1
|
Iamohbhars N, Cabic AGB, Markbordee B, Shiina R, Tamura N, Shiwa-Sudo N, Kimitsuki K, Espino MJM, Manalo DL, Inoue S, Park CH. Pathological Study on Trigeminal Ganglionitis Among Rabid Dogs in the Philippines. Vet Sci 2025; 12:299. [PMID: 40284801 PMCID: PMC12031245 DOI: 10.3390/vetsci12040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The trigeminal nerve is the primary gateway through which the rabies virus enters the brain. Viral infection-related trigeminal neuritis is associated with certain clinical signs. This study investigated trigeminal ganglion histopathology in 92 rabid dogs. Trigeminal ganglionitis was classified into three pathological grades: mild, moderate, and severe. Immunostaining of selected sections was performed using antibodies against lymphocytes (CD3, CD20), stellate cells (glial fibrillary acidic protein, GFAP), macrophages (Iba-1, HLA-DR), ganglion cells (neurofilament, NF), and Schwann cells (S-100) to identify lesion cell types. In moderate and severe cases, double-immunofluorescence staining was performed to determine neuronophagia and Nageotte nodule cell types. Mild (13.0%) cases had minimal morphological changes in ganglion cells; moderate (56.5%) and severe (30.4%) cases showed infected ganglion cells and axons with degenerative necrosis, which were replaced by inflammatory cells. Immunohistochemically, viral antigens were detected in most ganglion cells in mild cases and were significantly reduced in severe cases. The number of CD3-, CD20-, GFAP-, and Iba-1-positive cells increased as the severity progressed, and neuronophagia and Nageotte nodules primarily comprised HLA-DR-positive cells. These findings suggest that the rabies virus reaches the trigeminal ganglion via ascending or descending routes and induces trigeminal neuropathological changes, contributing to neurological symptoms in rabid dogs.
Collapse
Affiliation(s)
- Nuttipa Iamohbhars
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada 034-8628, Aomori, Japan
| | - Alpha Grace B. Cabic
- Research Institute for Tropical Medicine, Department of Health, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City 1781, Philippines
| | - Boonkanit Markbordee
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada 034-8628, Aomori, Japan
| | - Ryota Shiina
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada 034-8628, Aomori, Japan
| | - Natsumi Tamura
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada 034-8628, Aomori, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazunori Kimitsuki
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Mark Joseph M. Espino
- Research Institute for Tropical Medicine, Department of Health, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City 1781, Philippines
| | - Daria Llenaresas Manalo
- Research Institute for Tropical Medicine, Department of Health, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City 1781, Philippines
| | - Satoshi Inoue
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada 034-8628, Aomori, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Chun-Ho Park
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada 034-8628, Aomori, Japan
| |
Collapse
|
2
|
Kanda H, Yamanaka H, Dai Y, Noguchi K. The neuronal and glial cell diversity in the celiac ganglion revealed by single-nucleus RNA sequencing. Sci Rep 2025; 15:5510. [PMID: 39953101 PMCID: PMC11828872 DOI: 10.1038/s41598-025-89779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
The sympathetic nervous system regulates various visceral functions, including those of the heart, lungs, and digestive system, and maintains homeostasis. The prevertebral ganglia (PVG) in the peripheral nervous system serve as a vital relay station, transmitting efferent signals to visceral organs. The PVG receives innervation from intestinofugal afferent neurones (IFANs) that originate from the enteric plexus, as well as from spinal sensory nerves that innervate the enteric tract. While neural circuits comprising sensory and sympathetic nerves have been proposed, the exact diversity of the individual neurones in these circuits is still not well characterized in rats. In this study, we employed single-nuclei RNA-sequencing to characterize all the cell types present in the celiac ganglion (CG). We identified five distinct neural clusters, including celiac noradrenergic and celiac cholinergic neurones (CNA1-4, CACh). Among these, the CNA3 cluster expressed Tacr1 and Cckar, while the CACh cluster expressed Ramp1. Furthermore, we characterised Mki67-positive proliferating cells and found that they expressed genes associated with satellite glial cells (SGCs). Additionally, general resident and sympathetic SGCs with distinct SGC clusters were localised within the CG. Our data provide a valuable resource for investigating neural circuits within the PVG and for identifying target organs innervated by specific neuronal populations.
Collapse
Affiliation(s)
- Hirosato Kanda
- Laboratory of Anatomy, School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan.
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan.
| | - Hiroki Yamanaka
- Laboratory of Anatomy, School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| | - Yi Dai
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Koichi Noguchi
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| |
Collapse
|
3
|
Birren SJ, Goodrich LV, Segal RA. Satellite Glial Cells: No Longer the Most Overlooked Glia. Cold Spring Harb Perspect Biol 2025; 17:a041367. [PMID: 38768970 PMCID: PMC11694750 DOI: 10.1101/cshperspect.a041367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Many glial biologists consider glia the neglected cells of the nervous system. Among all the glia of the central and peripheral nervous system, satellite glia may be the most often overlooked. Satellite glial cells (SGCs) are located in ganglia of the cranial nerves and the peripheral nervous system. These small cells surround the cell bodies of neurons in the trigeminal ganglia (TG), spiral ganglia, nodose and petrosal ganglia, sympathetic ganglia, and dorsal root ganglia (DRG). Essential SGC features include their intimate connections with the associated neurons, their small size, and their derivation from neural crest cells. Yet SGCs also exhibit tissue-specific properties and can change rapidly, particularly in response to injury. To illustrate the range of SGC functions, we will focus on three types: those of the spiral, sympathetic, and DRG, and consider both their shared features and those that differ based on location.
Collapse
Affiliation(s)
- Susan J Birren
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Emvalomenos GM, Kang JW, Salberg S, Li C, Jupp B, Long M, Haskali MB, Kellapatha S, Davanzo OII, Lim H, Mychasiuk R, Keay KA, Henderson LA. Evidence for glial reactivity using positron-emission tomography imaging of translocator Protein-18 kD [TSPO] in both sham and nerve-injured rats in a preclinical model of orofacial neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100175. [PMID: 39758133 PMCID: PMC11699482 DOI: 10.1016/j.ynpai.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses. Although these static snapshots have provided valuable data, they cannot provide insights into non-neural cell changes that could be also assessed in human patients with chronic pain. In this study we used translocator protein 18 kDa (TSPO) PET imaging with [18F]PBR06 to visualise in-vivo, the activity of macrophages and microglia in a rodent preclinical model of trigeminal neuropathic pain. Using chronic constriction injury of the infraorbital nerve (ION-CCI) we compared temporal changes in TSPO binding in male rats, prior to, and up to 28 days after ION-CCI compared with both sham-injured and naïve counterparts. Unexpectedly, we found significant increases in TSPO signal in both ION-CCI and sham-injured rats within the trigeminal ganglion, spinal trigeminal nucleus and paratrigeminal nucleus during the initial phase following surgery and/or nerve injury. This increased TSPO binding returned to control levels by day 28. Qualitative histological appraisal of macrophage accumulation and glial reactivity in both ION-CCI and sham-injured rats indicated macrophage accumulation in the trigeminal ganglion and microglial reactivity in the brainstem trigeminal complex. These findings show, glial changes in the peripheral nerve and brain in both nerve-injured and sham-injured rats in a preclinical model of neuropathic pain which provides a platform for translation into human patients.
