1
|
Fernández-Moncada I, Rodrigues RS, Fundazuri UB, Bellocchio L, Marsicano G. Type-1 cannabinoid receptors and their ever-expanding roles in brain energy processes. J Neurochem 2024; 168:693-703. [PMID: 37515372 DOI: 10.1111/jnc.15922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The brain requires large quantities of energy to sustain its functions. At the same time, the brain is isolated from the rest of the body, forcing this organ to develop strategies to control and fulfill its own energy needs. Likely based on these constraints, several brain-specific mechanisms emerged during evolution. For example, metabolically specialized cells are present in the brain, where intercellular metabolic cycles are organized to separate workload and optimize the use of energy. To orchestrate these strategies across time and space, several signaling pathways control the metabolism of brain cells. One of such controlling systems is the endocannabinoid system, whose main signaling hub in the brain is the type-1 cannabinoid (CB1) receptor. CB1 receptors govern a plethora of different processes in the brain, including cognitive function, emotional responses, or feeding behaviors. Classically, the mechanisms of action of CB1 receptors on brain function had been explained by its direct targeting of neuronal synaptic function. However, new discoveries have challenged this view. In this review, we will present and discuss recent data about how a small fraction of CB1 receptors associated to mitochondrial membranes (mtCB1), are able to exert a powerful control on brain functions and behavior. mtCB1 receptors impair mitochondrial functions both in neurons and astrocytes. In the latter cells, this effect is linked to an impairment of astrocyte glycolytic function, resulting in specific behavioral outputs. Finally, we will discuss the potential implications of (mt)CB1 expression on oligodendrocytes and microglia metabolic functions, with the aim to encourage interdisciplinary approaches to better understand the role of (mt)CB1 receptors in brain function and behavior.
Collapse
Affiliation(s)
| | - Rui S Rodrigues
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Unai B Fundazuri
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | |
Collapse
|
2
|
Pota V, Sansone P, De Sarno S, Aurilio C, Coppolino F, Barbarisi M, Barbato F, Fiore M, Cosenza G, Passavanti MB, Pace MC. Amyotrophic Lateral Sclerosis and Pain: A Narrative Review from Pain Assessment to Therapy. Behav Neurol 2024; 2024:1228194. [PMID: 38524401 PMCID: PMC10960655 DOI: 10.1155/2024/1228194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent neurodegenerative disease of the motor system that affects upper and lower motor neurons, leading to progressive muscle weakness, spasticity, atrophy, and respiratory failure, with a life expectancy of 2-5 years after symptom onset. In addition to motor symptoms, patients with ALS have a multitude of nonmotor symptoms; in fact, it is currently considered a multisystem disease. The purpose of our narrative review is to evaluate the different types of pain, the correlation between pain and the disease's stages, the pain assessment tools in ALS patients, and the available therapies focusing above all on the benefits of cannabis use. Pain is an underestimated and undertreated symptom that, in the last few years, has received more attention from research because it has a strong impact on the quality of life of these patients. The prevalence of pain is between 15% and 85% of ALS patients, and the studies on the type and intensity of pain are controversial. The absence of pain assessment tools validated in the ALS population and the dissimilar study designs influence the knowledge of ALS pain and consequently the pharmacological therapy. Several studies suggest that ALS is associated with changes in the endocannabinoid system, and the use of cannabis could slow the disease progression due to its neuroprotective action and act on pain, spasticity, cramps, sialorrhea, and depression. Our research has shown high patients' satisfaction with the use of cannabis for the treatment of spasticity and related pain. However, especially due to the ethical problems and the lack of interest of pharmaceutical companies, further studies are needed to ensure the most appropriate care for ALS patients.
Collapse
Affiliation(s)
- Vincenzo Pota
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sara De Sarno
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Caterina Aurilio
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Manlio Barbarisi
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Marco Fiore
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gianluigi Cosenza
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
3
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
4
|
Mechanisms Underlining Inflammatory Pain Sensitivity in Mice Selected for High and Low Stress-Induced Analgesia-The Role of Endocannabinoids and Microglia. Int J Mol Sci 2022; 23:ijms231911686. [PMID: 36232988 PMCID: PMC9570076 DOI: 10.3390/ijms231911686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3–3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (Cnr1, Cnr2) and opioid receptor subtype (Oprm1, Oprd1, Oprk1) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher Cnr1 transcription. Downregulation of Oprd1 and Oprm1 mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced Aif1 and Il-1β mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.
