging is accompanied by progressive dysfunction of mitochondria associated with a continuous decrease of their capacity to produce ATP. Mitochondria isolated from brain of aged animals show an increased mitochondrial permeability transition pore (mPTP) opening. We recently detected new regulators of mPTP function in brain mitochondria, the enzyme 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and its substrates 2', 3'-cAMP and 2', 3'-cNADP, and the neuronal protein p42(IP4). Here, we compared parameters of mPTP opening in non-synaptic brain mitochondria isolated from young and old rats. In mitochondria from old rats (>18 months), mPTP opening occurred at a lower threshold of Ca(2+) concentration than in mitochondria from young rats (<3 months). mPTP opening in mitochondria from old rats was accelerated by 2', 3'-cAMP, which further lowered the threshold Ca(2+) concentration. In non-synaptic mitochondria from old rats, the CNP level was decreased by 34%. Lowering of the CNP level in non-synaptic mitochondria with aging was accompanied by decreased levels of voltage-dependent anion channel (VDAC; by 69%) and of p42(IP4) (by 59%). Thus, reduced levels of CNP in mitochondria could lead to a rise in the concentration of the mPTP promoter 2', 3'-cAMP. The level of CNP and p42(IP4) and, probably VDAC, might be essential for myelination and electrical activity of axons. We propose that in aging the reduction in the level of these proteins leads to mitochondrial dysfunction, in particular, to a decreased threshold Ca(2+) concentration to induce mPTP opening. This might represent initial steps of age-related mitochondrial dysfunction, resulting in myelin and axonal pathology.
Collapse
Affiliation(s)
- Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Anastasia Galvita
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Dmitry Grachev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Rolf Stricker
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Georg Reiser
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany.
| |
Collapse
|
17
|
Jackson EK, Gillespie DG, Mi Z, Cheng D, Bansal R, Janesko-Feldman K, Kochanek PM. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 2014; 307:F14-24. [PMID: 24808540 PMCID: PMC4080157 DOI: 10.1152/ajprenal.00134.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022] Open
Abstract
Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Raasakka A, Kursula P. The myelin membrane-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase: on a highway to structure and function. Neurosci Bull 2014; 30:956-966. [PMID: 24807122 DOI: 10.1007/s12264-013-1437-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022] Open
Abstract
The membrane-anchored myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) was discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and high expression levels in the central nervous system. Despite decades of research, the actual physiological relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. This review is focused on past research on CNPase, especially in the fields of structural biology and enzymology, and outlines the current understanding regarding the biochemical and physiological significance of CNPase, providing ideas and directions for future research.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petri Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. .,Department of Chemistry, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
19
|
Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Bansal R, Goebbels S, Nave KA, Kochanek PM, Jackson EK. Role of CNPase in the oligodendrocytic extracellular 2',3'-cAMP-adenosine pathway. Glia 2013; 61:1595-606. [PMID: 23922219 DOI: 10.1002/glia.22523] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 11/09/2022]
Abstract
Extracellular adenosine 3',5'-cyclic monophosphate (3',5'-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2',3'-cAMP (positional isomer of 3',5'-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2',3'-cAMP to adenosine. Here, we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2',3'-cAMP and their respective adenosine monophosphates (2'-AMP and 3'-AMP). Cells were also isolated from mice deficient in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2',3'-cAMP to 2'-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3'-AMP was minimal in both oligodendrocytes and neurons. The production of 2'-AMP from 2',3'-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2'-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3',5'-cAMP-3'-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2',3'-cAMP to 2'-AMP and inhibition of classic ecto-5'-nucleotidase (CD73) with α,β-methylene-adenosine-5'-diphosphate did not attenuate the conversion of 2'-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2',3'-cAMP to 2-AMP in CNS cells. By reducing levels of 2',3'-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury.