Collapse
Affiliation(s)
- Gaelle M. Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - James W.M. Kang
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew Long
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Mohammad B. Haskali
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Sunil Kellapatha
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - OIivia I. Davanzo
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Hyunsol Lim
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kevin A. Keay
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Luke A. Henderson
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Nguyen HS, Kang SJ, Kim S, Cha BH, Park KS, Jeong SW. Changes in the expression of satellite glial cell-specific markers during postnatal development of rat sympathetic ganglia. Brain Res 2024; 1829:148809. [PMID: 38354998 DOI: 10.1016/j.brainres.2024.148809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.
Collapse
Affiliation(s)
- Huu Son Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Jun Kang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Byung Ho Cha
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong-Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
8
|
Lisboa MRP, Pereira AF, Alves BWDF, Dias DBS, Alves LCV, da Silva CMP, Lima-Júnior RCP, Gondim DV, Vale ML. Blockage of the fractalkine pathway reduces hyperalgesia and prevents morphological glial alterations-Comparison between inflammatory and neuropathic orofacial pain in male rats. J Neurosci Res 2024; 102:e25269. [PMID: 38284851 DOI: 10.1002/jnr.25269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 01/30/2024]
Abstract
This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.
Collapse
Affiliation(s)
- Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduation in Dentistry, Christus University Center, Fortaleza, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Diego Bernarde Souza Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Delane Viana Gondim
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Konnova EA, Deftu AF, Chu Sin Chung P, Pertin M, Kirschmann G, Decosterd I, Suter MR. Characterisation of GFAP-Expressing Glial Cells in the Dorsal Root Ganglion after Spared Nerve Injury. Int J Mol Sci 2023; 24:15559. [PMID: 37958541 PMCID: PMC10647921 DOI: 10.3390/ijms242115559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Satellite glial cells (SGCs), enveloping primary sensory neurons' somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed the hGFAP-CFP transgenic mouse line, designed for astrocyte studies, to explore its expression within the peripheral nervous system (PNS) after spared nerve injury (SNI). We used diverse immunostaining techniques, Western blot analysis, and electrophysiology to evaluate GFAP+ cell changes. Post-SNI, GFAP+ cell numbers increased without proliferation, and were found near injured ATF3+ neurons. GFAP+ FABP7+ SGCs increased, yet 75.5% of DRG GFAP+ cells lacked FABP7 expression. This suggests a significant subset of GFAP+ cells are non-myelinating Schwann cells (nmSC), indicated by their presence in the dorsal root but not in the ventral root which lacks unmyelinated fibres. Additionally, patch clamp recordings from GFAP+ FABP7-cells lacked SGC-specific Kir4.1 currents, instead displaying outward Kv currents expressing Kv1.1 and Kv1.6 channels specific to nmSCs. In conclusion, this study demonstrates increased GFAP expression in two DRG glial cell subpopulations post-SNI: GFAP+ FABP7+ SGCs and GFAP+ FABP7- nmSCs, shedding light on GFAP's specificity as an SGC marker after SNI.
Collapse
Affiliation(s)
- Elena A. Konnova
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Marie Pertin
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Guylène Kirschmann
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marc R. Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
10
|
Tonello R, Silveira Prudente A, Hoon Lee S, Faith Cohen C, Xie W, Paranjpe A, Roh J, Park CK, Chung G, Strong JA, Zhang JM, Berta T. Single-cell analysis of dorsal root ganglia reveals metalloproteinase signaling in satellite glial cells and pain. Brain Behav Immun 2023; 113:401-414. [PMID: 37557960 PMCID: PMC10530626 DOI: 10.1016/j.bbi.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRGs) and closely envelop sensory neurons that detect painful stimuli. However, little is still known about their homeostatic activities and their contribution to pain. Using single-cell RNA sequencing (scRNA-seq), we were able to obtain a unique transcriptional profile for SGCs. We found enriched expression of the tissue inhibitor metalloproteinase 3 (TIMP3) and other metalloproteinases in SGCs. Small interfering RNA and neutralizing antibody experiments revealed that TIMP3 modulates somatosensory stimuli. TIMP3 expression decreased after paclitaxel treatment, and its rescue by delivery of a recombinant TIMP3 protein reversed and prevented paclitaxel-induced pain. We also established that paclitaxel directly impacts metalloproteinase signaling in cultured SGCs, which may be used to identify potential new treatments for pain. Therefore, our results reveal a metalloproteinase signaling pathway in SGCs for proper processing of somatosensory stimuli and potential discovery of novel pain treatments.
Collapse
Affiliation(s)
- Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jueun Roh
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Gehoon Chung
- Department of Oral Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
12
|
Mustafa S, Bajic JE, Barry B, Evans S, Siemens KR, Hutchinson MR, Grace PM. One immune system plays many parts: The dynamic role of the immune system in chronic pain and opioid pharmacology. Neuropharmacology 2023; 228:109459. [PMID: 36775098 PMCID: PMC10015343 DOI: 10.1016/j.neuropharm.2023.109459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The transition from acute to chronic pain is an ongoing major problem for individuals, society and healthcare systems around the world. It is clear chronic pain is a complex multidimensional biological challenge plagued with difficulties in pain management, specifically opioid use. In recent years the role of the immune system in chronic pain and opioid pharmacology has come to the forefront. As a highly dynamic and versatile network of cells, tissues and organs, the immune system is perfectly positioned at the microscale level to alter nociception and drive structural adaptations that underpin chronic pain and opioid use. In this review, we highlight the need to understand the dynamic and adaptable characteristics of the immune system and their role in the transition, maintenance and resolution of chronic pain. The complex multidimensional interplay of the immune system with multiple physiological systems may provide new transformative insight for novel targets for clinical management and treatment of chronic pain. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Sanam Mustafa
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia.
| | - Juliana E Bajic
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Benjamin Barry
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Samuel Evans
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Kariel R Siemens
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark R Hutchinson
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Pain Research Consortium, Houston, TX, USA
| |
Collapse
|
13
|
McGinnis A, Ji RR. The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells 2023; 12:965. [PMID: 36980304 PMCID: PMC10047571 DOI: 10.3390/cells12060965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Preclinical studies have identified glial cells as pivotal players in the genesis and maintenance of neuropathic pain after nerve injury associated with diabetes, chemotherapy, major surgeries, and virus infections. Satellite glial cells (SGCs) in the dorsal root and trigeminal ganglia of the peripheral nervous system (PNS) and astrocytes in the central nervous system (CNS) express similar molecular markers and are protective under physiological conditions. They also serve similar functions in the genesis and maintenance of neuropathic pain, downregulating some of their homeostatic functions and driving pro-inflammatory neuro-glial interactions in the PNS and CNS, i.e., "gliopathy". However, the role of SGCs in neuropathic pain is not simply as "peripheral astrocytes". We delineate how these peripheral and central glia participate in neuropathic pain by producing different mediators, engaging different parts of neurons, and becoming active at different stages following nerve injury. Finally, we highlight the recent findings that SGCs are enriched with proteins related to fatty acid metabolism and signaling such as Apo-E, FABP7, and LPAR1. Targeting SGCs and astrocytes may lead to novel therapeutics for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Feng R, Muraleedharan Saraswathy V, Mokalled MH, Cavalli V. Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc Natl Acad Sci U S A 2023; 120:e2215906120. [PMID: 36763532 PMCID: PMC9963351 DOI: 10.1073/pnas.2215906120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/07/2023] [Indexed: 02/11/2023] Open
Abstract
Sensory neurons located in dorsal root ganglia (DRG) convey sensory information from peripheral tissue to the brain. After peripheral nerve injury, sensory neurons switch to a regenerative state to enable axon regeneration and functional recovery. This process is not cell autonomous and requires glial and immune cells. Macrophages in the DRG (DRGMacs) accumulate in response to nerve injury, but their origin and function remain unclear. Here, we mapped the fate and response of DRGMacs to nerve injury using macrophage depletion, fate-mapping, and single-cell transcriptomics. We identified three subtypes of DRGMacs after nerve injury in addition to a small population of circulating bone-marrow-derived precursors. Self-renewing macrophages, which proliferate from local resident macrophages, represent the largest population of DRGMacs. The other two subtypes include microglia-like cells and macrophage-like satellite glial cells (SGCs) (Imoonglia). We show that self-renewing DRGMacs contribute to promote axon regeneration. Using single-cell transcriptomics data and CellChat to simulate intercellular communication, we reveal that macrophages express the neuroprotective and glioprotective ligand prosaposin and communicate with SGCs via the prosaposin receptor GPR37L1. These data highlight that DRGMacs have the capacity to self-renew, similarly to microglia in the Central nervous system (CNS) and contribute to promote axon regeneration. These data also reveal the heterogeneity of DRGMacs and their potential neuro- and glioprotective roles, which may inform future therapeutic approaches to treat nerve injury.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
| | - Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO63110
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
15
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
16
|
Pathophysiology of Post-Traumatic Trigeminal Neuropathic Pain. Biomolecules 2022; 12:biom12121753. [PMID: 36551181 PMCID: PMC9775491 DOI: 10.3390/biom12121753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trigeminal nerve injury is one of the causes of chronic orofacial pain. Patients suffering from this condition have a significantly reduced quality of life. The currently available management modalities are associated with limited success. This article reviews some of the common causes and clinical features associated with post-traumatic trigeminal neuropathic pain (PTNP). A cascade of events in the peripheral and central nervous system function is involved in the pathophysiology of pain following nerve injuries. Central and peripheral processes occur in tandem and may often be co-dependent. Due to the complexity of central mechanisms, only peripheral events contributing to the pathophysiology have been reviewed in this article. Future investigations will hopefully help gain insight into trigeminal-specific events in the pathophysiology of the development and maintenance of neuropathic pain secondary to nerve injury and enable the development of new therapeutic modalities.
