1
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
2
|
Zhou L, Chen W, Jiang S, Xu R. In Vitro Models of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2023; 43:3783-3799. [PMID: 37870685 PMCID: PMC11407737 DOI: 10.1007/s10571-023-01423-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the commonest neurodegenerative diseases of adult-onset, which is characterized by the progressive death of motor neurons in the cerebral cortex, brain stem and spinal cord. The dysfunction and death of motor neurons lead to the progressive muscle weakness, atrophy, fasciculations, spasticity and ultimately the whole paralysis of body. Despite the identification of several genetic mutations associated with the pathogenesis of ALS, including mutations in chromosome 9 open reading frame 72 leading to the abnormal expansion of GGGGCC repeat sequence, TAR DNA-binding protein 43, fused in sarcoma/translocated in liposarcoma, copper/zinc superoxide dismutase 1 (SOD1) and TANK-binding kinase 1, the exact mechanisms underlying the specific degeneration of motor neurons that causes ALS remain incompletely understood. At present, since the transgenic model expressed SOD1 mutants was established, multiple in vitro models of ALS have been developed for studying the pathology, pathophysiology and pathogenesis of ALS as well as searching the effective neurotherapeutics. This review reviewed the details of present established in vitro models used in studying the pathology, pathophysiology and pathogenesis of ALS. Meanwhile, we also discussed the advantages, disadvantages, cost and availability of each models.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China.
- Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
4
|
Garofalo S, Cocozza G, Bernardini G, Savage J, Raspa M, Aronica E, Tremblay ME, Ransohoff RM, Santoni A, Limatola C. Blocking immune cell infiltration of the central nervous system to tame Neuroinflammation in Amyotrophic lateral sclerosis. Brain Behav Immun 2022; 105:1-14. [PMID: 35688338 DOI: 10.1016/j.bbi.2022.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, peripheral immune cells were discovered as pivotal players that promptly participate in this process, speeding up neurodegeneration during progression of the disease. In particular, infiltrating T cells and natural killer cells release inflammatory cytokines that switch glial cells toward a pro-inflammatory/detrimental phenotype, and directly attack motor neurons with specific ligand-receptor signals. Here, we assessed the presence of lymphocytes in the spinal cord of sporadic ALS patients. Furthermore, we demonstrate that blocking the extravasation of immune cells in the central nervous system using Natalizumab (NAT), an antibody for the α4 integrin, reduces the level of interferon-γ in the spinal cord of ALS mouse models, such as the hSOD1G93A and TDP43A315T mice, modifying microglia and astrocytes phenotype, increasing motor neuron number and prolonging the survival time. Taken together, our results establish a central role for the immune cells as drivers of inflammation in ALS.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | | | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Julie Savage
- Division of Medical Sciences, University of Victoria Victoria, Canada
| | | | - Eleonora Aronica
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | | | | | | | - Cristina Limatola
- IRCCS Neuromed Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Italia.
| |
Collapse
|
5
|
Hirschberg S, Dvorzhak A, Rasooli-Nejad SMA, Angelov S, Kirchner M, Mertins P, Lättig-Tünnemann G, Harms C, Schmitz D, Grantyn R. Uncoupling the Excitatory Amino Acid Transporter 2 From Its C-Terminal Interactome Restores Synaptic Glutamate Clearance at Corticostriatal Synapses and Alleviates Mutant Huntingtin-Induced Hypokinesia. Front Cell Neurosci 2022; 15:792652. [PMID: 35173582 PMCID: PMC8841566 DOI: 10.3389/fncel.2021.792652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Rapid removal of glutamate from the sites of glutamate release is an essential step in excitatory synaptic transmission. However, despite many years of research, the molecular mechanisms underlying the intracellular regulation of glutamate transport at tripartite synapses have not been fully uncovered. This limits the options for pharmacological treatment of glutamate-related motor disorders, including Huntington’s disease (HD). We therefore investigated the possible binding partners of transgenic EAAT2 and their alterations under the influence of mutant huntingtin (mHTT). Mass spectrometry analysis after pull-down of striatal YFP-EAAT2 from wild-type (WT) mice and heterozygote (HET) Q175 mHTT-knock-in mice identified a total of 148 significant (FDR < 0.05) binders to full-length EAAT2. Of them 58 proteins exhibited mHTT-related differences. Most important, in 26 of the 58 mHTT-sensitive cases, protein abundance changed back toward WT levels when the mice expressed a C-terminal-truncated instead of full-length variant of EAAT2. These findings motivated new attempts to clarify the role of astrocytic EAAT2 regulation in cortico-basal movement control. Striatal astrocytes of Q175 HET mice were targeted by a PHP.B vector encoding EAAT2 with different degree of C-terminal modification, i.e., EAAT2-S506X (truncation at S506), EAAT2-4KR (4 lysine to arginine substitutions) or EAAT2 (full-length). The results were compared to HET and WT injected with a tag-only vector (CTRL). It was found that the presence of a C-terminal-modified EAAT2 transgene (i) increased the level of native EAAT2 protein in striatal lysates and perisynaptic astrocyte processes, (ii) enhanced the glutamate uptake of transduced astrocytes, (iii) stimulated glutamate clearance at individual corticostriatal synapses, (iv) increased the glutamate uptake of striatal astrocytes and (iv) alleviated the mHTT-related hypokinesia (open field indicators of movement initiation). In contrast, over-expression of full-length EAAT2 neither facilitated glutamate uptake nor locomotion. Together, our results support the new hypothesis that preventing abnormal protein-protein interactions at the C-terminal of EAAT2 could eliminate the mHTT-related deficits in corticostriatal synaptic glutamate clearance and movement initiation.
