1
|
Hung YW, Lu GL, Chen HH, Tung HH, Lee SL. Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex. Biomed Pharmacother 2023; 165:115270. [PMID: 37544280 DOI: 10.1016/j.biopha.2023.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Institute of Cellular and Systems Medicine, Taiwan, R.O.C
| | - Guan-Ling Lu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Maioli County, Taiwan, R.O.C
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Maioli County, Taiwan, R.O.C
| | - Hsiu-Hui Tung
- Institute of Cellular and Systems Medicine, Taiwan, R.O.C
| | - Sheau-Ling Lee
- Institute of Cellular and Systems Medicine, Taiwan, R.O.C; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
2
|
Boccazzi M, Raffaele S, Zanettin T, Abbracchio MP, Fumagalli M. Altered Purinergic Signaling in Neurodevelopmental Disorders: Focus on P2 Receptors. Biomolecules 2023; 13:biom13050856. [PMID: 37238724 DOI: 10.3390/biom13050856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
With the umbrella term 'neurodevelopmental disorders' (NDDs) we refer to a plethora of congenital pathological conditions generally connected with cognitive, social behavior, and sensory/motor alterations. Among the possible causes, gestational and perinatal insults have been demonstrated to interfere with the physiological processes necessary for the proper development of fetal brain cytoarchitecture and functionality. In recent years, several genetic disorders caused by mutations in key enzymes involved in purine metabolism have been associated with autism-like behavioral outcomes. Further analysis revealed dysregulated purine and pyrimidine levels in the biofluids of subjects with other NDDs. Moreover, the pharmacological blockade of specific purinergic pathways reversed the cognitive and behavioral defects caused by maternal immune activation, a validated and now extensively used rodent model for NDDs. Furthermore, Fragile X and Rett syndrome transgenic animal models as well as models of premature birth, have been successfully utilized to investigate purinergic signaling as a potential pharmacological target for these diseases. In this review, we examine results on the role of the P2 receptor signaling in the etiopathogenesis of NDDs. On this basis, we discuss how this evidence could be exploited to develop more receptor-specific ligands for future therapeutic interventions and novel prognostic markers for the early detection of these conditions.
Collapse
Affiliation(s)
- Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Thomas Zanettin
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
Mut-Arbona P, Sperlágh B. P2 receptor-mediated signaling in the physiological and pathological brain: From development to aging and disease. Neuropharmacology 2023; 233:109541. [PMID: 37062423 DOI: 10.1016/j.neuropharm.2023.109541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
The purinergic pathway mediates both pro-inflammatory and anti-inflammatory responses, whereas the breakdown of adenosine triphosphate (ATP) is in a critical equilibrium. Under physiological conditions, extracellular ATP is maintained at a nanomolar concentration. Whether released into the medium following tissue damage, inflammation, or hypoxia, ATP is considered a clear indicator of cell damage and a marker of pathological conditions. In this overview, we provide an update on the participation of P2 receptor-mediated purinergic signaling in normal and pathological brain development, with special emphasis on neurodevelopmental psychiatric disorders. Since purinergic signaling is ubiquitous, it is not surprising that it plays a prominent role in developmental processes and pathological alterations. The main aim of this review is to conceptualize the time-dependent dynamic changes in the participation of different players in the purinome in shaping the normal and aberrant developmental patterns and diseases of the central nervous system over one's lifespan.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Purinergic Receptor Blockade with Suramin Increases Survival of Postnatal Neural Progenitor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22020713. [PMID: 33445804 PMCID: PMC7828253 DOI: 10.3390/ijms22020713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Neural progenitor cells (NPCs) are self-renewing and multipotent cells that persist in the postnatal and adult brain in the subventricular zone and the hippocampus. NPCs can be expanded in vitro to be used in cell therapy. However, expansion is limited, since the survival and proliferation of adult NPCs decrease with serial passages. Many signaling pathways control NPC survival and renewal. Among these, purinergic receptor activation exerts differential effects on the biology of adult NPCs depending on the cellular context. In this study, we sought to analyze the effect of a general blockade of purinergic receptors with suramin on the proliferation and survival of NPCs isolated from the subventricular zone of postnatal rats, which are cultured as neurospheres. Treatment of neurospheres with suramin induced a significant increase in neurosphere diameter and in NPC number attributed to a decrease in apoptosis. Proliferation and multipotency were not affected. Suramin also induced an increase in the gap junction protein connexin43 and in vascular endothelial growth factor, which might be involved in the anti-apoptotic effect. Our results offer a valuable tool for increasing NPC survival before implantation in the lesioned brain and open the possibility of using this drug as adjunctive therapy to NPC transplantation.