Collapse
|
17
|
Maniglier M, Vidal M, Bachelin C, Deboux C, Chazot J, Garcia-Diaz B, Baron-Van Evercooren A. Satellite glia of the adult dorsal root ganglia harbor stem cells that yield glia under physiological conditions and neurons in response to injury. Stem Cell Reports 2022; 17:2467-2483. [PMID: 36351367 PMCID: PMC9669640 DOI: 10.1016/j.stemcr.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The presence of putative stem/progenitor cells has been suggested in adult peripheral nervous system (PNS) tissue, including the dorsal root ganglion (DRG). To date, their identification and fate in pathophysiological conditions have not been addressed. Combining multiple in vitro and in vivo approaches, we identified the presence of stem cells in the adult DRG satellite glial population, and progenitors were present in the DRGs and sciatic nerve. Cell-specific transgenic mouse lines highlighted the proliferative potential of DRG stem cells and progenitors in vitro. DRG stem cells had gliogenic and neurogenic potentials, whereas progenitors were essentially gliogenic. Lineage tracing showed that, under physiological conditions, adult DRG stem cells maintained DRG homeostasis by supplying satellite glia. Under pathological conditions, adult DRG stem cells replaced DRG neurons lost to injury in addition of renewing the satellite glial pool. These novel findings open new avenues for development of therapeutic strategies targeting DRG stem cells for PNS disorders. Adult murine DRGs contain slowly proliferating putative stem cells The putative stem cells are a subpopulation of adult DRG satellite cells Purified adult DRG putative stem cells generate neurons and glia in vitro They are gliogenic in vivo and generate neurons in response to injury
Collapse
|
18
|
Shinoda M, Hitomi S, Iwata K, Hayashi Y. Plastic changes in nociceptive pathways contributing to persistent orofacial pain. J Oral Biosci 2022; 64:263-270. [PMID: 35840073 DOI: 10.1016/j.job.2022.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pain is a warning signal for the body defense mechanisms and is a critical sensation for supporting life. However, orofacial pain is not a vital sensation, but a disease. However, there are still many unclear points about the pathophysiological mechanism of orofacial pain. This situation makes it difficult for many clinicians to treat orofacial pain hypersensitivity. HIGHLIGHT Noxious information on the orofacial region received by trigeminal ganglion neurons is recognized as "orofacial pain" by being transmitted to the somatosensory cortex and limbic system via the spinal trigeminal nucleus and the thalamic sensory nuclei. Orofacial inflammation or trigeminal nerve injury causes neuropathic changes in various nociceptive signaling pathways, resulting in persistent orofacial pain. It is considered that persistent oral facial pain is triggered by plastic changes in nociceptive signaling pathways involving various cells such as satellite glial cells, astrocytes, microglia, and macrophages, as well as nociceptive neurons. CONCLUSION Recent studies have shown that hyperexcitability of nociceptive neurons in the nociceptive signaling pathways of the orofacial region caused by a variety of factors causes persistent orofacial pain. This review outlines the pathophysiology of orofacial pain along with the results of our study.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
19
|
Jager SE, Pallesen LT, Lin L, Izzi F, Pinheiro AM, Villa-Hernandez S, Cesare P, Vaegter CB, Denk F. Comparative transcriptional analysis of satellite glial cell injury response. Wellcome Open Res 2022; 7:156. [PMID: 35950162 PMCID: PMC9329822 DOI: 10.12688/wellcomeopenres.17885.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets. Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.
Collapse
Affiliation(s)
- Sara Elgaard Jager
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Lone Tjener Pallesen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark & Steno and Diabetes Center, Aarhus, Denmark
| | - Francesca Izzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Alana Miranda Pinheiro
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Christian Bjerggaard Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| |
Collapse
|
20
|
Quan J, Lee JY, Choi H, Kim YC, Yang S, Jeong J, Park HJ. Effect of Pregabalin Combined with Duloxetine and Tramadol on Allodynia in Chronic Postischemic Pain and Spinal Nerve Ligation Mouse Models. Pharmaceutics 2022; 14:pharmaceutics14030670. [PMID: 35336044 PMCID: PMC8955203 DOI: 10.3390/pharmaceutics14030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although there are various drugs for Neuropathic pain (NP), the effects of single drugs are often not very satisfactory. The analgesic effects of different combinations of pregabalin, duloxetine, and tramadol or the combination of all three are still unclear. Mixtures of two or three drugs at low and high concentrations (7.5, 10, 15, and 20 mg/kg pregabalin; 7.5, 10, 15, and 30 mg/kg duloxetine; 5 and 10 mg/kg tramadol) were administered to chronic postischemic pain (CPIP) and spinal nerve ligation (SNL) model mice. The effects of these combinations of drugs on mechanical allodynia were investigated. The expression of the glial fibrillary acidic protein (GFAP) in the spinal cord and dorsal root ganglia (DRGs) was measured. The combination of pregabalin, duloxetine, and tramadol significantly alleviated mechanical hyperalgesia in mice with CPIP and SNL. After the administration of this drug combination, the expression of GFAP in the spinal cord and DRGs was lower in the CPIP and SNL model mice than in control mice. This result suggests that the combination of these three drugs may be advantageous for the treatment of NP because it can reduce side effects by preventing the overuse of a single drug class and exert increased analgesic effects via synergism.