Collapse
Affiliation(s)
- Stefan Hirschberg
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anton Dvorzhak
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Seyed M. A. Rasooli-Nejad
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Svilen Angelov
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Marieluise Kirchner
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Gilla Lättig-Tünnemann
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Rosemarie Grantyn
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Rosemarie Grantyn,
| |
Collapse
|
6
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Front Neurosci 2020; 14:679. [PMID: 32760239 PMCID: PMC7373761 DOI: 10.3389/fnins.2020.00679] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.
Collapse
Affiliation(s)
| | - Elisandra Henriques
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Amanda Siena
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Clélia Rejane Antonio Bertoncini
- CEDEME, Center of Development of Experimental Models for Medicine and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, Faculty of Medicine, University of Victoria and Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| |
Collapse
|
8
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
9
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
10
|
Krokidis MG. Transcriptomics and Metabolomics in Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:205-212. [PMID: 32468479 DOI: 10.1007/978-3-030-32633-3_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving progressive and selective loss of motor neurons, muscle weakness, paralysis and death. The pathogenesis of ALS is not clearly understood, while reliable prognostic markers have not been identified to detect symptoms at earlier time points. The rapid development of microarray technology offers great potential for simultaneous analysis of the transcriptional expression of thousands of genes, aiming to determine novel candidate targets for efficient treatment. Additionally, metabolomics, as a high-throughput approach, is gaining significant attention in ALS research providing an opportunity to develop predictive biomarkers that may be utilized as indicators of clinical symptoms of ALS. In this review, recent evidences from gene expression profiling studies in ALS are illustrated in order to examine molecular signatures related to the disease's pathogenesis and potential discovery of therapeutic targets. Moreover, potent challenges are presented regarding the utilization of the metabolomics approach as a diagnostic tool in context with distinctive biomarkers' identification.
Collapse
Affiliation(s)
- Marios G Krokidis
- National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Patriarchou Grigoriou & Neapoleos, Athens, Greece.
| |
Collapse
|
11
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
12
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
13
|
Bonifacino T, Rebosio C, Provenzano F, Torazza C, Balbi M, Milanese M, Raiteri L, Usai C, Fedele E, Bonanno G. Enhanced Function and Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression. Int J Mol Sci 2019; 20:ijms20184552. [PMID: 31540330 PMCID: PMC6774337 DOI: 10.3390/ijms20184552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu)-mediated excitotoxicity is a major cause of amyotrophic lateral sclerosis (ALS) and our previous work highlighted that abnormal Glu release may represent a leading mechanism for excessive synaptic Glu. We demonstrated that group I metabotropic Glu receptors (mGluR1, mGluR5) produced abnormal Glu release in SOD1G93A mouse spinal cord at a late disease stage (120 days). Here, we studied this phenomenon in pre-symptomatic (30 and 60 days) and early-symptomatic (90 days) SOD1G93A mice. The mGluR1/5 agonist (S)-3,5-Dihydroxyphenylglycine (3,5-DHPG) concentration dependently stimulated the release of [3H]d-Aspartate ([3H]d-Asp), which was comparable in 30- and 60-day-old wild type mice and SOD1G93A mice. At variance, [3H]d-Asp release was significantly augmented in 90-day-old SOD1G93A mice and both mGluR1 and mGluR5 were involved. The 3,5-DHPG-induced [3H]d-Asp release was exocytotic, being of vesicular origin and mediated by intra-terminal Ca2+ release. mGluR1 and mGluR5 expression was increased in Glu spinal cord axon terminals of 90-day-old SOD1G93A mice, but not in the whole axon terminal population. Interestingly, mGluR1 and mGluR5 were significantly augmented in total spinal cord tissue already at 60 days. Thus, function and expression of group I mGluRs are enhanced in the early-symptomatic SOD1G93A mouse spinal cord, possibly participating in excessive Glu transmission and supporting their implication in ALS. Please define all abbreviations the first time they appear in the abstract, the main text, and the first figure or table caption.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Luca Raiteri
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), 16149 Genova, Italy.