Collapse
Affiliation(s)
- Jonathan D Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
King GD, Rosene DL, Abraham CR. Promoter methylation and age-related downregulation of Klotho in rhesus monkey. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1405-19. [PMID: 21922250 PMCID: PMC3528360 DOI: 10.1007/s11357-011-9315-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/26/2011] [Indexed: 05/31/2023]
Abstract
While overall DNA methylation decreases with age, CpG-rich areas of the genome can become hypermethylated. Hypermethylation near transcription start sites typically decreases gene expression. Klotho (KL) is important in numerous age-associated pathways including insulin/IGF1 and Wnt signaling and naturally decreases with age in brain, heart, and liver across species. Brain tissues from young and old rhesus monkeys were used to determine whether epigenetic modification of the KL promoter underlies age-related decreases in mRNA and protein levels of KL. The KL promoter in genomic DNA from brain white matter did not show evidence of oxidation in vivo but did exhibit an increase in methylation with age. Further analysis identified individual CpG motifs across the region of interest with increased methylation in old animals. In vitro methyl modification of these individual cytosine residues confirmed that methylation of the promoter can decrease gene transcription. These results provide evidence that changes in KL gene expression with age may, at least in part, be the result of epigenetic changes to the 5' regulatory region.
Collapse
Affiliation(s)
- Gwendalyn D. King
- />Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street K304, Boston, MA 02118 USA
- />Department of Neurobiology, University of Alabama, Birmingham, AL USA
| | - Douglas L. Rosene
- />Department of Anatomy and Neurobiology, Boston University School of Medicine, 700 Albany Street W701, Boston, MA 02118 USA
- />Yerkes National Primate Research Center, Emory University, 954 Gatewood, Atlanta, GA 30322 USA
| | - Carmela R. Abraham
- />Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street K304, Boston, MA 02118 USA
| |
Collapse
|
21
|
Bajaj A, LaPlante NE, Cotero VE, Fish KM, Bjerke RM, Siclovan T, Tan Hehir CA. Identification of the protein target of myelin-binding ligands by immunohistochemistry and biochemical analyses. J Histochem Cytochem 2012; 61:19-30. [PMID: 23092790 DOI: 10.1369/0022155412467353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to visualize myelin is important in the diagnosis of demyelinating disorders and the detection of myelin-containing nerves during surgery. The development of myelin-selective imaging agents requires that a defined target for these agents be identified and that a robust assay against the target be developed to allow for assessment of structure-activity relationships. We describe an immunohistochemical analysis and a fluorescence polarization binding assay using purified myelin basic protein (MBP) that provides quantitative evidence that MBP is the molecular binding partner of previously described myelin-selective fluorescent dyes such as BMB, GE3082, and GE3111.
Collapse
Affiliation(s)
- Anshika Bajaj
- GE Global Research, One Research Circle, Niskayuna, NY, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zorniak M, Clark PA, Leeper HE, Tipping MD, Francis DM, Kozak KR, Salamat MS, Kuo JS. Differential expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival. Clin Cancer Res 2012; 18:3628-36. [PMID: 22589395 DOI: 10.1158/1078-0432.ccr-12-0339] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a poorly treated human brain cancer with few established clinically useful molecular prognostic markers. We characterized glioblastoma stem-like cells (GSC) according to developmental neural lineage markers and correlated their expression with patient survival. EXPERIMENTAL DESIGN Immunoblot array of neural lineage markers classified five independently isolated human GSC lines into three classes exhibiting differential expression of oligodendrocyte progenitor cells (OPC), astrocyte progenitor cells (APC), and neural progenitor cells (NPC) markers. Immunodeficient mice were orthotopically implanted with each cell line to evaluate tumor infiltration and recipient survival. 2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP) antigenic expression was used to evaluate a clinically annotated GBM tissue microarray with 115 specimens. RESULTS We report that molecular classification of patient-derived GSCs using neural lineage markers show association with differential xenograft invasiveness, and also show significant correlation to survival in both the mouse model and human patients. Orthotopic implantation into immunodeficient mice showed Ki-67 proliferative index independent xenograft infiltration: class I GSCs (OPC and NPC positive) established focal lesions, class II GSCs (NPC positive) formed minimally invasive lesions, and class III GSCs (APC positive) established highly infiltrative lesions. The OPC marker, CNP also exhibited high expression in focal xenografts versus low expression in invasive xenografts. Differential CNP expression correlated with mouse model survival, and CNP immunoassay of a large GBM tissue microarray also showed significant differential patient survival. CONCLUSIONS GSC classification with developmental neural lineage markers revealed CNP as a novel and potentially useful clinical prognosis marker, and suggests clinical importance for patient-specific GSC analysis.