Collapse
Affiliation(s)
- Jie Quan
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Jin Young Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Young Chan Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Sungwon Yang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Jongmin Jeong
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
- Correspondence:
| |
Collapse
|
21
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Modulation of Hippocampal Astroglial Activity by Synaptamide in Rats with Neuropathic Pain. Brain Sci 2021; 11:brainsci11121561. [PMID: 34942863 PMCID: PMC8699312 DOI: 10.3390/brainsci11121561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
The present study demonstrates that synaptamide (N-docosahexaenoylethanolamine), an endogenous metabolite of docosahexaenoic acid, when administered subcutaneously (4 mg/kg/day, 14 days), exhibits analgesic activity and promotes cognitive recovery in the rat sciatic nerve chronic constriction injury (CCI) model. We analyzed the dynamics of GFAP-positive astroglia and S100β-positive astroglia activity, the expression of nerve growth factor (NGF), and two subunits of the NMDA receptor (NMDAR1 and NMDAR2A) in the hippocampi of the experimental animals. Hippocampal neurogenesis was evaluated by immunohistochemical detection of DCX. Analysis of N-acylethanolamines in plasma and in the brain was performed using the liquid chromatography-mass spectrometry technique. In vitro and in vivo experiments show that synaptamide (1) reduces cold allodynia, (2) improves working memory and locomotor activity, (3) stabilizes neurogenesis and astroglial activity, (4) enhances the expression of NGF and NMDAR1, (5) increases the concentration of Ca2+ in astrocytes, and (6) increases the production of N-acylethanolamines. The results of the present study demonstrate that synaptamide affects the activity of hippocampal astroglia, resulting in faster recovery after CCI.
Collapse
|
23
|
Avraham O, Feng R, Ewan EE, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. eLife 2021; 10:e68457. [PMID: 34586065 PMCID: PMC8480984 DOI: 10.7554/elife.68457] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Rui Feng
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Eric Edward Ewan
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Justin Rustenhoven
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- Center for Brain Immunology and Glia (BIG), Washington University School of MedicineSt LouisUnited States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
24
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
25
|
Shinoda M, Imamura Y, Hayashi Y, Noma N, Okada-Ogawa A, Hitomi S, Iwata K. Orofacial Neuropathic Pain-Basic Research and Their Clinical Relevancies. Front Mol Neurosci 2021; 14:691396. [PMID: 34295221 PMCID: PMC8291146 DOI: 10.3389/fnmol.2021.691396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Trigeminal nerve injury is known to cause severe persistent pain in the orofacial region. This pain is difficult to diagnose and treat. Recently, many animal studies have reported that rewiring of the peripheral and central nervous systems, non-neuronal cell activation, and up- and down-regulation of various molecules in non-neuronal cells are involved in the development of this pain following trigeminal nerve injury. However, there are many unknown mechanisms underlying the persistent orofacial pain associated with trigeminal nerve injury. In this review, we address recent animal data regarding the involvement of various molecules in the communication of neuronal and non-neuronal cells and examine the possible involvement of ascending pathways in processing pathological orofacial pain. We also address the clinical observations of persistent orofacial pain associated with trigeminal nerve injury and clinical approaches to their diagnosis and treatment.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
26
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Huang B, Zdora I, de Buhr N, Lehmbecker A, Baumgärtner W, Leitzen E. Phenotypical peculiarities and species-specific differences of canine and murine satellite glial cells of spinal ganglia. J Cell Mol Med 2021; 25:6909-6924. [PMID: 34096171 PMCID: PMC8278083 DOI: 10.1111/jcmm.16701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
28
|
Li YL, Liu F, Zhang YY, Lin J, Huang CL, Fu M, Zhou C, Li CJ, Shen JF. NMDAR1-Src-Pannexin1 Signal Pathway in the Trigeminal Ganglion Contributed to Orofacial Ectopic Pain Following Inferior Alveolar Nerve Transection. Neuroscience 2021; 466:77-86. [PMID: 33965504 DOI: 10.1016/j.neuroscience.2021.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is a glutamate-gated receptor channel that plays a role in peripheral neuropathic pain. Src, a protein tyrosine kinase, can regulate the activation of NMDARs in chronic pain conditions. Pannexin 1 (Panx1), a plasma membrane channel, plays an important role in neuropathic pain and functionally interacts with NMDARs in the pathological condition of epilepsy. In this study, the roles of NMDAR1 (NR1), Src, and Panx1 and their interactions in the trigeminal ganglion (TG) in orofacial ectopic pain attributed to inferior alveolar nerve transection (IANX) were investigated. IANX induced mechanical allodynia in the whisker pad with increased expression levels of NR1, Src phosphorylation (p-Src), and Panx1 in the TG. Double immunostaining revealed that NR1, Src, and Panx1 all colocalized with glutamine synthetase (GS) and neuronal nuclei (NeuN), and they overlapped in the TG, suggesting that they might be structurally connected to one another. In addition, trigeminal injection of memantine, PP2, or 10Panx attenuated IANX-induced mechanical allodynia in the whisker pad. Continuous intraganglionic administration of memantine (an antagonist of NMDAR) decreased IANX-induced upregulated expression of p-Src and Panx1. Similarly, PP2 (an inhibitor of Src) also decreased Panx1 protein expression but had no effect on NR1. In addition, intraganglionic injection of 10Panx (a blocker of Panx1) decreased NR1 protein expression but did not affect Src. In general, our findings demonstrated that NR1, Src, and Panx1 all contributed to orofacial ectopic pain following IANX and that they composed a signalling pathway in the TG involved in mechanical allodynia.
Collapse
Affiliation(s)
- Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Koizumi M, Asano S, Furukawa A, Hayashi Y, Hitomi S, Shibuta I, Hayashi K, Kato F, Iwata K, Shinoda M. P2X 3 receptor upregulation in trigeminal ganglion neurons through TNFα production in macrophages contributes to trigeminal neuropathic pain in rats. J Headache Pain 2021; 22:31. [PMID: 33902429 PMCID: PMC8077728 DOI: 10.1186/s10194-021-01244-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Trigeminal neuralgia is a characteristic disease that manifests as orofacial phasic or continuous severe pain triggered by innocuous orofacial stimulation; its mechanisms are not fully understood. In this study, we established a new animal model of trigeminal neuralgia and investigated the role of P2X3 receptor (P2X3R) alteration in the trigeminal ganglion (TG) via tumor necrosis factor alpha (TNFα) signaling in persistent orofacial pain. METHODS Trigeminal nerve root compression (TNC) was performed in male Sprague-Dawley rats. Changes in the mechanical sensitivity of whisker pad skin, amount of TNFα in the TG, and number of P2X3R and TNF receptor-2 (TNFR2)-positive TG neurons were assessed following TNC. The effects of TNFR2 antagonism in TG and subcutaneous P2X3R antagonism on mechanical hypersensitivity following TNC were examined. RESULTS TNC induced unilateral continuous orofacial mechanical allodynia, which was depressed by carbamazepine. The accumulation of macrophages showing amoeboid-like morphological changes and expression of TNFα in the TG was remarkably increased following TNC treatment. The number of P2X3R- and TNFR2-positive TG neurons innervating the orofacial skin was significantly increased following TNC. TNFα was released from activated macrophages that occurred in the TG following TNC, and TNFR2 antagonism in the TG significantly diminished the TNC-induced increase in P2X3R-immunoreactive TG neurons. Moreover, subcutaneous P2X3R antagonism in the whisker pad skin significantly depressed TNC-induced mechanical allodynia. CONCLUSIONS Therefore, it can be concluded that the signaling of TNFα released from activated macrophages in the TG induces the upregulation of P2X3R expression in TG neurons innervating the orofacial region, resulting in orofacial mechanical allodynia following TNC.