| | - Ernesto Fedele
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
14
|
Peterson AR, Binder DK. Post-translational Regulation of GLT-1 in Neurological Diseases and Its Potential as an Effective Therapeutic Target. Front Mol Neurosci 2019; 12:164. [PMID: 31338020 PMCID: PMC6629900 DOI: 10.3389/fnmol.2019.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporter-1 (GLT-1) is a Na+-dependent transporter that plays a key role in glutamate homeostasis by removing excess glutamate in the central nervous system (CNS). GLT-1 dysregulation occurs in various neurological diseases including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and epilepsy. Downregulation or dysfunction of GLT-1 has been a common finding across these diseases but how this occurs is still under investigation. This review aims to highlight post-translational regulation of GLT-1 which leads to its downregulation including sumoylation, palmitoylation, nitrosylation, ubiquitination, and subcellular localization. Various therapeutic interventions to restore GLT-1, their proposed mechanism of action and functional effects will be examined as potential treatments to attenuate the neurological symptoms associated with loss or downregulation of GLT-1.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
15
|
Abstract
Drug transporter proteins are critical to the distribution of a wide range of endogenous compounds and xenobiotics such as hormones, bile acids, peptides, lipids, sugars, and drugs. There are two classes of drug transporters- the solute carrier (SLC) transporters and ATP-binding cassette (ABC) transporters -which predominantly differ in the energy source utilized to transport substrates across a membrane barrier. Despite their hydrophobic nature and residence in the membrane bilayer, drug transporters have dynamic structures and adopt many conformations during the translocation process. Whereas there is significant literature evidence for the substrate specificity and structure-function relationship for clinically relevant drug transporters proteins, there is less of an understanding in the regulatory mechanisms that contribute to the functional expression of these proteins. Post-translational modifications have been shown to modulate drug transporter functional expression via a wide range of molecular mechanisms. These modifications commonly occur through the addition of a functional group (e.g. phosphorylation), a small protein (e.g. ubiquitination), sugar chains (e.g. glycosylation), or lipids (e.g. palmitoylation) on solvent accessible amino acid residues. These covalent additions often occur as a result of a signaling cascade and may be reversible depending on the type of modification and the intended fate of the signaling event. Here, we review the significant role in which post-translational modifications contribute to the dynamic regulation and functional consequences of SLC and ABC drug transporters and highlight recent progress in understanding their roles in transporter structure, function, and regulation.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Serio A, Patani R. Concise Review: The Cellular Conspiracy of Amyotrophic Lateral Sclerosis. Stem Cells 2018; 36:293-303. [PMID: 29235200 DOI: 10.1002/stem.2758] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is incurable and devastating. A dearth of therapies has galvanized experimental focus onto the cellular and molecular mechanisms that both initiate and subsequently drive motor neuron degeneration. A traditional view of ALS pathogenesis posits that disease-specific injury to a subtype of neurons is mechanistically cell-autonomous. This "neuron-centric" view has biased past research efforts. However, a wealth of accumulating evidence now strongly implicates non-neuronal cells as being major determinants of ALS. Although animal models have proven invaluable in basic neuroscience research, a growing number of studies confirm fundamental interspecies differences between popular model organisms and the human condition. This may in part explain the failure of therapeutic translation from rodent preclinical models. It follows that integration of a human experimental model using patient-specific induced pluripotent stem cells may be necessary to capture the complexity of human neurodegeneration with fidelity. Integration of enriched human neuronal and glial experimental platforms into the existing repertoire of preclinical models might prove transformational for clinical trial outcomes in ALS. Such reductionist and integrated cross-modal approaches allow systematic elucidation of cell-autonomous and non-cell-autonomous mechanisms of disease, which may then provide novel cellular targets for therapeutic intervention. Stem Cells 2018;36:293-303.
Collapse
Affiliation(s)
- Andrea Serio
- Tissue Engineering and Biophotonics Division, Dental Institute, Kings College London, London, United Kingdom
| | - Rickie Patani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
17
|
HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons. Exp Neurol 2017; 297:101-109. [PMID: 28797631 DOI: 10.1016/j.expneurol.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/22/2017] [Accepted: 08/06/2017] [Indexed: 12/12/2022]
Abstract
Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance.
Collapse
|
18
|
Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2525967. [PMID: 28785371 PMCID: PMC5529664 DOI: 10.1155/2017/2525967] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Increasing numbers of individuals, particularly the elderly, suffer from neurodegenerative disorders. These diseases are normally characterized by progressive loss of neuron cells and compromised motor or cognitive function. Previous studies have proposed that the overproduction of reactive oxygen species (ROS) may have complex roles in promoting the disease development. Research has shown that neuron cells are particularly vulnerable to oxidative damage due to their high polyunsaturated fatty acid content in membranes, high oxygen consumption, and weak antioxidant defense. However, the exact molecular pathogenesis of neurodegeneration related to the disturbance of redox balance remains unclear. Novel antioxidants have shown great potential in mediating disease phenotypes and could be an area of interest for further research. In this review, we provide an updated discussion on the roles of ROS in the pathological mechanisms of Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia, as well as a highlight on the antioxidant-based therapies for alleviating disease severity.
Collapse
|
19
|
Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77. [DOI: 10.1016/j.neuint.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
20
|
Rosenblum LT, Shamamandri-Markandaiah S, Ghosh B, Foran E, Lepore AC, Pasinelli P, Trotti D. Mutation of the caspase-3 cleavage site in the astroglial glutamate transporter EAAT2 delays disease progression and extends lifespan in the SOD1-G93A mouse model of ALS. Exp Neurol 2017; 292:145-153. [PMID: 28342750 DOI: 10.1016/j.expneurol.2017.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
Downregulation in the astroglial glutamate transporter EAAT2 in amyotrophic lateral sclerosis (ALS) patients and mutant SOD1 mouse models of ALS is believed to contribute to the death of motor neurons by excitotoxicity. We previously reported that caspase-3 cleaves EAAT2 at a unique cleavage consensus site located in its c-terminus domain, a proteolytic cleavage that also occurs in vivo in the mutant SOD1 mouse model of ALS and leads to accumulation of a sumoylated EAAT2 C-terminus fragment (CTE-SUMO1) beginning around onset of disease. CTE-SUMO1 accumulates in PML nuclear bodies of astrocytes and causes them to alter their mature phenotypes and secrete factors toxic to motor neurons. Here, we report that mutating the caspase-3 consensus site in the EAAT2 sequence with an aspartate to asparagine mutation (D504N), thereby inhibiting caspase-3 cleavage of EAAT2, confers protection to the SOD1-G93A mouse. EAAT2-D504N knock-in mutant mice were generated and crossed with SOD1-G93A mice to assess the in vivo pathogenic relevance for ALS symptoms of EAAT2 cleavage. The mutation did not affect normal EAAT2 function nor non-ALS mice. In agreement with the timing of CTE-SUMO1 accumulation, while onset of disease was not affected, the mutation caused an extension in progression time, a delay in the development of hindlimb and forelimb muscle weakness, and a significant increase in the lifespan of SOD1-G93A mice.