Collapse
|
5
|
Hudz IA, Chernyshenko VO, Kasatkina LO, Urvant LP, Klimashevskyi VM, Tkachenko OS, Kosiakova HV, Hula NM, Platonova TM. N-Stearoylethanolamine Inhibits Integrin-Mediated Activation, Aggregation, and Adhesion of Human Platelets. J Pharmacol Exp Ther 2022; 383:2-10. [PMID: 35963618 DOI: 10.1124/jpet.122.001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
N-stearoylethanolamine (NSE), a lipid mediator that belongs to the N-acylethanolamine (NAE) family, has anti-inflammatory, antioxidant, and membranoprotective actions. In contrast to other NAEs, NSE does not interact with cannabinoid receptors. The exact mechanism of its action remains unclear. The aim of this study is to evaluate the action of NSE on activation, aggregation, and adhesion of platelets that were chosen as a model of cellular response. Aggregation of platelets was measured to analyze the action of NSE (10-6-10-10 M) on platelet reactivity. Changes in granularity and shape of resting platelets and platelets stimulated with ADP in the presence of NSE were monitored by flow cytometry, and platelet deganulation was monitored by spectrofluorimetry. In vivo studies were performed using obese insulin-resistant rats. Binding of fibrinogen to the GPIIb/IIIa receptor was estimated using indirect ELISA and a scanning electron microscopy (SEM). It was found that NSE inhibits the activation and aggregation of human platelets. Our results suggest that NSE may decrease the activation and subsequent aggregation of platelets induced by ristocetin, epinephrine, and low doses of ADP. NSE also reduced the binding of fibrinogen to GPIIb/IIIa on activated platelets. These effects could be explained by the inhibition of platelet activation mediated by integrin receptors: the GPIb-IX-V complex for ristocetin-induced activation and GPIIb/IIIa when epinephrine and low doses of ADP were applied. The anti-platelet effect of NSE complements its anti-inflammatory effect and allows us to prioritize studies of NSE as a potent anti-thrombotic agent. SIGNIFICANCE STATEMENT: N-stearoylethanolamine (NSE) was shown to possess inhibitory action on platelet activation, adhesion, and aggregation. The mechanism of inhibition possibly involves integrin receptors. This finding complements the known anti-inflammatory effects of NSE.
Collapse
Affiliation(s)
- Iehor A Hudz
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | | | - Lesia P Urvant
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | | | | | - Nadiia M Hula
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | |
Collapse
|
6
|
Promoting Oligodendrocyte Differentiation from Human Induced Pluripotent Stem Cells by Activating Endocannabinoid Signaling for Treating Spinal Cord Injury. Stem Cell Rev Rep 2022; 18:3033-3049. [PMID: 35725998 DOI: 10.1007/s12015-022-10405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Transplantation of oligodendrocyte progenitor cell (OPC) at the injury site is being developed as a potential therapeutic strategy for promoting remyelination and locomotor function recovery after spinal cord injury (SCI). To this end, the development of expandable and functional human OPCs is crucial for testing their efficacy in SCI. In mice and rats, the endocannabinoid signaling system is crucial for the survival, differentiation, and maturation of OPCs. Similar studies in humans are lacking currently. Endocannabinoids and exogenous cannabinoids exert their effects mainly via cannabinoid receptors (CB1R and CB2R). We demonstrated that these receptors were differentially expressed in iPSC-derived human NSCs and OPCs, and they could be activated by WIN55212-2 (WIN), a potent CB1R/CB2R agonist to upregulate the endocannabinoid signaling during glial induction. WIN primed NSCs generated more OLIG2 + glial progenitors and migratory PDGFRα + OPC in a CB1/CB2 dependent manner compared to unprimed NSCs. Furthermore, WIN-induced OPCs (WIN-OPCs) robustly differentiated into functional oligodendrocytes and myelinate in vitro and in vivo in a mouse spinal cord injury model. RNA-Seq revealed that WIN upregulated the biological process of positive regulation of oligodendrocyte differentiation. Mechanistically, WIN could act as a partial smoothed (SMO) inhibitor or activate CB1/CB2 to form heteromeric complexes with SMO leading to the inhibition of GLI1 in the Sonic hedgehog pathway. The partial and temporal inhibition of GLI1 during glial induction is shown to promote OPCs that differentiate faster than control's. Thus, CB1R/CB2R activation results in more efficient generation of OPCs that can mature and efficiently myelinate.
Collapse
|
7
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
8
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
9
|
Murlanova K, Hasegawa Y, Kamiya A, Pletnikov MV. Cannabis effects on the adolescent brain. CANNABIS AND THE DEVELOPING BRAIN 2022:283-330. [DOI: 10.1016/b978-0-12-823490-7.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Moreno-Luna R, Esteban PF, Paniagua-Torija B, Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E. Heterogeneity of the Endocannabinoid System Between Cerebral Cortex and Spinal Cord Oligodendrocytes. Mol Neurobiol 2021; 58:689-702. [PMID: 33006124 DOI: 10.1007/s12035-020-02148-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
In the last years, regional differences have been reported between the brain and spinal cord oligodendrocytes, which should be considered when designing therapeutic strategies for myelin repair. Promising targets to achieve myelin restoration are the different components of the endocannabinoid system (ECS) that modulate oligodendrocyte biology, but almost all studies have been focused on brain-derived cells. Therefore, we compared the ECS between the spinal cord and cerebral cortex-derived oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs). Cells from both regions express synthesizing and degrading enzymes for the endocannabinoid 2-arachidonoylglycerol, and degrading enzymes increase with maturation, more notably in the spinal cord (monoglyceride lipase-MGLL, alpha/beta hydrolase domain-containing 6-ABHD6, and alpha/beta hydrolase domain-containing 12-ABHD12). In addition, spinal cord OPCs express higher levels of the synthesizing enzymes diacylglycerol lipases alpha (DAGLA) and beta (DAGLB) than cortical ones, DAGLA reaching statistical significance. Cells from both the cortex and spinal cord express low levels of NAEs synthesizing enzymes, except for the glycerophosphodiester phosphodiesterase 1 (GDE-1) but high levels of the degrading enzyme fatty acid amidohydrolase (FAAH) that increases with maturation. Finally, cells from both regions show similar levels of CB1 receptor and GPR55, but spinal cord-derived cells show significantly higher levels of transient receptor potential cation channel V1 (TRPV1) and CB2. Overall, our results show that the majority of the ECS components could be targeted in OPCs and OLs from both the spinal cord and brain, but regional heterogeneity has to be considered for DAGLA, MGLL, ABHD6, ABHD12, GDE1, CB2, or TRPV1.