Collapse
Affiliation(s)
- Momoko Koizumi
- Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Sayaka Asano
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Katsuhiko Hayashi
- Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan.
| |
Collapse
|
30
|
Wang J, Lou Z, Xi H, Li Z, Li L, Li Z, Zhang K, Asakawa T. Verification of neuroprotective effects of alpha-lipoic acid on chronic neuropathic pain in a chronic constriction injury rat model. Open Life Sci 2021; 16:222-228. [PMID: 33817313 PMCID: PMC7968532 DOI: 10.1515/biol-2021-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Treatment of neuropathic pain is far from satisfactory. This study sought evidence of a neuroprotective effect of alpha-lipoic acid (ALA) to treat neuropathic pain in a chronic constriction injury (CCI) rat model. A total of 48 rats were randomly divided into sham, CCI, or CCI + ALA groups. Mechanical and thermal nociceptive thresholds were evaluated as behavioral assessments. Dorsal root ganglia cells were assessed morphologically with hematoxylin and eosin staining and for apoptosis with P53 immunohistochemical staining. Compared with the sham group, the CCI group had a shorter paw withdrawal threshold and paw withdrawal latency, abnormal morphologic manifestations, and increased numbers of satellite glial cells and P53+ cells. These changes were significantly reversed by treatment with ALA. Our study indicates neuroprotective effects of ALA on chronic neuropathic pain in a CCI rat model. ALA is potentially considered to be developed as a treatment for neuropathic pain caused by peripheral nerve injury, which requires further verification.
Collapse
Affiliation(s)
- Junhao Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaohui Lou
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Haiyang Xi
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhi Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lepeng Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhenzhen Li
- Institute of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Zhang
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
31
|
Magni G, Ceruti S. Purines in Pain as a Gliopathy. Front Pharmacol 2021; 12:649807. [PMID: 33790798 PMCID: PMC8006436 DOI: 10.3389/fphar.2021.649807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
van Weperen VYH, Littman RJ, Arneson DV, Contreras J, Yang X, Ajijola OA. Single-cell transcriptomic profiling of satellite glial cells in stellate ganglia reveals developmental and functional axial dynamics. Glia 2021; 69:1281-1291. [PMID: 33432730 DOI: 10.1002/glia.23965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Stellate ganglion neurons, important mediators of cardiopulmonary neurotransmission, are surrounded by satellite glial cells (SGCs), which are essential for the function, maintenance, and development of neurons. However, it remains unknown whether SGCs in adult sympathetic ganglia exhibit any functional diversity, and what role this plays in modulating neurotransmission. We performed single-cell RNA sequencing of mouse stellate ganglia (n = 8 animals), focusing on SGCs (n = 11,595 cells). SGCs were identified by high expression of glial-specific transcripts, S100b and Fabp7. Microglia and Schwann cells were identified by expression of C1qa/C1qb/C1qc and Ncmap/Drp2, respectively, and excluded from further analysis. Dimensionality reduction and clustering of SGCs revealed six distinct transcriptomic subtypes, one of which was characterized the expression of pro-inflammatory markers and excluded from further analyses. The transcriptomic profiles and corresponding biochemical pathways of the remaining subtypes were analyzed and compared with published astrocytic transcriptomes. This revealed gradual shifts of developmental and functional pathways across the subtypes, originating from an immature and pluripotent subpopulation into two mature populations of SGCs, characterized by upregulated functional pathways such as cholesterol metabolism. As SGCs aged, these functional pathways were downregulated while genes and pathways associated with cellular stress responses were upregulated. These findings were confirmed and furthered by an unbiased pseudo-time analysis, which revealed two distinct trajectories involving the five subtypes that were studied. These findings demonstrate that SGCs in mouse stellate ganglia exhibit transcriptomic heterogeneity along maturation or differentiation axes. These subpopulations and their unique biochemical properties suggest dynamic physiological adaptations that modulate neuronal function.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- UCLA Neurocardiology Research Center of Excellence, Los Angeles, California, USA.,UCLA Cardiac Arrhythmia Center, Los Angeles, California, USA
| | - Russell J Littman
- UCLA Bioinformatics Interdepartmental Program, Los Angeles, California, USA.,UCLA Integrative Biology and Physiology, Los Angeles, California, USA
| | - Douglas V Arneson
- UCLA Bioinformatics Interdepartmental Program, Los Angeles, California, USA.,UCLA Integrative Biology and Physiology, Los Angeles, California, USA.,UCSF Bakar Computational Health Sciences Institute, San Francisco, California, USA
| | - Jaime Contreras
- UCLA Neurocardiology Research Center of Excellence, Los Angeles, California, USA.,UCLA Cardiac Arrhythmia Center, Los Angeles, California, USA
| | - Xia Yang
- UCLA Bioinformatics Interdepartmental Program, Los Angeles, California, USA.,UCLA Integrative Biology and Physiology, Los Angeles, California, USA
| | - Olujimi A Ajijola
- UCLA Neurocardiology Research Center of Excellence, Los Angeles, California, USA.,UCLA Cardiac Arrhythmia Center, Los Angeles, California, USA
| |
Collapse
|
33
|
Masuoka T, Yamashita Y, Nakano K, Takechi K, Niimura T, Tawa M, He Q, Ishizawa K, Ishibashi T. Chronic Tear Deficiency Sensitizes Transient Receptor Potential Vanilloid 1-Mediated Responses in Corneal Sensory Nerves. Front Cell Neurosci 2020; 14:598678. [PMID: 33424555 PMCID: PMC7785588 DOI: 10.3389/fncel.2020.598678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic tear deficiency enhances the excitability of corneal cold-sensitive nerves that detect ocular dryness, which can lead to discomfort in patients with dry eye disease (DED). However, changes in corneal nerve excitations through the polymodal nociceptor “transient receptor potential vanilloid 1” (TRPV1) and the potential link between this receptor and symptoms of DED remain unclear. In this study, we examined the firing properties of corneal cold-sensitive nerves expressing TRPV1 and possible contributions of chronic tear deficiency to corneal nerve excitability by TRPV1 activation. The bilateral excision of lacrimal glands in guinea pigs decreased the tear volume and increased the frequency of spontaneous eyeblinks 1–4 weeks after surgery. An analysis of the firing properties of the cold-sensitive nerves was performed by single-unit recordings of corneal preparations 4 weeks after surgery in both the sham-operated and gland-excised groups. Perfusion of the TRPV1 agonist, capsaicin (1 μM), transiently increased the firing frequency in approximately 46–48% of the cold-sensitive nerves characterized by low-background activity and high threshold (LB-HT) cold thermoreceptors in both groups. Gland excision significantly decreased the latency of capsaicin-induced firing in cold-sensitive nerves; however, its magnitude was unchanged. Calcium imaging of cultured trigeminal ganglion neurons from both groups showed that intracellular calcium elevation of corneal neurons induced by a low concentration of capsaicin (0.03 μM) was significantly larger in the gland excision group, regardless of responsiveness to cold. An immunohistochemical study of the trigeminal ganglion revealed that gland excision significantly increased the proportion of corneal neurons enclosed by glial fibrillary acidic protein (GFAP)-immunopositive satellite glial cells. Topical application of the TRPV1 antagonist, A784168 (30 μM), on the ocular surface attenuated eye-blink frequency after gland excision. Furthermore, gland excision enhanced blink behavior induced by a low concentration of capsaicin (0.1 μM). These results suggest that chronic tear deficiency sensitizes the TRPV1-mediated response in the corneal LB-HT cold thermoreceptors and cold-insensitive polymodal nociceptors, which may be linked to dry eye discomfort and hyperalgesia resulting from nociceptive stimuli in aqueous-deficient dry eyes.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Yuka Yamashita
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Katsuya Nakano
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Kenshi Takechi
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Drug Information Analysis, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Tawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Qiang He
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
34
|
Bhusal A, Rahman MH, Lee WH, Lee IK, Suk K. Satellite glia as a critical component of diabetic neuropathy: Role of lipocalin-2 and pyruvate dehydrogenase kinase-2 axis in the dorsal root ganglion. Glia 2020; 69:971-996. [PMID: 33251681 DOI: 10.1002/glia.23942] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARβ/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARβ/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
Glial cell activation and altered metabolic profile in the spinal-trigeminal axis in a rat model of multiple sclerosis associated with the development of trigeminal sensitization. Brain Behav Immun 2020; 89:268-280. [PMID: 32659316 DOI: 10.1016/j.bbi.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia is often an early symptom of multiple sclerosis (MS), and it generally does not correlate with the severity of the disease. Thus, whether it is triggered simply by demyelination in specific central nervous system areas is currently questioned. Our aims were to monitor the development of spontaneous trigeminal pain in an animal model of MS, and to analyze: i) glial cells, namely astrocytes and microglia in the central nervous system and satellite glial cells in the trigeminal ganglion, and ii) metabolic changes in the trigeminal system. The subcutaneous injection of recombinant MOG1-125 protein fragment to Dark Agouti male rats led to the development of relapsing-remitting EAE, with a first peak after 13 days, a remission stage from day 16 and a second peak from day 21. Interestingly, orofacial allodynia developed from day 1 post injection, i.e. well before the onset of EAE, and worsened over time, irrespective of the disease phase. Activation of glial cells both in the trigeminal ganglia and in the brainstem, with no signs of demyelination in the latter tissue, was observed along with metabolic alterations in the trigeminal ganglion. Our data show, for the first time, the spontaneous development of trigeminal sensitization before the onset of relapsing-remitting EAE in rats. Additionally, pain is maintained elevated during all stages of the disease, suggesting the existence of parallel mechanisms controlling motor symptoms and orofacial pain, likely involving glial cell activation and metabolic alterations which can contribute to trigger the sensitization of sensory neurons.