Collapse
Affiliation(s)
- Lauren Taylor Rosenblum
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA
| | - Shashirekha Shamamandri-Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA
| | - Biswarup Ghosh
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA
| | - Emily Foran
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA
| | - Angelo C Lepore
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis. ADVANCES IN NEUROBIOLOGY 2017; 16:117-136. [PMID: 28828608 DOI: 10.1007/978-3-319-55769-4_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapid and fatal neurodegenerative disease, primarily affecting upper and lower motor neurons. It is an extremely heterogeneous disease in both cause and symptom development, and its mechanisms of pathogenesis remain largely unknown. Excitotoxicity, a process caused by excessive glutamate signaling, is believed to play a substantial role, however. Excessive glutamate release, changes in postsynaptic glutamate receptors, and reduction of functional astrocytic glutamate transporters contribute to excitotoxicity in ALS. Here, we explore the roles of each, with a particular emphasis on glutamate transporters and attempts to increase them as therapy for ALS. Screening strategies have been employed to find compounds that increase the functional excitatory amino acid transporter EAAT2 (GLT1), which is responsible for the vast majority of glutamate clearance. One such compound, ceftriaxone, was recently tested in clinical trials but unfortunately did not modify disease course, though its effect on EAAT2 expression in patients was not measured.
Collapse
|
22
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
23
|
Lee J, Hyeon SJ, Im H, Ryu H, Kim Y, Ryu H. Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS. Exp Neurobiol 2016; 25:233-240. [PMID: 27790057 PMCID: PMC5081469 DOI: 10.5607/en.2016.25.5.233] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that leads to a progressive muscle wasting and paralysis. The pathological phenotypes are featured by severe motor neuron death and glial activation in the lumbar spinal cord. Proposed ALS pathogenic mechanisms include glutamate cytotoxicity, inflammatory pathway, oxidative stress, and protein aggregation. However, the exact mechanisms of ALS pathogenesis are not fully understood yet. Recently, a growing body of evidence provides a novel insight on the importance of glial cells in relation to the motor neuronal damage via the non-cell autonomous pathway. Accordingly, the aim of the current paper is to overview the role of astrocytes and microglia in the pathogenesis of ALS and to better understand the disease mechanism of ALS.
Collapse
Affiliation(s)
- Junghee Lee
- Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA.; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seung Jae Hyeon
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| | - Hyeonjoo Im
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| | - Hyun Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yunha Kim
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| | - Hoon Ryu
- Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA.; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.; Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| |
Collapse
|
24
|
Qosa H, Lichter J, Sarlo M, Markandaiah SS, McAvoy K, Richard JP, Jablonski MR, Maragakis NJ, Pasinelli P, Trotti D. Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (P-Glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis. Glia 2016; 64:1298-313. [PMID: 27158936 PMCID: PMC5541958 DOI: 10.1002/glia.23003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313.
Collapse
Affiliation(s)
- Hisham Qosa
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Jessica Lichter
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Mark Sarlo
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Shashirekha S. Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Kevin McAvoy
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Jean-Philippe Richard
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Michael R. Jablonski
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Nicholas J. Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| |
Collapse
|
25
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|
26
|
Hoppe J, Salbego CG, Cimarosti H. SUMOylation: Novel Neuroprotective Approach for Alzheimer's Disease? Aging Dis 2015; 6:322-30. [PMID: 26425387 DOI: 10.14336/ad.2014.1205] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/05/2014] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized in the brain by the formation of amyloid-beta (Aβ)-containing plaques and neurofibrillary tangles containing the microtubule-associated protein tau. Neuroinflammation is another feature of AD and astrocytes are receiving increasing attention as key contributors. Although some progress has been made, the molecular mechanisms underlying the pathophysiology of AD remain unclear. Interestingly, some of the main proteins involved in AD, including amyloid precursor protein (APP) and tau, have recently been shown to be SUMOylated. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to regulate APP and tau and may modulate other proteins implicated in AD. Here we present an overview of recent studies suggesting that protein SUMOylation might be involved in the underlying pathogenic mechanisms of AD and discuss how this could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
| | - Christianne G Salbego
- 1 Laboratory of Neuroprotection and Cell Signaling, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Helena Cimarosti
- 2 Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
27
|
Martins WC, Tasca CI, Cimarosti H. Battling Alzheimer's Disease: Targeting SUMOylation-Mediated Pathways. Neurochem Res 2015; 41:568-78. [PMID: 26227998 DOI: 10.1007/s11064-015-1681-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 01/10/2023]
Abstract
SUMO (small ubiquitin-like modifier) conjugation is a critically important control process in all eukaryotic cells, because it acts as a biochemical switch and regulates the function of hundreds of proteins in many different pathways. Although the diverse functional consequences and molecular targets of SUMOylation remain largely unknown, SUMOylation is becoming increasingly implicated in the pathophysiology of Alzheimer's disease (AD). Apart from the central SUMO-modified disease-associated proteins, such as amyloid precursor protein, amyloid β, and tau, SUMOylation also regulates several other processes underlying AD. These are involved in inflammation, mitochondrial dynamics, synaptic transmission and plasticity, as well as in protective responses to cell stress. Herein, we review current reports on the involvement of SUMOylation in AD, and present an overview of potential SUMO targets and pathways underlying AD pathogenesis.