Collapse
Affiliation(s)
- R Moreno-Luna
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - P F Esteban
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - B Paniagua-Torija
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - A Arevalo-Martin
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - D Garcia-Ovejero
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - E Molina-Holgado
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
11
|
Laguerre A, Keutler K, Hauke S, Schultz C. Regulation of Calcium Oscillations in β-Cells by Co-activated Cannabinoid Receptors. Cell Chem Biol 2021; 28:88-96.e3. [PMID: 33147441 DOI: 10.1016/j.chembiol.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
Abstract
Pharmacological treatment of pancreatic β cells targeting cannabinoid receptors 1 and 2 (CB1 and CB2) has been shown to result in significant effects on insulin release, possibly by modulating intracellular calcium levels ([Ca2+]i). It is unclear how the interplay of CB1 and CB2 affects insulin secretion. Here, we demonstrate by the use of highly specific receptor antagonists and the recently developed photo-releasable endocannabinoid 2-arachidonoylglycerol that both receptors have counteracting effects on cytosolic calcium oscillations. We further show that both receptors are juxtaposed in a way that increases [Ca2+]i oscillations in silent β cells but dampens them in active ones. This study highlights a functional role of CB1 and CB2 acting in concert as a compensator/attenuator switch for regulating β cell excitability.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| | - Kaya Keutler
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Huerga-Gómez A, Aguado T, Sánchez-de la Torre A, Bernal-Chico A, Matute C, Mato S, Guzmán M, Galve-Roperh I, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia 2020; 69:532-545. [PMID: 32956517 PMCID: PMC7821226 DOI: 10.1002/glia.23911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Δ9‐Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so‐called endocannabinoids. Specifically, the endocannabinoid 2‐arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC‐induced‐myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC‐mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.
Collapse
Affiliation(s)
- Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ana Bernal-Chico
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia, Multiple Sclerosis and Other Demyelinating Diseases Unit, Barakaldo, Spain
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| |
Collapse
|
14
|
Richards JR. Mechanisms for the Risk of Acute Coronary Syndrome and Arrhythmia Associated With Phytogenic and Synthetic Cannabinoid Use. J Cardiovasc Pharmacol Ther 2020; 25:508-522. [PMID: 32588641 DOI: 10.1177/1074248420935743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phytogenic cannabinoids from Cannabis sativa and synthetic cannabinoids are commonly used substances for their recreational and medicinal properties. There are increasing reports of cardiotoxicity in close temporal association with cannabinoid use in patients with structurally normal hearts and absence of coronary arterial disease. Associated adverse events include myocardial ischemia, conduction abnormalities, arrhythmias, and sudden death. This review details the effects of phytogenic and synthetic cannabinoids on diverse receptors based on evidence from in vitro, human, and animal studies to establish a molecular basis for these deleterious clinical effects. The synergism between endocannabinoid dysregulation, cannabinoid receptor, and noncannabinoid receptor binding, and impact on cellular ion flux and coronary microvascular circulation is delineated. Pharmacogenetic factors placing certain patients at higher risk for cardiotoxicity are also correlated with the diverse effects of cannabinoids.
Collapse
Affiliation(s)
- John R Richards
- Department of Emergency Medicine, 70083University of California Davis Medical Center, Sacramento, California, CA, USA
| |
Collapse
|
15
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Ilyasov AA, Milligan CE, Pharr EP, Howlett AC. The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci 2018; 12:733. [PMID: 30416422 PMCID: PMC6214135 DOI: 10.3389/fnins.2018.00733] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.
Collapse
Affiliation(s)
- Alexander A Ilyasov
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Carolanne E Milligan
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily P Pharr
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurology and Comprehensive Multiple Sclerosis Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allyn C Howlett
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Sanchez-Rodriguez MA, Gomez O, Esteban PF, Garcia-Ovejero D, Molina-Holgado E. The endocannabinoid 2-arachidonoylglycerol regulates oligodendrocyte progenitor cell migration. Biochem Pharmacol 2018; 157:180-188. [PMID: 30195734 DOI: 10.1016/j.bcp.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and β (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.