Collapse
|
5
|
Vigo T, Voulgari-Kokota A, Errede M, Girolamo F, Ortolan J, Mariani MC, Ferrara G, Virgintino D, Buffo A, Kerlero de Rosbo N, Uccelli A. Mesenchymal stem cells instruct a beneficial phenotype in reactive astrocytes. Glia 2020; 69:1204-1215. [PMID: 33381863 DOI: 10.1002/glia.23958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Transplanted mesenchymal stromal/stem cells (MSC) ameliorate the clinical course of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), reducing inflammation and demyelination. These effects are mediated by instructive cross-talk between MSC and immune and neural cells. Astroglial reaction to injury is a prominent feature of both EAE and MS. Astrocytes constitute a relevant target to control disease onset and progression and, based on their potential to acquire stem cell properties in situ, to foster recovery in the post-acute phase of pathology. We have assessed how MSC impact astrocytes in vitro and ex vivo in EAE. Expression of astroglial factors implicated in EAE pathogenesis was quantified by real-time PCR in astrocytes co-cultured with MSC or isolated from EAE cerebral cortex; astrocyte morphology and expression of activation markers were analyzed by confocal microscopy. The acquisition of neural stem cell properties by astrocytes was evaluated by neurosphere assay. Our study shows that MSC prevented astrogliosis, reduced mRNA expression of inflammatory cytokines that sustain immune cell infiltration in EAE, as well as protein expression of endothelin-1, an astrocyte-derived factor that inhibits remyelination and contributes to neurodegeneration and disease progression in MS. Moreover, our data reveal that MSC promoted the acquisition of progenitor traits by astrocytes. These data indicate that MSC attenuate detrimental features of reactive astroglia and, based on the reacquisition of stem cell properties, also suggest that astrocytes may be empowered in their protective and reparative actions by MSC.
Collapse
Affiliation(s)
- Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Androniki Voulgari-Kokota
- Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari 'Aldo Moro', School of Medicine, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari 'Aldo Moro', School of Medicine, Bari, Italy
| | - Jasmin Ortolan
- Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | | | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari 'Aldo Moro', School of Medicine, Bari, Italy
| | - Annalisa Buffo
- Dipartimento di Neuroscienze Rita Levi Montalcini Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Demirler MC, Sakizli U, Bali B, Kocagöz Y, Eski SE, Ergönen A, Alkiraz AS, Bayramli X, Hassenklöver T, Manzini I, Fuss SH. Purinergic signalling selectively modulates maintenance but not repair neurogenesis in the zebrafish olfactory epithelium. FEBS J 2019; 287:2699-2722. [PMID: 31821713 DOI: 10.1111/febs.15170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/26/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Olfactory sensory neurons (OSNs) of the vertebrate olfactory epithelium (OE) undergo continuous turnover but also regenerate efficiently when the OE is acutely damaged by traumatic injury. Two distinct pools of neuronal stem/progenitor cells, the globose (GBCs), and horizontal basal cells (HBCs) have been shown to selectively contribute to intrinsic OSN turnover and damage-induced OE regeneration, respectively. For both types of progenitors, their rate of cell divisions and OSN production must match the actual loss of cells to maintain or to re-establish sensory function. However, signals that communicate between neurons or glia cells of the OE and resident neurogenic progenitors remain largely elusive. Here, we investigate the effect of purinergic signaling on cell proliferation and OSN neurogenesis in the zebrafish OE. Purine stimulation elicits transient Ca2+ signals in OSNs and distinct non-neuronal cell populations, which are located exclusively in the basal OE and stain positive for the neuronal stem cell marker Sox2. The more apical population of Sox2-positive cells comprises evenly distributed glia-like sustentacular cells (SCs) and spatially restricted GBC-like cells, whereas the more basal population expresses the HBC markers keratin 5 and tumor protein 63 and lines the entire sensory OE. Importantly, exogenous purine stimulation promotes P2 receptor-dependent mitotic activity and OSN generation from sites where GBCs are located but not from HBCs. We hypothesize that purine compounds released from dying OSNs modulate GBC progenitor cell cycling in a dose-dependent manner that is proportional to the number of dying OSNs and, thereby, ensures a constant pool of sensory neurons over time.