Collapse
|
36
|
Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 2020; 11:4891. [PMID: 32994417 PMCID: PMC7524726 DOI: 10.1038/s41467-020-18642-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023] Open
Abstract
Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair. The contribution of satellite glia to peripheral nerve regeneration is unclear. Here, the authors show that satellite glia are transcriptionally distinct from Schwann cells, share similarities with astrocytes, and, upon injury, they contribute to axon regeneration via Fasn-PPARα signalling pathway.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sara Jones
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Clay F Semenkovich
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Rabah Y, Rubino B, Moukarzel E, Agulhon C. Characterization of transgenic mouse lines for selectively targeting satellite glial cells and macrophages in dorsal root ganglia. PLoS One 2020; 15:e0229475. [PMID: 32915783 PMCID: PMC7485865 DOI: 10.1371/journal.pone.0229475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
The importance of glial cells in the modulation of neuronal processes is now generally accepted. In particular, enormous progress in our understanding of astrocytes and microglia physiology in the central nervous system (CNS) has been made in recent years, due to the development of genetic and molecular toolkits. However, the roles of satellite glial cells (SGCs) and macrophages-the peripheral counterparts of astrocytes and microglia-remain poorly studied despite their involvement in debilitating conditions, such as pain. Here, we characterized in dorsal root ganglia (DRGs), different genetically-modified mouse lines previously used for studying astrocytes and microglia, with the goal to implement them for investigating DRG SGC and macrophage functions. Although SGCs and astrocytes share some molecular properties, most tested transgenic lines were found to not be suitable for studying selectively a large number of SGCs within DRGs. Nevertheless, we identified and validated two mouse lines: (i) a CreERT2 recombinase-based mouse line allowing transgene expression almost exclusively in SGCs and in the vast majority of SGCs, and (ii) a GFP-expressing line allowing the selective visualization of macrophages. In conclusion, among the tools available for exploring astrocyte functions, a few can be used for studying selectively a great proportion of SGCs. Thus, efforts remain to be made to characterize other available mouse lines as well as to develop, rigorously characterize and validate new molecular tools to investigate the roles of DRG SGCs, but also macrophages, in health and disease.
Collapse
Affiliation(s)
- Yasmine Rabah
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
| | - Bruna Rubino
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
| | - Elsie Moukarzel
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
| | - Cendra Agulhon
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Xie AX, Madayag A, Minton SK, McCarthy KD, Malykhina AP. Sensory satellite glial Gq-GPCR activation alleviates inflammatory pain via peripheral adenosine 1 receptor activation. Sci Rep 2020; 10:14181. [PMID: 32843670 PMCID: PMC7447794 DOI: 10.1038/s41598-020-71073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Glial fibrillary acidic protein expressing (GFAP+) glia modulate nociceptive neuronal activity in both the peripheral nervous system (PNS) and the central nervous system (CNS). Resident GFAP+ glia in dorsal root ganglia (DRG) known as satellite glial cells (SGCs) potentiate neuronal activity by releasing pro-inflammatory cytokines and neuroactive compounds. In this study, we tested the hypothesis that SGC Gq-coupled receptor (Gq-GPCR) signaling modulates pain sensitivity in vivo using Gfap-hM3Dq mice. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and mechanical sensitivity and thermal sensitivity were used to assess the neuromodulatory effect of glial Gq-GPCR activation in awake mice. Pharmacogenetic activation of Gq-GPCR signaling in sensory SGCs decreased heat-induced nociceptive responses and reversed inflammation-induced mechanical allodynia via peripheral adenosine A1 receptor activation. These data reveal a previously unexplored role of sensory SGCs in decreasing afferent excitability. The identified molecular mechanism underlying the analgesic role of SGCs offers new approaches for reversing peripheral nociceptive sensitization.
Collapse
MESH Headings
- Animals
- Benzilates/pharmacology
- Clozapine/analogs & derivatives
- Clozapine/pharmacology
- Freund's Adjuvant/toxicity
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Genes, Synthetic
- Hot Temperature
- Hyperalgesia/physiopathology
- Hyperalgesia/prevention & control
- Inflammation/chemically induced
- Inflammation/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscarinic Agonists/pharmacology
- Neuroglia/enzymology
- Neuroglia/physiology
- Nociception/physiology
- Nortropanes/pharmacology
- Promoter Regions, Genetic
- Purinergic P1 Receptor Agonists/pharmacology
- Purinergic P1 Receptor Antagonists/pharmacology
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptors, G-Protein-Coupled
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/metabolism
- Theophylline/analogs & derivatives
- Theophylline/pharmacology
- Touch
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA.
- Division of Urology, Department of Surgery, University of Colorado Denver (UCD), Anschutz Medical Campus (AMC), 12700E 19th Ave., Room 6440D, Mail stop C317, Aurora, CO, 80045, USA.