Collapse
Affiliation(s)
- Maria A Sanchez-Rodriguez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Oscar Gomez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
18
|
Busquets-Garcia A, Bains J, Marsicano G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018; 43:4-20. [PMID: 28862250 PMCID: PMC5719111 DOI: 10.1038/npp.2017.206] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are amongst the most ubiquitous signaling molecules in the nervous system. Over the past few decades, observations based on a large volume of work, first examining the pharmacological effects of exogenous cannabinoids, and then the physiological functions of eCBs, have directly challenged long-held and dogmatic views about communication, plasticity and behavior in the central nervous system (CNS). The eCBs and their cognate cannabinoid receptors exhibit a number of unique properties that distinguish them from the widely studied classical amino-acid transmitters, neuropeptides, and catecholamines. Although we now have a loose set of mechanistic rules based on experimental findings, new studies continue to reveal that our understanding of the eCB system (ECS) is continuously evolving and challenging long-held conventions. Here we will briefly summarize findings on the current canonical view of the 'ECS' and will address novel aspects that reveal how a nearly ubiquitous system can determine highly specific functions in the brain. In particular, we will focus on findings that push for an expansion of our ideas around long-held beliefs about eCB signaling that, while clearly true, may be contributing to an oversimplified perspective on how cannabinoid signaling at the microscopic level impacts behavior at the macroscopic level.
Collapse
Affiliation(s)
- Arnau Busquets-Garcia
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca 2+ channels in rat retinal ganglion cells. Neuropharmacology 2017; 124:143-156. [PMID: 28431968 DOI: 10.1016/j.neuropharm.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/15/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Endocannabinoid signaling system is involved in regulating multiple neuronal functions in the central nervous system by activating G-protein coupled cannabinoid CB1 and CB2 receptors (CB1Rs and CB2Rs). Growing evidence has shown that CB1Rs and CB2Rs are extensively expressed in retinal ganglion cells (RGCs). Here, modulation of L- and T-types Ca2+ channels by activating CB1Rs and CB2Rs in RGCs was investigated. Triple immunofluorescent staining showed that L-type subunit CaV1.2 was co-localized with T-type subunits (CaV3.1, CaV3.2 and CaV3.3) in rat RGCs. In acutely isolated rat RGCs, the CB1R agonist WIN55212-2 suppressed both peak and steady-state Ca2+ currents in a dose-dependent manner, with IC50 being 9.6 μM and 8.4 μM, respectively. It was further shown that activation of CB1Rs by WIN55212-2 or ACEA, another CB1R agonist, significantly suppressed both L- and T-type Ca2+ currents, and shifted inactivation curve of T-type one toward hyperpolarization direction. While the effect on L-type Ca2+ channels was mediated by intracellular cAMP/protein kinase A (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways, only CaMKII signaling pathway was involved in the effect on T-type Ca2+ channels. Furthermore, CB65 and HU308, two specific CB2R agonists, significantly suppressed T-type Ca2+ channels, which was mediated by intracellular cAMP/PKA and CaMKII signaling pathways, but had no effect on L-type channels. These results imply that endogenous cannabinoids may modulate the excitability and the output of RGCs by differentially suppressing the activity of L- and T-type Ca2+ channels through activation of CB1Rs and CB2Rs. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
|
20
|
Medeiros D, Silva-Gonçalves LDC, da Silva AMB, Dos Santos Cabrera MP, Arcisio-Miranda M. Membrane-mediated action of the endocannabinoid anandamide on membrane proteins: implications for understanding the receptor-independent mechanism. Sci Rep 2017; 7:41362. [PMID: 28128290 PMCID: PMC5269673 DOI: 10.1038/srep41362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear. Here we combine gramicidin A (gA) single channel recordings and membrane capacitance measurements to investigate the lipid bilayer-modifying activity of endocannabinoids. Single channel recordings show that the incorporation of endocannabinoids into lipid bilayers reduces the free energy necessary for gramicidin channels to transit from the monomeric to the dimeric conformation. Membrane capacitance demonstrates that the endocannabinoid anandamide has limited effects on the overall structure of the lipid bilayers. Our results associated with the theory of membrane elastic deformation reveal that the action of endocannabinoids on membrane proteins can involve local adjustments of the lipid/protein hydrophobic interface. The current findings shed new light on the receptor-independent mode of action of endocannabinoids on membrane proteins, with important implications towards their neurobiological function.
Collapse
Affiliation(s)
- Djalma Medeiros
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Curso de Filosofia, Faculdade de São Bento, São Paulo, SP, Brasil
| | - Laíz da Costa Silva-Gonçalves
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Annielle Mendes Brito da Silva
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Manoel Arcisio-Miranda
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
21
|
Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol 2016; 781:173-80. [DOI: 10.1016/j.ejphar.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
|
22
|
Marinelli C, Bertalot T, Zusso M, Skaper SD, Giusti P. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage. Front Cell Neurosci 2016; 10:27. [PMID: 26903812 PMCID: PMC4751280 DOI: 10.3389/fncel.2016.00027] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence that oligodendroglia exhibit Ca2+ transients in response to electrical activity of axons for activity-dependent myelination. Cholinergic antagonists, as well as endocannabinoid-related lipid-signaling molecules target OLs. An understanding of such pharmacological pathways may thus lay the foundation to allow its leverage for therapeutic benefit in diseases of demyelination.