Collapse
Affiliation(s)
- Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Uğurcan Sakizli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Burak Bali
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Yiğit Kocagöz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Arda Ergönen
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Xalid Bayramli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
7
|
Magni G, Boccazzi M, Bodini A, Abbracchio MP, van den Maagdenberg AMJM, Ceruti S. Basal astrocyte and microglia activation in the central nervous system of Familial Hemiplegic Migraine Type I mice. Cephalalgia 2019; 39:1809-1817. [DOI: 10.1177/0333102419861710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Gain-of-function missense mutations in the α1A subunit of neuronal CaV2.1 channels, which define Familial Hemiplegic Migraine Type 1 (FHM1), result in enhanced cortical glutamatergic transmission and a higher susceptibility to cortical spreading depolarization. It is now well established that neurons signal to surrounding glial cells, namely astrocytes and microglia, in the central nervous system, which in turn become activated and in pathological conditions can sustain neuroinflammation. We and others previously demonstrated an increased activation of pro-algogenic pathways, paralleled by augmented macrophage infiltration, in both isolated trigeminal ganglia and mixed trigeminal ganglion neuron-satellite glial cell cultures of FHM1 mutant mice. Hence, we hypothesize that astrocyte and microglia activation may occur in parallel in the central nervous system. Methods We have evaluated signs of reactive glia in brains from naïve FHM1 mutant mice in comparison with wild type animals by immunohistochemistry and Western blotting. Results Here we show for the first time signs of reactive astrogliosis and microglia activation in the naïve FHM1 mutant mouse brain. Conclusions Our data reinforce the involvement of glial cells in migraine, and suggest that modulating such activation may represent an innovative approach to reduce pathology.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Antonella Bodini
- Institute for Applied Mathematics and Information Technologies “Enrico Magenes”, National Research Council, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Ribeiro DE, Glaser T, Oliveira-Giacomelli Á, Ulrich H. Purinergic receptors in neurogenic processes. Brain Res Bull 2018; 151:3-11. [PMID: 30593881 DOI: 10.1016/j.brainresbull.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Neurogenesis is a process of generating functional neurons, which occurs during embryonic and adult stages in mammals. While neurogenesis during development phase is characterized by intensive proliferation activity in all regions of the brain to form the architecture and neural function of the nervous system, adult neurogenesis occurs with less intensity in two brain regions and is involved in the maintenance of neurogenic niches, local repair, memory and cognitive functions in the hippocampus. Taking such differences into account, the understanding of molecular mechanisms involved in cell differentiation in developmental stages and maintenance of the nervous system is an important research target. Although embryonic and adult neurogenesis presents several differences, signaling through purinergic receptors participates in this process throughout life. For instance, while embryonic neurogenesis involves P2X7 receptor down-regulation and calcium waves triggered by P2Y1 receptor stimulation, adult neurogenesis may be enhanced by increased activity of A2A and P2Y1 receptors and impaired by A1, P2Y13 and P2X7 receptor stimulation.
Collapse
Affiliation(s)
- D E Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Á Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Roszek K, Wujak M. How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. J Cell Physiol 2018; 234:320-334. [PMID: 30078187 DOI: 10.1002/jcp.26904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wujak
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
10
|
Rozmer K, Gao P, Araújo MGL, Khan MT, Liu J, Rong W, Tang Y, Franke H, Krügel U, Fernandes MJS, Illes P. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus. Cereb Cortex 2018; 27:3568-3585. [PMID: 27341850 DOI: 10.1093/cercor/bhw178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits.