- Department of Surgery, UCD-AMC, Aurora, CO, USA.
| | - Aric Madayag
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA
- NeuroCycle Therapeutics, Inc., 3829 N Cramer St., Shorewood, WI, 53211, USA
| | - Suzanne K Minton
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA
- Certara, 5511 Capital Center Drive, Ste. 204, Raleigh, NC, 27606, USA
| | - Ken D McCarthy
- Professor Emeritus in the Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 4010 Genetic Medicine Bldg, Campus Box 7365, Chapel Hill, NC, 27599-7365, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver (UCD), Anschutz Medical Campus (AMC), 12700E 19th Ave., Room 6440D, Mail stop C317, Aurora, CO, 80045, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12700 East 19th Ave., Rm 6001, Mail Stop C317, Aurora, CO, 80045, USA
| |
Collapse
|
39
|
Shinoda M, Hayashi Y, Kubo A, Iwata K. Pathophysiological mechanisms of persistent orofacial pain. J Oral Sci 2020; 62:131-135. [PMID: 32132329 DOI: 10.2334/josnusd.19-0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nociceptive stimuli to the orofacial region are typically received by the peripheral terminal of trigeminal ganglion (TG) neurons, and noxious orofacial information is subsequently conveyed to the trigeminal spinal subnucleus caudalis and the upper cervical spinal cord (C1-C2). This information is further transmitted to the cortical somatosensory regions and limbic system via the thalamus, which then leads to the perception of pain. It is a well-established fact that the presence of abnormal pain in the orofacial region is etiologically associated with neuroplastic changes that may occur at any point in the pain transmission pathway from the peripheral to the central nervous system (CNS). Recently, several studies have reported that functional plastic changes in a large number of cells, including TG neurons, glial cells (satellite cells, microglia, and astrocytes), and immune cells (macrophages and neutrophils), contribute to the sensitization and disinhibition of neurons in the peripheral and CNS, which results in orofacial pain hypersensitivity.
Collapse
Affiliation(s)
| | | | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
40
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
41
|
Martins DO, Marques DP, Venega RAG, Chacur M. Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immun Health 2020; 2:100040. [PMID: 34589831 PMCID: PMC8474295 DOI: 10.1016/j.bbih.2020.100040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic constriction injury (CCI) of infraorbital nerve (IoN) results in whisker pad mechanical allodynia in rats and activation glial cells contributing to the development of orofacial pain. Whisker pad mechanical allodynia (von Frey stimuli) was tested pre and postoperatively and conducted during the treatment time. Photobiomodulation (PBM) and vitamins B complex (VBC) has been demonstrated therapeutic efficacy in ameliorate neuropathic pain. The aim of this study was to evaluate the antinociceptive effect of PBM, VBC or the combined treatment VBC + PBM on orofacial pain due to CCI-IoN. Behavioral and molecular approaches were used to analyses nociception, cellular and neurochemical alterations. CCI-IoN caused mechanical allodynia and cellular alterations including increased expression of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba-1), administration of VBC (B1/B6/B12 at 180/180/1.8 mg/kg, s.c., 5 times all long 10 sessions) and PBM therapy (904 nm, power of 75Wpico, average power of 0.0434 W, pulse frequency of 9500 Hz, area of the beam 0.13 cm2, 18 s duration, energy density 6 J/cm2, with an energy per point of 0.78 J for 10 sessions) or their combination presented improvement of the nociceptive behavior and decreased expression of GFAP and Iba-1. Additionally, CCI-IoN rats exhibited an upregulation of IL1β, IL6 and TNF-α expression and all treatments prevented this upregulation and also increased IL10 expression. Overall, the present results highlight the pain reliever effect of VBC or PBM alone or in combination, through the modulation of glial cells and cytokines expression in the spinal trigeminal nucleus of rats.
Collapse
Affiliation(s)
- D O Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - D P Marques
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - R A G Venega
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - M Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| |
Collapse
|
42
|
Luo D, Luo L, Lin R, Lin L, Lin Q. Brain-derived neurotrophic factor and Glial cell line-derived neurotrophic factor expressions in the trigeminal root entry zone and trigeminal ganglion neurons of a trigeminal neuralgia rat model. Anat Rec (Hoboken) 2020; 303:3014-3023. [PMID: 31922368 DOI: 10.1002/ar.24364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Microvascular compression on the trigeminal root entry zone (TREZ) is the main etiology of trigeminal neuralgia (TN) patients. To investigate brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in the trigeminal ganglion (TG) and TREZ, immunofluorescence staining and Western blot were used in a rat TN model. Both BDNF and GDNF were observed in the TG neurons and TREZ. The expression of the BDNF dimer in the TG was increased in the TN group, while GDNF expression was decreased after compression injury. The BDNF dimer/pro-BDNF ratio in the TREZ of the TN group was higher than that in the sham group, but the GDNF expression in the TREZ was significantly lower than that in the sham group. These results suggested that compression injury in the TREZ of rats induced dynamic changes in BDNF and GDNF in both the TG and TREZ, and these changes are involved in the nociceptive transmission of the TN animal model.
Collapse
Affiliation(s)
- Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| | - Lili Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| | - Ling Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| |
Collapse
|
43
|
Matsuka Y, Afroz S, Dalanon JC, Iwasa T, Waskitho A, Oshima M. The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion. Neurosci Biobehav Rev 2020; 108:393-399. [DOI: 10.1016/j.neubiorev.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
|
44
|
Shinoda M, Kubo A, Hayashi Y, Iwata K. Peripheral and Central Mechanisms of Persistent Orofacial Pain. Front Neurosci 2019; 13:1227. [PMID: 31798407 PMCID: PMC6863776 DOI: 10.3389/fnins.2019.01227] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Neuroplastic changes in the neuronal networks involving the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1/C2) are considered the mechanisms underlying the ectopic orofacial hypersensitivity associated with trigeminal nerve injury or orofacial inflammation. It has been reported that peripheral nerve injury causes injury discharges in the TG neurons, and a barrage of action potentials is generated in TG neurons and conveyed to the Vc and C1/C2 after trigeminal nerve injury. Long after trigeminal nerve injury, various molecules are produced in the TG neurons, and these molecules are released from the soma of TG neurons and are transported to the central and peripheral terminals of TG neurons. These changes within the TG cause neuroplastic changes in TG neurons and they become sensitized. The neuronal activity of TG neurons is further accelerated, and Vc and C1/C2 neurons are also sensitized. In addition to this cascade, non-neuronal glial cells are also involved in the enhancement of the neuronal activity of TG, Vc, and C1/C2 neurons. Satellite glial cells and macrophages are activated in the TG after trigeminal nerve injury and orofacial inflammation. Microglial cells and astrocytes are also activated in the Vc and C1/C2 regions. It is considered that functional interaction between non-neuronal cells and neurons in the TG, Vc, and C1/C2 regions is a key mechanism involved in the enhancement of neuronal excitability after nerve injury or inflammation. In this article, the detailed mechanisms underlying ectopic orofacial hyperalgesia associated with trigeminal nerve injury and orofacial inflammation are addressed.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
45
|
Lin J, Zhang YY, Liu F, Fang XY, Liu MK, Huang CL, Wang H, Liao DQ, Zhou C, Shen JF. The P2Y 14 receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain. Neurochem Int 2019; 131:104567. [PMID: 31586590 DOI: 10.1016/j.neuint.2019.104567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
P2Y purinergic receptors expressed in neurons and satellite glial cells (SGCs) of the trigeminal ganglion (TG) contribute to inflammatory and neuropathic pain. P2Y14 receptor expression is reported in the spinal cord, dorsal root ganglion (DRG), and TG. In present study, the role of P2Y14 receptor in the TG in inflammatory orofacial pain of Sprague-Dawley (SD) rats was investigated. Peripheral injection of complete Freund's adjuvant (CFA) induced mechanical hyperalgesia with the rapid upregulation of P2Y14 receptor, glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), C-C chemokine CCL2, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated p38 (p-p38) proteins in the TG. Furthermore, immunofluorescence staining confirmed the CFA-induced upregulation of P2Y14 receptor. Double immunostaining showed that P2Y14 receptor colocalized with glutamine synthetase (GS) and neuronal nuclei (NeuN). Finally, trigeminal injection of a selective antagonist (PPTN) of P2Y14 receptor attenuated CFA-induced mechanical hyperalgesia. PPTN also decreased the upregulation of the GFAP, IL-1β, TNF-α, CCL2, p-ERK1/2, and p-p38 proteins. Our findings showed that P2Y14 receptor in TG may contribute to orofacial inflammatory pain via regulating SGCs activation, releasing cytokines (IL-1β, TNF-α, and CCL2), and phosphorylating ERK1/2 and p38.