Collapse
Affiliation(s)
- Wagner Carbolin Martins
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
28
|
The non-cell-autonomous component of ALS: new in vitro models and future challenges. Biochem Soc Trans 2015; 42:1270-4. [PMID: 25233402 DOI: 10.1042/bst20140168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor nerves. At present, there is no effective therapy for this devastating disease and only one Food and Drug Administration (FDA)-approved drug, riluzole, is known to moderately extend survival. In the last decade, the field of ALS has made a remarkable leap forward in understanding some of the genetic causes of this disease and the role that different cell types play in the degenerative mechanism affecting motor neurons. In particular, astrocytes have been implicated in disease progression, and multiple studies suggest that these cells are valuable therapeutic targets. Recent technological advancements have provided new tools to generate astrocytes from ALS patients either from post-mortem biopsies or from skin fibroblasts through genetic reprogramming. The advent of induced pluripotent stem cell (iPSC) technology and the newly developed induced neural progenitor cells (iNPCs) have created unprecedented exciting opportunities to unravel the mechanisms involved in neurodegeneration and initiate high-throughput drug screenings.
Collapse
|
29
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
30
|
Saba L, Viscomi MT, Caioli S, Pignataro A, Bisicchia E, Pieri M, Molinari M, Ammassari-Teule M, Zona C. Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis. Cereb Cortex 2015; 26:1512-28. [DOI: 10.1093/cercor/bhu317] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity. Neurochem Res 2014; 40:380-8. [PMID: 25064045 DOI: 10.1007/s11064-014-1391-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 (glutamate transporter 1 and glutamate aspartate transporter in rodents, respectively), are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via nuclear factor κB and cAMP response element binding protein at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics and translational regulation of EAAT2.
Collapse
|
32
|
Niikura T, Kita Y, Abe Y. SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS One 2014; 9:e101080. [PMID: 24971881 PMCID: PMC4074151 DOI: 10.1371/journal.pone.0101080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) are a major cause of familial amyotrophic lateral sclerosis (ALS), whereby the mutant proteins misfold and aggregate to form intracellular inclusions. We report that both small ubiquitin-like modifier (SUMO) 1 and SUMO2/3 modify ALS-linked SOD1 mutant proteins at lysine 75 in a motoneuronal cell line, the cell type affected in ALS. In these cells, SUMO1 modification occurred on both lysine 75 and lysine 9 of SOD1, and modification of ALS-linked SOD1 mutant proteins by SUMO3, rather than by SUMO1, significantly increased the stability of the proteins and accelerated intracellular aggregate formation. These findings suggest the contribution of sumoylation, particularly by SUMO3, to the protein aggregation process underlying the pathogenesis of ALS.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- * E-mail:
| | - Yoshiko Kita
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D. Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 2014; 62:1241-53. [PMID: 24753081 DOI: 10.1002/glia.22677] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
Abstract
EAAT2 is a predominantly astroglial glutamate transporter responsible for the majority of synaptic glutamate clearance in the mammalian central nervous system (CNS). Its dysfunction has been linked with many neurological disorders, including amyotrophic lateral sclerosis (ALS). Decreases in EAAT2 expression and function have been implicated in causing motor neuron excitotoxic death in ALS. Nevertheless, increasing EAAT2 expression does not significantly improve ALS phenotype in mouse models or in clinical trials. In the SOD1-G93A mouse model of inherited ALS, the cytosolic carboxy-terminal domain is cleaved from EAAT2, conjugated to SUMO1, and accumulated in astrocytes where it triggers astrocyte-mediated neurotoxic effects as disease progresses. However, it is not known whether this fragment is sumoylated after cleavage or if full-length EAAT2 is already sumoylated prior to cleavage as part of physiological regulation. In this study, we show that a fraction of full-length EAAT2 is constitutively sumoylated in primary cultures of astrocytes in vitro and in the CNS in vivo. Furthermore, the extent of sumoylation of EAAT2 does not change during the course of ALS in the SOD1-G93A mouse and is not affected by the expression of ALS-causative mutant SOD1 proteins in astrocytes in vitro, indicating that EAAT2 sumoylation is not driven by pathogenic mechanisms. Most interestingly, sumoylated EAAT2 localizes to intracellular compartments, whereas non-sumoylated EAAT2 resides on the plasma membrane. In agreement, promoting desumoylation in primary astrocytes causes increased EAAT2-mediated glutamate uptake. These findings could have implications for optimizing therapeutic approaches aimed at increasing EAAT2 activity in the dysfunctional or diseased CNS.
Collapse
Affiliation(s)
- E Foran
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
34
|
Richard P, Manley JL. SETX sumoylation: A link between DNA damage and RNA surveillance disrupted in AOA2. Rare Dis 2014; 2:e27744. [PMID: 25054092 PMCID: PMC4091563 DOI: 10.4161/rdis.27744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
Senataxin (SETX) is a putative RNA:DNA helicase that is mutated in two distinct juvenile neurological disorders, AOA2 and ALS4. SETX is involved in the response to oxidative stress and is suggested to resolve R loops formed at transcription termination sites or at sites of collisions between the transcription and replication machineries. R loops are hybrids between RNA and DNA that are believed to lead to DNA damage and genomic instability. We discovered that Rrp45, a core component of the exosome, is a SETX-interacting protein and that the interaction depends on modification of SETX by sumoylation. Importantly, we showed that AOA2 but not ALS4 mutations prevented both SETX sumoylation and the Rrp45 interaction. We also found that upon replication stress induction, SETX and Rrp45 co-localize in nuclear foci that constitute sites of R-loop formation generated by transcription and replication machinery collisions. We suggest that SETX links transcription, DNA damage and RNA surveillance, and discuss here how this link can be relevant to AOA2 disease.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences; Columbia University; New York, NY USA
| | - James L Manley
- Department of Biological Sciences; Columbia University; New York, NY USA
| |
Collapse
|
35
|
de Oliveira GP, Alves CJ, Chadi G. Early gene expression changes in spinal cord from SOD1(G93A) Amyotrophic Lateral Sclerosis animal model. Front Cell Neurosci 2013; 7:216. [PMID: 24302897 PMCID: PMC3831149 DOI: 10.3389/fncel.2013.00216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1G93A mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Agi4×44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by qPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated) in 40 days and 1105 (433 up and 672 down) in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non-autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating disorder.