Collapse
Affiliation(s)
- Katalin Rozmer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Po Gao
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.,Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Michelle G L Araújo
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia da Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Muhammad Tahir Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Juan Liu
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.,Acupuncture and Tuina School, Chengdu University of TCM, 610075 Chengdu, China
| | - Weifang Rong
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, 610075 Chengdu, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Maria José S Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia da Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
11
|
Zhang J, Griemsmann S, Wu Z, Dobrowolski R, Willecke K, Theis M, Steinhäuser C, Bedner P. Connexin43, but not connexin30, contributes to adult neurogenesis in the dentate gyrus. Brain Res Bull 2018; 136:91-100. [DOI: 10.1016/j.brainresbull.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
12
|
Fumagalli M, Lecca D, Abbracchio MP, Ceruti S. Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Front Pharmacol 2017; 8:941. [PMID: 29375373 PMCID: PMC5770749 DOI: 10.3389/fphar.2017.00941] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a substantial body of evidence has emerged demonstrating that purine and pyrimidine synthesis and metabolism play major roles in controlling embryonic and fetal development and organogenesis. Dynamic and time-dependent changes in the expression of purine metabolizing enzymes (such as ectonucleotidases and adenosine deaminase) represent a key checkpoint for the correct sequential generation of the different signaling molecules, that in turn activate their specific membrane receptors. In neurodevelopment, Ca2+ release from radial glia mediated by P2Y1 purinergic receptors is fundamental to allow neuroblast migration along radial glia processes, and their correct positioning in the different layers of the developing neocortex. Moreover, ATP is involved in the development of synaptic transmission and contributes to the establishment of functional neuronal networks in the developing brain. Additionally, several purinergic receptors (spanning from adenosine to P2X and P2Y receptor subtypes) are differentially expressed by neural stem cells, depending on their maturation stage, and their activation tightly regulates cell proliferation and differentiation to either neurons or glial cells, as well as their correct colonization of the developing telencephalon. The purinergic control of neurodevelopment is not limited to prenatal life, but is maintained in postnatal life, when it plays fundamental roles in controlling oligodendrocyte maturation from precursors and their terminal differentiation to fully myelinating cells. Based on the above-mentioned and other literature evidence, it is now increasingly clear that any defect altering the tight regulation of purinergic transmission and of purine and pyrimidine metabolism during pre- and post-natal brain development may translate into functional deficits, which could be at the basis of severe pathologies characterized by mental retardation or other disturbances. This can occur either at the level of the recruitment and/or signaling of specific nucleotide or nucleoside receptors or through genetic alterations in key steps of the purine salvage pathway. In this review, we have provided a critical analysis of what is currently known on the pathophysiological role of purines and pyrimidines during brain development with the aim of unveiling new future strategies for pharmacological intervention in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Lecca D, Fumagalli M, Ceruti S, Abbracchio MP. Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0433. [PMID: 27377726 DOI: 10.1098/rstb.2015.0433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), during both brain and spinal cord development, purinergic and pyrimidinergic signalling molecules (ATP, UTP and adenosine) act synergistically with peptidic growth factors in regulating the synchronized proliferation and final specification of multipotent neural stem cells (NSCs) to neurons, astrocytes or oligodendrocytes, the myelin-forming cells. Some NSCs still persist throughout adulthood in both specific 'neurogenic' areas and in brain and spinal cord parenchyma, retaining the potentiality to generate all the three main types of adult CNS cells. Once CNS anatomical structures are defined, purinergic molecules participate in calcium-dependent neuron-to-glia communication and also control the behaviour of adult NSCs. After development, some purinergic mechanisms are silenced, but can be resumed after injury, suggesting a role for purinergic signalling in regeneration and self-repair also via the reactivation of adult NSCs. In this respect, at least three different types of adult NSCs participate in the response of the adult brain and spinal cord to insults: stem-like cells residing in classical neurogenic niches, in particular, in the ventricular-subventricular zone (V-SVZ), parenchymal oligodendrocyte precursor cells (OPCs, also known as NG2-glia) and parenchymal injury-activated astrocytes (reactive astrocytes). Here, we shall review and discuss the purinergic regulation of these three main adult NSCs, with particular focus on how and to what extent modulation of intracellular calcium levels by purinoceptors is mandatory to determine their survival, proliferation and final fate.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
14
|
Brown AG, Tulina NM, Barila GO, Hester MS, Elovitz MA. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse. PLoS One 2017; 12:e0186656. [PMID: 29049352 PMCID: PMC5648237 DOI: 10.1371/journal.pone.0186656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain. METHODS CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam) or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group). Postnatal brains were collected on day of life 1 (n = 6/group/sex). Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.). Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex. RESULTS/CONCLUSIONS Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo) xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique profiles existed. Neonatal pups exposed to intrauterine inflammation have significant alterations in their lipid metabolites, in particular, fatty acids. These sex-specific metabolic changes within the newborn brain offer an explanation regarding the sexual dimorphism of certain psychiatric and neurobehavioral disorders associated with exposure to prenatal inflammation.