Collapse
Affiliation(s)
- Carla Marinelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| |
Collapse
|
23
|
Yang W, Li Q, Wang SY, Gao F, Qian WJ, Li F, Ji M, Sun XH, Miao Y, Wang Z. Cannabinoid receptor agonists modulate calcium channels in rat retinal müller cells. Neuroscience 2016; 313:213-24. [DOI: 10.1016/j.neuroscience.2015.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
24
|
A Basal Tone of 2-Arachidonoylglycerol Contributes to Early Oligodendrocyte Progenitor Proliferation by Activating Phosphatidylinositol 3-Kinase (PI3K)/AKT and the Mammalian Target of Rapamycin (MTOR) Pathways. J Neuroimmune Pharmacol 2015; 10:309-17. [DOI: 10.1007/s11481-015-9609-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
|
25
|
Abstract
The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Gene Deletion
- Gene Expression Regulation
- Genotype
- Humans
- Hydrolysis
- Mice, Knockout
- Mice, Mutant Strains
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Mutation
- Phenotype
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Bernal-Chico A, Canedo M, Manterola A, Victoria Sánchez-Gómez M, Pérez-Samartín A, Rodríguez-Puertas R, Matute C, Mato S. Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelinationin vivo. Glia 2014; 63:163-76. [DOI: 10.1002/glia.22742] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ana Bernal-Chico
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
- Achucarro Basque Center for Neuroscience; Zamudio Spain
| | - Manuel Canedo
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
- Achucarro Basque Center for Neuroscience; Zamudio Spain
| | - Andrea Manterola
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
| | - María Victoria Sánchez-Gómez
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
- Achucarro Basque Center for Neuroscience; Zamudio Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Barcelona Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
- Achucarro Basque Center for Neuroscience; Zamudio Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Barcelona Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
| | - Carlos Matute
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
- Achucarro Basque Center for Neuroscience; Zamudio Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Barcelona Spain
| | - Susana Mato
- Department of Neurosciences; School of Medicine, University of the Basque Country-UPV/EHU; Leioa Spain
- Achucarro Basque Center for Neuroscience; Zamudio Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Barcelona Spain
| |
Collapse
|
27
|
Ribeiro R, Yu F, Wen J, Vana A, Zhang Y. Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis. Neuroscience 2013; 254:427-42. [DOI: 10.1016/j.neuroscience.2013.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 01/29/2023]
|
28
|
Zhang CQ, Wu HJ, Wang SY, Yin S, Lu XJ, Miao Y, Wang XH, Yang XL, Wang Z. Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors. Neuroscience 2013; 253:183-93. [PMID: 24013008 DOI: 10.1016/j.neuroscience.2013.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. While CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of the cannabinoid receptor anandamide, the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.
Collapse
Affiliation(s)
- C-Q Zhang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cannabinoid 2 receptor- and beta Arrestin 2-dependent upregulation of serotonin 2A receptors. Eur Neuropsychopharmacol 2013; 23:760-7. [PMID: 22841827 PMCID: PMC3532960 DOI: 10.1016/j.euroneuro.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/23/2012] [Accepted: 06/26/2012] [Indexed: 01/21/2023]
Abstract
Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT(2A) receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT(2A) receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT(2A) receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT(2A) receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT(2A) receptors. 5-HT(2A) receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.
Collapse
|
30
|
Franklin JM, Mathew M, Carrasco GA. Cannabinoid-induced upregulation of serotonin 2A receptors in the hypothalamic paraventricular nucleus and anxiety-like behaviors in rats. Neurosci Lett 2013; 548:165-9. [PMID: 23721787 DOI: 10.1016/j.neulet.2013.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 12/31/2022]
Abstract
Recent behavioral reports suggest that repeated exposure to cannabis and synthetic cannabinoid agonists is linked with mental disorders associated with dysfunction of serotonin 2A (5-HT2A) receptor neurotransmission such as anxiety and depression. Here, we studied the effect of a nonselective cannabinoid agonist, CP55940, on the activity of 5-HT2A receptors in hypothalamic paraventricular nucleus (PVN). We detected that repeated exposure to CP55940 enhanced the prolactin and corticosterone neuroendocrine responses mediated by 5-HT2A receptors and increased the membrane-associated levels of 5-HT2A receptors in PVN. Importantly, we also detected increased anxiety-like behaviors in CP55940 treated rats compared to controls. The data presented here suggest that the mechanisms mediating the cannabinoid-induced upregulation of 5-HT2A receptors would be brain-region specific, as we were unable to detect a CP55940-induced upregulation of 5-HT2A mRNA. Our results might provide insight into the molecular mechanism by which repeated exposure to cannabinoids could be associated with the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 3048B Malott Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
31
|
Li Q, Cui N, Du Y, Ma H, Zhang Y. Anandamide reduces intracellular Ca2+ concentration through suppression of Na+/Ca2+ exchanger current in rat cardiac myocytes. PLoS One 2013; 8:e63386. [PMID: 23667607 PMCID: PMC3646750 DOI: 10.1371/journal.pone.0063386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/03/2013] [Indexed: 11/22/2022] Open
Abstract
Purpose Anandamide, one of the endocannabinoids, has been reported to exhibit cardioprotective properties, particularly in its ability to limit the damage produced by ischemia reperfusion injury. However, the mechanisms underlying the effect are not well known. This study is to investigate whether anandamide alter Na+/Ca2+ exchanger and the intracellular free Ca2+ concentration ([Ca2+]i). Methods Na+/Ca2+ exchanger current (INCX) was recorded and analysed by using whole-cell patch-clamp technique and [Ca2+]i was measured by loading myocytes with the fluorescent Ca2+ indicator Fura-2/AM. Results We found that INCX was enhanced significantly after perfusion with simulated ischemic external solution; [Ca2+]i was also significantly increased by simulated ischemic solution. The reversal potential of INCX was shifted to negative potentials in simulated ischemic external solution. Anandamide (1–100 nM) failed to affect INCX and [Ca2+]i in normal solution. However, anandamide (1–100 nM) suppressed the increase in INCX in simulated ischemic external solution concentration-dependently and normalized INCX reversal potential. Furthermore, anandamide (100 nM) significantly attenuated the increase in [Ca2+]i in simulated ischemic solution. Blocking CB1 receptors with the specific antagonist AM251 (500 nM) failed to affect the effects of anandamide on INCX and [Ca2+]i in simulated ischemic solution. CB2 receptor antagonist AM630 (100 nM) eliminated the effects of anandamide on INCX and [Ca2+]i in simulated ischemic solution, and CB2 receptor agonist JWH133 (100 nM) simulated the effects of anandamide that suppressed the increase in INCX and [Ca2+]i in simulated ischemic solution. In addition, pretreatment with the Gi/o-specific inhibitor pertussis toxin (PTX, 500 ng/ml) eliminated the effects of anandamide and JWH133 on INCX in simulated ischemic solution. Conclusions Collectively, these findings suggest that anandamide suppresses calcium overload through inhibition of INCX during perfusion with simulated ischemic solution; the effects may be mediated by CB2 receptor via PTX-sensitive Gi/o proteins. This mechanism is importantly involved in the anti-ischemia injury caused by endocannabinoids.