Collapse
Affiliation(s)
- Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | | | | |
Collapse
|
36
|
Advances in cellular models to explore the pathophysiology of amyotrophic lateral sclerosis. Mol Neurobiol 2013; 49:966-83. [PMID: 24198229 DOI: 10.1007/s12035-013-8573-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is fatal for most patients less than 3 years from when the first symptoms appear. The aetiologies for sporadic and most familial forms of ALS are unknown, but genetic factors are increasingly recognized as causal in a subset of patients. Studies of disease physiology suggest roles for oxidative stress, glutamate-mediated excitotoxicity or protein aggregation; how these pathways interact in the complex pathophysiology of ALS awaits elucidation. Cellular models are being used to examine disease mechanisms. Recent advances include the availability of expanded cell types, from neuronal or glial cell culture to motoneuron-astrocyte co-culture genetically or environmentally modified. Cell culture experiments confirmed the central role of glial cells in ALS. The recent adaptation of induced pluripotent stem cells (iPSC) for ALS modeling could allow a broader perspective and is expected to generate new hypotheses, related particularly to mechanisms underlying genetic factors. Cellular models have provided meaningful advances in the understanding of ALS, but, to date, complete characterization of in vitro models is only partially described. Consensus on methodological approaches, strategies for validation and techniques that allow rapid adaptation to new genetic or environmental influences is needed. In this article, we review the principal cellular models being employed in ALS and highlight their contribution to the understanding of disease mechanisms. We conclude with recommendations on means to enhance the robustness and generalizability of the different concepts for experimental ALS.
Collapse
|
37
|
Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis. Neuromolecular Med 2013; 15:760-70. [PMID: 24062161 DOI: 10.1007/s12017-013-8262-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/11/2022]
Abstract
Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1, fused in liposarcoma, and TAR DNA-binding protein 43 (TDP-43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity, and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full-length EAAT2 by binding to a regulatory region of its promoter.
Collapse
|
38
|
Feligioni M, Nisticò R. SUMO: a (oxidative) stressed protein. Neuromolecular Med 2013; 15:707-19. [PMID: 24052421 DOI: 10.1007/s12017-013-8266-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
Redox species are produced during the physiological cellular metabolism of a normal tissue. In turn, their presence is also attributed to pathological conditions including neurodegenerative diseases. Many are the molecular changes that occur during the unbalance of the redox homeostasis. Interestingly, posttranslational protein modifications (PTMs) play a remarkable role. In fact, several target proteins are modified in their activation, localization, aggregation, and expression after the cellular stress. Among PTMs, protein SUMOylation represents a very important molecular modification pathway during "oxidative stress". It has been reported that this ubiquitin-like modification is a fine sensor for redox species. Indeed, SUMOylation pathway efficiency is affected by the exposure to oxidative species in a different manner depending on the concentration and time of application. Thus, we here report updated evidence that states the role of SUMOylation in several pathological conditions, and we also outline the key involvement of c-Jun N-terminal kinase and small ubiquitin modifier pathway cross talk.
Collapse
Affiliation(s)
- Marco Feligioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Via del Fosso di Fiorano 64/65, 00143, Rome, Italy,
| | | |
Collapse
|
39
|
Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 2013; 248:333-43. [DOI: 10.1016/j.neuroscience.2013.05.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/22/2013] [Accepted: 05/19/2013] [Indexed: 02/08/2023]
|
40
|
Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127:580-91. [PMID: 23786482 DOI: 10.1111/jnc.12347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.
Collapse
Affiliation(s)
- Vasco Silveirinha
- School of Pharmacy, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | | | | |
Collapse
|
41
|
Hoppe JB, Rattray M, Tu H, Salbego CG, Cimarosti H. SUMO-1 conjugation blocks beta-amyloid-induced astrocyte reactivity. Neurosci Lett 2013; 546:51-6. [PMID: 23651519 DOI: 10.1016/j.neulet.2013.04.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
Abstract
Astrocyte reactivity is implicated in the neuronal loss underlying Alzheimer's disease. Curcumin has been shown to reduce astrocyte reactivity, though the exact pathways underlying these effects are incompletely understood. Here we investigated the role of the small ubiquitin-like modifier (SUMO) conjugation in mediating this effect of curcumin. In beta-amyloid (Aβ)-treated astrocytes, morphological changes and increased glial fibrillary acidic protein (GFAP) confirmed reactivity, which was accompanied by c-jun N-terminal kinase activation. Moreover, the levels of SUMO-1 conjugated proteins, as well as the conjugating enzyme, Ubc9, were decreased, with concomitant treatment with curcumin preventing these effects. Increasing SUMOylation in astrocytes, by over-expression of constitutively active SUMO-1, but not its inactive mutant, abrogated Aβ-induced increase in GFAP, suggesting astrocytes require SUMO-1 conjugation to remain non-reactive.