Collapse
Affiliation(s)
- Michael Zorniak
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Avrahami D, Gabizon R. Age-related alterations affect the susceptibility of mice to prion infection. Neurobiol Aging 2011; 32:2006-15. [DOI: 10.1016/j.neurobiolaging.2009.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/10/2009] [Accepted: 12/21/2009] [Indexed: 12/29/2022]
|
24
|
Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ. Early oligodendrocyte/myelin pathology in Alzheimer's disease mice constitutes a novel therapeutic target. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1422-35. [PMID: 20696774 DOI: 10.2353/ajpath.2010.100087] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The detection of myelin disruptions in Alzheimer's disease (AD)-affected brain raises the possibility that oligodendrocytes undergo pathophysiological assault over the protracted course of this neurodegenerative disease. Oligodendrocyte compromise arising from direct toxic effects imparted by pathological amyloid-beta peptides and/or through signals derived from degenerating neurons could play an important role in the disease process. We previously demonstrated that 3xTg-AD mice, which harbor the human amyloid precursor protein Swedish mutant transgene, presenilin knock-in mutation, and tau P301L mutant transgene, exhibit significant alterations in overall myelination patterns and oligodendrocyte status at time points preceding the appearance of amyloid and tau pathology. Herein, we demonstrate that Abeta(1-42) leads to increased caspase-3 expression and apoptotic cell death of both nondifferentiated and differentiated mouse oligodendrocyte precursor (mOP) cells in vitro. Through use of a recombinant adeno-associated virus serotype-2 (rAAV2) vector expressing an Abeta(1-42)-specific intracellular antibody (intrabody), oligodendrocyte and myelin marker expression, as well as myelin integrity, were restored in the vector-infused brain regions of 3xTg-AD mice. Overall, this work provides further insights into the impact of Abeta(1-42)-mediated toxicity on the temporal and spatial progression of subtle myelin disruption during the early presymptomatic stages of AD and may help to validate new therapeutic options designed to avert these early impairments.
Collapse
Affiliation(s)
- Maya K Desai
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sumiyoshi K, Obayashi S, Tabunoki H, Arima K, Satoh JI. Protein microarray analysis identifies cyclic nucleotide phosphodiesterase as an interactor of Nogo-A. Neuropathology 2010; 30:7-14. [PMID: 19508346 DOI: 10.1111/j.1440-1789.2009.01035.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nogo-A, a neurite outgrowth inhibitor, is expressed exclusively on oligodendrocytes and neurons in the CNS. The central domain of Amino-Nogo spanning amino acids 567-748 in the human Nogo-A designated NIG, mediates persistent inhibition of axonal outgrowth and induces growth cone collapse by signaling through an as yet unidentified NIG receptor. We identified 82 NIG-interacting proteins by screening a high-density human protein microarray composed of 5000 proteins with a recombinant NIG protein as a probe. Following an intensive database search, we selected 12 neuron/oligodendrocyte-associated NIG interactors. Among them, we verified the molecular interaction of NIG with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a cell type-specific marker of oligodendrocytes, by immunoprecipitation and cell imaging analysis. Although CNP located chiefly in the cytoplasm of oligodendrocytes might not serve as a cell-surface NIG receptor, it could act as a conformational stabilizer for the intrinsically unstructured large segment of Amino-Nogo.