Collapse
Affiliation(s)
- Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproduction, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanjie Du
- Department of Reproduction, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
32
|
Anderson RL, Randall MD, Chan SLF. The complex effects of cannabinoids on insulin secretion from rat isolated islets of Langerhans. Eur J Pharmacol 2013; 706:56-62. [PMID: 23499687 DOI: 10.1016/j.ejphar.2013.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 12/12/2022]
Abstract
Recent interest in the endocrine pancreas has revealed the presence of a functional endocannabinoid system in pancreatic islets, however, the effects of endocannabinoids and cannabinoid CB receptor activation on downstream signalling and on insulin release still remains unclear. In the current study, a variety of purported cannabinoid CB receptor agonists and antagonists were evaluated for their effects on insulin secretion. In fresh rat isolated islets, the endocannabinoid anandamide caused a glucose-dependent, concentration-dependent inhibition of insulin release, with two populations of islets being identified based on their sensitivity to anandamide. Methanandamide (a non-hydrolysable analogue of anandamide) elicited similar inhibition of insulin secretion, comparable to the responses obtained with anandamide-sensitive islets, suggesting that the islet responsiveness may be due to differences in local metabolism of anandamide. The antagonists O-2050 (CB1) and AM630 (CB2) failed to reveal the involvement of cannabinoid receptors in the inhibitory activity of anandamide on insulin release. Inhibition of fatty acid amide hydrolase (FAAH) with URB597 did not alter basal or glucose-induced insulin secretion, suggesting that endogenous islet endocannabinoids do not affect insulin release, or that islet FAAH content is low. URB597 also failed to affect the inhibitory actions of anandamide on insulin release in fresh isolated islets. However, in islets following overnight culture, anandamide caused augmentation of basal and glucose-mediated insulin release. The effects of cannabinoid agents on insulin secretion described in this study does not identify a precise mode of action but points to important modulation which may be dependent on local metabolism and prevailing cellular conditions.
Collapse
Affiliation(s)
- Richard L Anderson
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | |
Collapse
|
33
|
Mato S, Sánchez-Gómez MV, Bernal-Chico A, Matute C. Cytosolic zinc accumulation contributes to excitotoxic oligodendroglial death. Glia 2013; 61:750-64. [PMID: 23440871 DOI: 10.1002/glia.22470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/27/2012] [Indexed: 01/01/2023]
Abstract
Dyshomeostasis of cytosolic Zn(2+) is a critical mediator of neuronal damage during excitotoxicity. However, the role of this cation in oligodendrocyte pathophysiology is not well understood. The current study examined the contribution of Zn(2+) deregulation to oligodendrocyte injury mediated by AMPA receptors. Oligodendrocytes loaded with the Zn(2+)-selective indicator FluoZin-3 responded to mild stimulation of AMPA receptors with fast cytosolic Zn(2+) rises that resulted from intracellular release, as they were not blocked by the extracellular Zn(2+) chelator Ca-EDTA. Pharmacological experiments suggested that AMPA-induced Zn(2+) mobilization depends on cytosolic Ca(2+) accumulation, arises from mitochondria and protein-bound pools, and is triggered by mechanisms that do not involve the generation of reactive oxygen species. Moreover, intracellular Zn(2+) rises resulting from AMPA receptor activation seem to be promoted by Ca(2+)-dependent cytosolic acidification. Addition of the cell-permeable Zn(2+) chelator TPEN significantly reduced mitochondrial membrane depolarization, reactive oxygen species production, and cell death by sub-maximal activation of AMPA receptors both in vitro and in situ, suggesting that Zn(2+) deregulation is an important mediator of oligodendrocyte excitotoxicity. These data provide evidence that strategies aimed at maintaining Zn(2+) homeostasis may be useful for the treatment of disorders in which excitotoxicity is an important trigger of oligodendroglial death.