Collapse
Affiliation(s)
- Juliana B Hoppe
- Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | | | | | | | | |
Collapse
|
42
|
Krumova P, Weishaupt JH. Sumoylation in neurodegenerative diseases. Cell Mol Life Sci 2013; 70:2123-38. [PMID: 23007842 PMCID: PMC11113377 DOI: 10.1007/s00018-012-1158-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The yeast SUMO (small ubiquitin-like modifier) orthologue SMT3 was initially discovered in a genetic suppressors screen for the centromeric protein Mif2 (Meluh and Koshland in Mol Bio Cell 6:793-807, 1). Later, it turned out that the homologous mammalian proteins SUMO1 to SUMO4 are reversible protein modifiers that can form isopeptide bonds with lysine residues of respective target proteins (Mahajan et al. in Cell 88:97-107, 2). This was the discovery of a post-translational modification called sumoylation, which enzymatically resembles ubiquitination. However, very soon it became clear that SUMO attachments served a far more diverse role than ubiquitination. Meanwhile, numerous cellular processes are known to be subject to the impact of SUMO modification, including transcription, protein targeting, protein solubility, apoptosis or activity of various enzymes. In many instances, SUMO proteins create new protein interaction surfaces or block existing interaction domains (Geiss-Friedlander and Melchior in Nat Rev in Mol Cell Biol 8:947-956, 3). For the past few years, sumoylation attracted increasing attention as a versatile regulator of toxic protein properties in neurodegenerative diseases. In this review, we summarize the growing knowledge about the involvement of sumoylation in neurodegeneration, and discuss the underlying molecular principles affected by this multifaceted and intriguing post-translational modification.
Collapse
Affiliation(s)
- Petranka Krumova
- Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002, Basel, Switzerland.
| | | |
Collapse
|
43
|
Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR, Vourc'h P. Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 2013; 123:366-74. [PMID: 23289752 DOI: 10.3109/00207454.2012.761984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The covalent attachment of SUMO proteins (small ubiquitin-like modifier) to specific proteins or SUMOylation regulates their functional properties in the nucleus and cytoplasm of neurons. Recent studies reported dysfunction of the SUMO pathway in molecular and cellular abnormalities associated with amyotrophic lateral sclerosis (ALS). Furthermore, several observations support a direct role for SUMOylation in diverse pathogenic mechanisms involved in ALS, such as response to hypoxia, oxidative stress, glutamate excitotoxicity and proteasome impairment. Recent results also suggest that SUMO modifications of superoxide dismutase 1, transactive response DNA-binding protein 43, CTE (COOH terminus of EAAT2) (proteolytic C-terminal fragment of the glutamate transporter excitatory amino acid transporter 2, EAAT2) and proteins regulating the turnover of ALS-related proteins can participate in the pathogenesis of ALS. Moreover, the fused in sarcoma (FUS) gene, mutated in ALS, encodes a protein with a SUMO E3 ligase activity. In this review, we summarize the functioning of the SUMO pathway in normal conditions and in response to stresses, its action on ALS-related proteins and discuss the need for further research on this pathway in ALS.
Collapse
|
44
|
Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis. Exp Neurol 2012; 247:349-58. [PMID: 23142186 DOI: 10.1016/j.expneurol.2012.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) mediate calcium entry into neuronal cells in response to membrane depolarisation and play an essential role in a variety of physiological processes. In Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease caused by motor neuron degeneration in the brain and spinal cord, intracellular calcium dysregulation has been shown, while no studies have been carried out on VGCCs. Here we show that the subtype N-type Ca(2+) channels are over expressed in G93A cultured cortical neurons and in motor cortex of G93A mice compared to Controls. In fact, by western blotting, immunocytochemical and electrophysiological experiments, we observe higher membrane expression of N-type Ca(2+) channels in G93A neurons compared to Controls. G93A cortical neurons filled with calcium-sensitive dye Fura-2, show a net calcium entry during membrane depolarization that is significantly higher compared to Control. Analysis of neuronal vitality following the exposure of neurons to a high K(+) concentration (25 mM, 5h), shows a significant reduction of G93A cellular survival compared to Controls. N-type channels are involved in the G93A higher mortality because ω-conotoxin GVIA (1 μM), which selectively blocks these channels, is able to abolish the higher G93A mortality when added to the external medium. These data provide robust evidence for an excess of N-type Ca(2+) expression in G93A cortical neurons which induces a higher mortality following membrane depolarization. These results may be central to the understanding of pathogenic pathways in ALS and provide novel molecular targets for the design of rational therapies for the ALS disorder.