Collapse
Affiliation(s)
- Kenta Sumiyoshi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | | | | | | | | |
Collapse
|
26
|
Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2009; 32:1341-71. [PMID: 19775776 DOI: 10.1016/j.neurobiolaging.2009.08.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
The amyloid hypothesis (AH) of Alzheimer's disease (AD) posits that the fundamental cause of AD is the accumulation of the peptide amyloid beta (Aβ) in the brain. This hypothesis has been supported by observations that genetic defects in amyloid precursor protein (APP) and presenilin increase Aβ production and cause familial AD (FAD). The AH is widely accepted but does not account for important phenomena including recent failures of clinical trials to impact dementia in humans even after successfully reducing Aβ deposits. Herein, the AH is viewed from the broader overarching perspective of the myelin model of the human brain that focuses on functioning brain circuits and encompasses white matter and myelin in addition to neurons and synapses. The model proposes that the recently evolved and extensive myelination of the human brain underlies both our unique abilities and susceptibility to highly prevalent age-related neuropsychiatric disorders such as late onset AD (LOAD). It regards oligodendrocytes and the myelin they produce as being both critical for circuit function and uniquely vulnerable to damage. This perspective reframes key observations such as axonal transport disruptions, formation of axonal swellings/sphenoids and neuritic plaques, and proteinaceous deposits such as Aβ and tau as by-products of homeostatic myelin repair processes. It delineates empirically testable mechanisms of action for genes underlying FAD and LOAD and provides "upstream" treatment targets. Such interventions could potentially treat multiple degenerative brain disorders by mitigating the effects of aging and associated changes in iron, cholesterol, and free radicals on oligodendrocytes and their myelin.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Persaud-Sawin DA, Lightcap S, Harry GJ. Isolation of rafts from mouse brain tissue by a detergent-free method. J Lipid Res 2009; 50:759-67. [PMID: 19060326 PMCID: PMC2656670 DOI: 10.1194/jlr.d800037-jlr200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/03/2008] [Indexed: 01/28/2023] Open
Abstract
Membrane rafts are rich in cholesterol and sphingolipids and have specific proteins associated with them. Due to their small size, their identification and isolation have proved to be problematic. Their insolubility in nonionic detergents, such as Triton-X 100, at 4 degrees C has been the most common means of isolation. However, detergent presence can produce artifacts or interfere with ganglioside distribution. The direction is therefore toward the use of detergent-free protocols. We report an optimized method of raft isolation from lipid-rich brain tissue using a detergent-free method. We compared this to Triton-X 100-based isolation along sucrose or Optiprep gradients using the following endpoints: low protein content, high cholesterol content, presence of Flotillin 1 (Flot1), and absence of transferrin receptor (TfR) proteins. These criteria were met in raft fractions isolated in a detergent-free buffer along a sucrose gradient of 5%/35%/42.5%. The use of optiprep gave less consistent results with respect to protein distribution. We demonstrate that clean raft fractions with minimal myelin contamination can be reproducibly obtained in the top three low-density fractions along a sucrose step gradient.
Collapse
Affiliation(s)
- Dixie-Ann Persaud-Sawin
- Laboratory of Molecular Toxicology/Neurotoxicology Group, National Institute of Environmental Health Sciences, RTP, NC 27709, USA.
| | | | | |
Collapse
|
28
|
Farooqui T, Farooqui AA. Aging: An important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 2009; 130:203-15. [DOI: 10.1016/j.mad.2008.11.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 10/01/2008] [Accepted: 11/12/2008] [Indexed: 11/16/2022]
|
29
|
Musse AA, Gao W, Rangaraj G, Boggs JM, Harauz G. Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neurosci Lett 2009; 450:32-6. [DOI: 10.1016/j.neulet.2008.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
30
|
Ikeda H, Kerppola TK. Lysosomal localization of ubiquitinated Jun requires multiple determinants in a lysine-27-linked polyubiquitin conjugate. Mol Biol Cell 2008; 19:4588-601. [PMID: 18716056 DOI: 10.1091/mbc.e08-05-0496] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination regulates many cellular functions, including protein localization and degradation. Each function is specified by unique determinants in the conjugate. Ubiquitinated Jun is localized to lysosomes for degradation. Here, we characterized determinants of Jun ubiquitination and lysosomal localization by using ubiquitin-mediated fluorescence complementation (UbFC) in living cells and analysis of the stoichiometry of ubiquitin linked to Jun extracted from cells. The delta region of Jun and isoleucine-44 in ubiquitin were required for lysosomal localization of the conjugate. Ubiquitin containing only lysine-27, but no other single-lysine ubiquitin, mediated Jun ubiquitination, albeit at lower stoichiometry than wild-type ubiquitin. These conjugates were predominantly nuclear, but coexpression of lysine-27 and lysine-less ubiquitins enhanced the mean stoichiometry of Jun ubiquitination and lysosomal localization of the conjugate. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) and tumor susceptibility gene 101 (TSG101) colocalized with ubiquitinated Jun. Knockdown of HRS or TSG101 inhibited lysosomal localization of ubiquitinated Jun and reduced Jun turnover. Ubiquitination of other Fos and Jun family proteins had distinct effects on their localization. Our results indicate that Jun is polyubiquitinated by E3 ligases that produce lysine-27-linked chains. Lysosomal localization of the conjugate requires determinants in Jun and in ubiquitin that are recognized in part by TSG101 and HRS, facilitating selective translocation and degradation of ubiquitinated Jun.
Collapse
Affiliation(s)
- Hiromi Ikeda
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0650, USA
| | | |
Collapse
|