Collapse
Affiliation(s)
- Susana Mato
- Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU, E-48940 Leioa, Spain.
| | | | | | | |
Collapse
|
34
|
Franklin JM, Carrasco GA. Cannabinoid receptor agonists upregulate and enhance serotonin 2A (5-HT(2A)) receptor activity via ERK1/2 signaling. Synapse 2012; 67:145-59. [PMID: 23151877 DOI: 10.1002/syn.21626] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/06/2012] [Indexed: 01/27/2023]
Abstract
Recent behavioral studies suggest that nonselective agonists of cannabinoid receptors may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission. Two cannabinoids receptors are found in brain, CB1 and CB2 receptors, but the molecular mechanism by which cannabinoid receptors would regulate 5-HT(2A) receptor neurotransmission remains unknown. Interestingly, we have recently found that certain cannabinoid receptor agonists can specifically upregulate 5-HT(2A) receptors. Here, we present experimental evidence that rats treated with a nonselective cannabinoid receptor agonist (CP 55,940, 50 µg/kg, 7 days) showed increases in 5-HT(2A) receptor protein levels, 5-HT(2A) receptor mRNA levels, and 5-HT(2A) receptor-mediated phospholipase C beta (PLCβ) activity in prefrontal cortex (PFCx). Similar effects were found in neuronal cultured cells treated with CP 55,940 but these effects were prevented by selective CB2, but not selective CB1, receptor antagonists. CB2 receptors couple to the extracellular kinase (ERK) signaling pathway by Gα(i/o) class of G-proteins. Noteworthy, GP 1a (selective CB2 receptor agonist) produced a strong upregulation of 5-HT(2A) receptor mRNA and protein, an effect that was prevented by selective CB2 receptor antagonists and by an ERK1/2 inhibitor, PD 198306. In summary, our results identified a strong cannabinoid-induced upregulation of 5-HT(2A) receptor signaling in rat PFCx. Our cultured cell studies suggest that selective CB2 receptor agonists upregulate 5-HT(2A) receptor signaling by activation of the ERK1/2 signaling pathway. Activity of cortical 5-HT(2A) receptors has been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results may provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to the pathophysiology of some cognitive and mood disorders in humans.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
35
|
Martín-Moreno AM, Reigada D, Ramírez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer's disease. Mol Pharmacol 2011; 79:964-73. [PMID: 21350020 PMCID: PMC3102548 DOI: 10.1124/mol.111.071290] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/11/2011] [Indexed: 11/22/2022] Open
Abstract
Microglial activation is an invariant feature of Alzheimer's disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo. On the other hand, the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms. In the present study, we compared the effects of CBD with those of other cannabinoids on microglial cell functions in vitro and on learning behavior and cytokine expression after Aβ intraventricular administration to mice. CBD, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone [WIN 55,212-2 (WIN)], a mixed CB(1)/CB(2) agonist, and 1,1-dimethylbutyl-1-deoxy-Δ(9)-tetrahydrocannabinol [JWH-133 (JWH)], a CB(2)-selective agonist, concentration-dependently decreased ATP-induced (400 μM) increase in intracellular calcium ([Ca(2+)](i)) in cultured N13 microglial cells and in rat primary microglia. In contrast, 4-[4-(1,1-dimethylheptyl)-2,6-dimethoxyphenyl]-6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-methanol [HU-308 (HU)], another CB(2) agonist, was without effect. Cannabinoid and adenosine A(2A) receptors may be involved in the CBD action. CBD- and WIN-promoted primary microglia migration was blocked by CB(1) and/or CB(2) antagonists. JWH and HU-induced migration was blocked by a CB(2) antagonist only. All of the cannabinoids decreased lipopolysaccharide-induced nitrite generation, which was insensitive to cannabinoid antagonism. Finally, both CBD and WIN, after subchronic administration for 3 weeks, were able to prevent learning of a spatial navigation task and cytokine gene expression in β-amyloid-injected mice. In summary, CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD. Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease.
Collapse
Affiliation(s)
- Ana María Martín-Moreno
- Neurodegeneration Group, Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Mato S, Victoria Sánchez-Gómez M, Matute C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia 2011; 58:1739-47. [PMID: 20645411 DOI: 10.1002/glia.21044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.