Collapse
|
45
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
46
|
Sarge KD, Park-Sarge OK. WITHDRAWN: Protein sumoylation and human diseases. Biochimie 2012:S0300-9084(12)00371-9. [PMID: 23022145 DOI: 10.1016/j.biochi.2012.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
This review has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Kevin D Sarge
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
47
|
Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons. Spinal Cord 2012; 51:139-43. [PMID: 22945749 DOI: 10.1038/sc.2012.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The objective of this study is to determine whether transient spinal cord ischemia activates small ubiquitin-like modifier (SUMO1-3) conjugation, a post-translational protein modification that protects neurons from ischemia-like conditions. METHODS Mice were subjected to 8-12 min of spinal cord ischemia and 3-24 h of recovery using a newly developed experimental model. To characterize the model, activation of stress response pathways induced after spinal cord ischemia, previously observed in other experimental models, was verified by western blot analysis. Levels and subcellular localization of SUMO-conjugated proteins in spinal cords were evaluated by western blot analysis and immunohistochemistry, respectively. RESULTS Following transient spinal cord ischemia, stress responses were activated as indicated by increased phosphorylation of eukaryotic initiation factor 2 (eIF2α), extracellular signal-regulated kinases (ERK1/2) and Akt. SUMO1 conjugation was not altered, but a selective rise in levels of SUMO2/3-conjugated proteins occurred, peaking at 6 h reperfusion. The marked activation of SUMO2/3 conjugation was a neuronal response to ischemia, as indicated by co-localization with the neuronal marker NeuN, and was associated with nuclear accumulation of SUMO2/3-conjugated proteins. CONCLUSION Our study suggests that spinal cord neurons respond to ischemic stress by activation of SUMO2/3 conjugation. Many of the identified SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression and genome stability. It is therefore concluded that the post-ischemic activation of SUMO2/3 conjugation may define the fate of neurons exposed to a transient interruption of blood supply, and that this pathway could be a therapeutic target to increase the resistance of spinal cord neurons to transient ischemia.
Collapse
|
48
|
Giribaldi F, Milanese M, Bonifacino T, Anna Rossi PI, Di Prisco S, Pittaluga A, Tacchetti C, Puliti A, Usai C, Bonanno G. Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 2012; 66:253-63. [PMID: 22634363 DOI: 10.1016/j.neuropharm.2012.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/26/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Glutamate-mediated excitotoxicity plays a major role in ALS and reduced astrocytic glutamate transport was suggested as a cause. Based on previous work we have proposed that abnormal release may represent another source of excessive glutamate. In this line, here we studied the modulation of glutamate release in ALS by Group I metabotropic glutamate (mGlu) receptors, that comprise mGlu1 and mGlu5 members. Synaptosomes from the lumbar spinal cord of SOD1/G93A mice, a widely used murine model for human ALS, and controls were used in release, confocal or electron microscopy and Western blot experiments. Concentrations of the mGlu1/5 receptor agonist 3,5-DHPG >0.3 μM stimulated the release of [(3)H]d- aspartate, used to label the releasing pools of glutamate, both in control and SOD1/G93A mice. At variance, ≤0.3 μM 3,5-DHPG increased [(3)H]d-aspartate release in SOD1/G93A mice only. Experiments with selective antagonists indicated the involvement of both mGlu1 and mGlu5 receptors, mGlu5 being preferentially involved in the high potency effects of 3,5-DHPG. High 3,5-DHPG concentrations increased IP3 formation in both mouse strains, whereas low 3,5-DHPG did it in SOD1/G93A mice only. Release experiments confirmed that 3,5-DHPG elicited [(3)H]d-aspartate exocytosis involving intra-terminal Ca(2+) release through IP3-sensitive channels. Confocal microscopy indicated the co-existence of both receptors presynaptically in the same glutamatergic nerve terminal in SOD1/G93A mice. To conclude, activation of mGlu1/5 receptors produced abnormal glutamate release in SOD1/G93A mice, suggesting that these receptors are implicated in ALS and that selective antagonists may be predicted for new therapeutic approaches. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Francesco Giribaldi
- Department of Experimental Medicine Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Unger T, Lakowa N, Bette S, Engele J. Transcriptional regulation of the GLAST/EAAT-1 gene in rat and man. Cell Mol Neurobiol 2012; 32:539-47. [PMID: 22252783 PMCID: PMC11498413 DOI: 10.1007/s10571-011-9790-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/21/2011] [Indexed: 01/09/2023]
Abstract
Various acute and chronic brain diseases result in disturbed expression of the glial glutamate transporters, GLAST/EAAT-1 and GLT-1/EAAT-2, and subsequent secondary neuronal cell death. The idea that glutamate-induced brain damage can be prevented by restoring glutamate homeostasis in the injured brain, focussed previous efforts on identifying the network controlling astrocytic glutamate transport. Since most of this work was performed with rat astrocytes, we now sought to compare the transcriptional regulation of the GLAST/EAAT-1 gene in rat and man. Reporter gene assay demonstrated that the human GLAST/EAAT-1 promoter comprises the 2.3 kb region immediately flanking the 5'-end of the human GLAST/EAAT-1 gene. Cloning of the previously unknown promoter of rat GLAST/EAAT-1 gene demonstrated maximal reporter gene activity with a sequence comprising the 1.5 kb region flanking the 5'-end of the gene as well as non-coding exon 1, and intron 1-2. Although the promoter regions from both species lacked sequence homology, they contained numerous identical consensus motifs. In human promoter constructs, dbcAMP, PACAP, EGF, and TGFα, which represent potent stimulators of endogenous GLAST/EAAT-1 expression, only further increased reporter gene activity in the presence of the GLAST/EAAT-1 3'-UTR. By contrast, the rat GLAST/EAAT-1 3'-UTR only mediated the stimulatory increases of dbcAMP. Moreover, the GLAST/EAAT-1 3'-UTR repressed constitutive GLAST/EAAT-1 expression in man, but enhanced GLAST/EAAT-1 transcription in rat. Together, our findings suggest the existence of close functional similarities of the GLAST/EAAT-1 promoter regions in man and rat and further point to a species-specific function of the GLAST/EAAT-1 3'-UTR in constitutive and regulated GLAST/EAAT-1 expression.
Collapse
Affiliation(s)
- Tina Unger
- Medical Faculty, Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Nicole Lakowa
- Medical Faculty, Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Stefanie Bette
- Medical Faculty, Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Jürgen Engele
- Medical Faculty, Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| |
Collapse
|