Collapse
Affiliation(s)
- Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin-Yi Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Da-Qing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Krishnan A, Bhavanam S, Zochodne D. An Intimate Role for Adult Dorsal Root Ganglia Resident Cycling Cells in the Generation of Local Macrophages and Satellite Glial Cells. J Neuropathol Exp Neurol 2019; 77:929-941. [PMID: 30169768 DOI: 10.1093/jnen/nly072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The intricate interactions between neurons, glial, and inflammatory cells within peripheral ganglia are physiologically important, but not well explored. Here, we show that adult dorsal root ganglia (DRG) contain populations of self-renewing cells, collectively referred as DRG resident cycling cells (DRCCs), that are active not only in "quiescent" ganglia but also accelerate their turnover in response to distal axotomy. An unexpected proportion of DRCCs were resident macrophages. These cells closely accompanied, and aligned with recycling satellite glial cells (SGCs) that were juxtaposed to sensory neurons and possessed stem cell-like properties. Selective inhibition of colony stimulating factor 1 receptor prevented the local proliferation of macrophages. Interestingly, DRCC turnover was accompanied by apoptosis at later intervals indicating a balanced cellular milieu in the DRGs. These findings identify a complex interactive multicellular DRG microenvironment supporting self-renewal of both macrophages and SGCs and its potential implications in the overall response of adult DRGs to injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Neuroscience and Mental Health Institute.,Division of Neurology, Department of Medicine.,Alberta Diabetes Institute
| | - Sudha Bhavanam
- Division of Laboratory Medicine and Pathology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas Zochodne
- Neuroscience and Mental Health Institute.,Division of Neurology, Department of Medicine.,Alberta Diabetes Institute
| |
Collapse
|
47
|
Zhang Q, Zhao J, Shen J, Zhang X, Ren R, Ma Z, He Y, Kang Q, Wang Y, Dong X, Sun J, Liu Z, Yi X. The ATP-P2X7 Signaling Pathway Participates in the Regulation of Slit1 Expression in Satellite Glial Cells. Front Cell Neurosci 2019; 13:420. [PMID: 31607866 PMCID: PMC6761959 DOI: 10.3389/fncel.2019.00420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022] Open
Abstract
Slit1 is one of the known signaling factors of the slit family and can promote neurite growth by binding to its receptor, Robo2. Upregulation of Slit1 expression in dorsal root ganglia (DRG) after peripheral nerve injury plays an important role in nerve regeneration. Each sensory neuronal soma in the DRG is encapsulated by several surrounding satellite glial cells (SGCs) to form a neural structural unit. However, the temporal and spatial patterns of Slit1 upregulation in SGCs in DRG and its molecular mechanisms are not well understood. This study examined the spatial and temporal patterns of Slit1 expression in DRG after sciatic nerve crush by immunohistochemistry and western blotting. The effect of neuronal damage signaling on the expression of Slit1 in SGCs was studied in vivo by fluorescent gold retrograde tracing and double immunofluorescence staining. The relationship between the expression of Slit1 in SGCs and neuronal somas was also observed by culturing DRG cells and double immunofluorescence labeling. The molecular mechanism of Slit1 was further explored by immunohistochemistry and western blotting after intraperitoneal injection of Bright Blue G (BBG, P2X7R inhibitor). The results showed that after peripheral nerve injury, the expression of Slit1 in the neurons and SGCs of DRG increased. The expression of Slit1 was presented with a time lag in SGCs than in neurons. The expression of Slit1 in SGCs was induced by contact with surrounding neuronal somas. Through injured cell localization, it was found that the expression of Slit1 was stronger in SGCs surrounding injured neurons than in SGCs surrounding non-injured neurons. The expression of vesicular nucleotide transporter (VNUT) in DRG neurons was increased by injury signaling. After the inhibition of P2X7R, the expression of Slit1 in SGCs was downregulated, and the expression of VNUT in DRG neurons was upregulated. These results indicate that the ATP-P2X7R pathway is involved in signal transduction from peripheral nerve injury to SGCs, leading to the upregulation of Slit1 expression.
Collapse
Affiliation(s)
- Quanpeng Zhang
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Jiuhong Zhao
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Jing Shen
- Department of Ophthalmology, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianfang Zhang
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Rui Ren
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Zhijian Ma
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Yuebin He
- Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Qian Kang
- Infection Control Department, People's Hospital of Xing'an County, Guilin, China
| | - Yanshan Wang
- Quality Inspection Department, Minghui Industry (Shenzhen) Co., Ltd., Shenzhen, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, China
| | - Jin Sun
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Zhuozhou Liu
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Xinan Yi
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| |
Collapse
|
48
|
Abstract
Permanent disabilities following CNS injuries result from the failure of injured axons to regenerate and rebuild functional connections with their original targets. By contrast, injury to peripheral nerves is followed by robust regeneration, which can lead to recovery of sensory and motor functions. This regenerative response requires the induction of widespread transcriptional and epigenetic changes in injured neurons. Considerable progress has been made in recent years in understanding how peripheral axon injury elicits these widespread changes through the coordinated actions of transcription factors, epigenetic modifiers and, to a lesser extent, microRNAs. Although many questions remain about the interplay between these mechanisms, these new findings provide important insights into the pivotal role of coordinated gene expression and chromatin remodelling in the neuronal response to injury.
Collapse
Affiliation(s)
- Marcus Mahar
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
49
|
Bista P, Imlach WL. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E91. [PMID: 31443547 PMCID: PMC6789505 DOI: 10.3390/medicines6030091] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Trigeminal neuropathic pain is a chronic pain condition caused by damage or inflammation of the trigeminal nerve or its branches, with both peripheral and central nervous system dysfunction contributing to the disorder. Trigeminal pain conditions present with diagnostic and therapeutic challenges to healthcare providers and often require multiple therapeutic approaches for pain reduction. This review will provide the overview of pathophysiology in peripheral and central nociceptive circuits that are involved in neuropathic pain conditions involving the trigeminal nerve and the current therapeutics that are used to treat these disorders. Recent advances in treatment of trigeminal pain, including novel therapeutics that target ion channels and receptors, gene therapy and monoclonal antibodies that have shown great promise in preclinical studies and clinical trials will also be described.
Collapse
Affiliation(s)
- Pawan Bista
- Department of Physiology & Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Wendy L Imlach
- Department of Physiology & Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
50
|
Iwata K, Shinoda M. Role of neuron and non-neuronal cell communication in persistent orofacial pain. J Dent Anesth Pain Med 2019; 19:77-82. [PMID: 31065589 PMCID: PMC6502764 DOI: 10.17245/jdapm.2019.19.2.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
It is well known that trigeminal nerve injury causes hyperexcitability in trigeminal ganglion neurons, which become sensitized. Long after trigeminal nerve damage, trigeminal spinal subnucleus caudalis and upper cervical spinal cord (C1/C2) nociceptive neurons become hyperactive and are sensitized, resulting in persistent orofacial pain. Communication between neurons and non-neuronal cells is believed to be involved in these mechanisms. In this article, the authors highlight several lines of evidence that neuron-glial cell and neuron macrophage communication have essential roles in persistent orofacial pain mechanisms associated with trigeminal nerve injury and/or orofacial inflammation.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|