Collapse
Affiliation(s)
- Susana Mato
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | | |
Collapse
|
37
|
Gomez O, Arevalo-Martin A, Garcia-Ovejero D, Ortega-Gutierrez S, Cisneros JA, Almazan G, Sánchez-Rodriguez MA, Molina-Holgado F, Molina-Holgado E. The constitutive production of the endocannabinoid 2-arachidonoylglycerol participates in oligodendrocyte differentiation. Glia 2011; 58:1913-27. [PMID: 20878765 DOI: 10.1002/glia.21061] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocannabinoids have recently emerged as instructive cues in the developing central nervous system, and, based on the expression of their receptors, we identified oligodendrocytes as potential targets of these molecules. Here, we show that the enzymes responsible for the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), diacylglycerol lipase alpha (DAGLα) and beta (DAGLβ), and degradation, monoacylglycerol lipase (MAGL), can be found in oligodendrocytes at different developmental stages. Moreover, cultured oligodendrocyte progenitor cells (OPCs) express DAGLα and β abundantly, resulting in the stronger production of 2-AG than in differentiated oligodendrocytes. The opposite is observed with MAGL. CB1 and CB2 receptor antagonists (SR141716 and AM630) impaired OPC differentiation into mature oligodendrocytes and likewise, inhibiting DAGL activity with RHC-80267 or tetrahydrolipstatin also blocked oligodendrocyte maturation, an effect reversed by the addition of exogenous 2-AG. Likewise, 2-AG synthesis disruption using specific siRNAs against DAGLα and DAGLβ significantly reduced myelin protein expression in vitro, whereas a pharmacological gain-of-function approach by using cannabinoid agonists or MAGL inhibition had the opposite effects. ERK/MAPK pathway is implicated in oligodendrocyte differentiation because PD98059, an inhibitor of MEK1, abrogated oligodendrocyte maturation. The cannabinoid receptor antagonists and RHC-80267 all diminished basal ERK1/2 phosphorylation, effects that were partially reversed by the addition of 2-AG. Overall, our data suggest a novel role of endocannabinoids in oligodendrocyte differentiation such that constitutive release of 2-AG activates cannabinoid receptors in an autocrine/paracrine way in OPCs, stimulating the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Oscar Gomez
- Laboratory of Neuroinflammation, Unidad de Neurologia Experimental, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rossi S, Bernardi G, Centonze D. The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 2010; 224:92-102. [DOI: 10.1016/j.expneurol.2010.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
|
39
|
Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C. P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 2010; 58:730-40. [PMID: 20029962 DOI: 10.1002/glia.20958] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligodendrocytes express ionotropic purinergic receptors. The objective of this study was to investigate the role of purinergic signaling in white matter ischemia. We show that, in addition to glutamate, enhanced ATP signaling during ischemia is also deleterious to oligodendrocytes and myelin, and impairs white matter function. Thus, ischemic oligodendrocytes in culture display an inward current and cytosolic Ca(2+) overload, which is partially mediated by P2X7 receptors. Indeed, oligodendrocytes release ATP after oxygen and glucose deprivation through the opening of pannexin hemichannels. Consistently, ischemia-induced mitochondrial depolarization as well as oxidative stress culminating in cell death are partially reversed by P2X7 receptor antagonists, by the ATP degrading enzyme apyrase and by blockers of pannexin hemichannels. In turn, ischemic damage in isolated optic nerves, which share the properties of brain white matter, is greatly attenuated by all these drugs. Ultrastructural analysis and electrophysiological recordings demonstrated that P2X7 antagonists prevent ischemic damage to oligodendrocytes and myelin, and improved action potential recovery after ischemia. These data indicate that ATP released during ischemia and the subsequent activation of P2X7 receptor is critical to white matter demise during stroke and point to this receptor type as a therapeutic target to limit tissue damage in cerebrovascular diseases.
Collapse
Affiliation(s)
- Maria Domercq
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED) and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Carter GT, Abood ME, Aggarwal SK, Weiss MD. Cannabis and Amyotrophic Lateral Sclerosis: Hypothetical and Practical Applications, and a Call for Clinical Trials. Am J Hosp Palliat Care 2010; 27:347-56. [DOI: 10.1177/1049909110369531] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Significant advances have increased our understanding of the molecular mechanisms of amyotrophic lateral sclerosis (ALS), yet this has not translated into any greatly effective therapies. It appears that a number of abnormal physiological processes occur simultaneously in this devastating disease. Ideally, a multidrug regimen, including glutamate antagonists, antioxidants, a centrally acting anti-inflammatory agent, microglial cell modulators (including tumor necrosis factor alpha [TNF-α] inhibitors), an antiapoptotic agent, 1 or more neurotrophic growth factors, and a mitochondrial function-enhancing agent would be required to comprehensively address the known pathophysiology of ALS. Remarkably, cannabis appears to have activity in all of those areas. Preclinical data indicate that cannabis has powerful antioxidative, anti-inflammatory, and neuroprotective effects. In the G93A-SOD1 ALS mouse, this has translated to prolonged neuronal cell survival, delayed onset, and slower progression of the disease. Cannabis also has properties applicable to symptom management of ALS, including analgesia, muscle relaxation, bronchodilation, saliva reduction, appetite stimulation, and sleep induction. With respect to the treatment of ALS, from both a disease modifying and symptom management viewpoint, clinical trials with cannabis are the next logical step. Based on the currently available scientific data, it is reasonable to think that cannabis might significantly slow the progression of ALS, potentially extending life expectancy and substantially reducing the overall burden of the disease.
Collapse
Affiliation(s)
- Gregory T. Carter
- Muscular Dystrophy Association/Amyotrophic Lateral Sclerosis Center, University of Washington Medical Center, Seattle, WA, USA,
| | - Mary E. Abood
- Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
| | - Sunil K. Aggarwal
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael D. Weiss
- Muscular Dystrophy Association/Amyotrophic Lateral Sclerosis Center, University of Washington Medical Center, Seattle, WA, USA, Neuromuscular Disease Division, Department of Neurology, University of Washington Medical Center, Seattle, WA, USA, Electrodiagnostic Laboratory, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|