Collapse
Affiliation(s)
- Amy G. Brown
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Natalia M. Tulina
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guillermo O. Barila
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Hester
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
16
|
Shi W, Huang C, Xu X, Jin G, Huang R, Huang J, Chen Y, Ju S, Wang Y, Shi Y, Qin J, Zhang Y, Liu Q, Wang X, Zhang X, Chen J. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomater 2016; 45:247-261. [PMID: 27592818 DOI: 10.1016/j.actbio.2016.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
Abstract
Due to the poor self-regeneration of brain tissue, stem cell transplantation therapy is purported to enable the replacement of lost neurons after traumatic brain injury (TBI). The main challenge of brain regeneration is whether the transplanted cells can survive and carry out neuronal functions in the lesion area. The brain is a complex neuronal network consisting of various types of cells that significantly influence on each other, and the survival of the implanted stem cells in brain is critically influenced by the surrounding cells. Although stem cell-based therapy is developing rapidly, most previous studies just focus on apply single type of stem cells as cell source. Here, we found that co-culturing human umbilical cord mesenchymal stem cells (hUC-MSCs) directly with the activated astrocytes benefited to the proliferation and neuron differentiation of hUC-MSCs in vitro. In this study, hUC-MSCs and the activated astrocytes were seeded in RADA16-BDNF peptide scaffold (R-B-SPH scaffold), a specifical self-assembling peptide hydrogel, in which the environment promoted the differentiation of typical neuron-like cells with neurites extending in three-dimensional directions. Moreover, the results showed co-culture of hUC-MSCs and activated astrocytes promoted more BDNF secretion which may benefit to both neural differentiation of ectogenic hUC-MSCs and endogenic neurogenesis. In order to promote migration of the transplanted hUC-MSCs to the host brain, the hUC-MSCs were forced with CXC chemokine receptor 4 (CXCR4). We found that the moderate-sized lesion cavity, but not the large cavity caused by TBI was repaired via the transplantation of hUC-MSCsCXCR4 and activated astrocytes embedded in R-B-SPH scaffolds. The functional neural repair for TBI demonstrated in this study is mainly due to the transplantation system of double cells, hUC-MSCs and activated astrocytes. We believe that this novel cell transplantation system offers a promising treatment option for cell replacement therapy for TBI. STATEMENT OF SIGNIFICANCE In this reach, we specifically linked RGIDKRHWNSQ, a functional peptide derived from BDNF, to the C-terminal of RADARADARADARADA (RADA16) to structure a functional self-assembling peptide hydrogel scaffold, RADA16-BDNF (R-B-SPH scaffold) for the better transplantation of the double cell unit. Also, the novel scaffold was used as cell-carrier for transplantation double cell unit (hUC-MSCs/astrocyte) for treating traumatic brain injury. The results of this study showing that R-B-SPH scaffold was pliancy and flexibility to fit the brain lesion cavity and promotes the outgrowth of axons and dendrites of the neurons derived from hUC-MSCs in vitro and in vivo, indicating the 3D R-B-SPH scaffold provided a suitable microenvironment for hUC-MSC survival, proliferation and differentiation. Also, our results showing the double-cells transplantation system (hUC-MSCs/astrocyte) may be a novel cell-based therapeutic strategy for neuroregeneration after TBI with potential value for clinical application.
Collapse
|
17
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
18
|
Czarnecka J, Porowińska D, Bajek A, Hołysz M, Roszek K. Neurogenic Differentiation of Mesenchymal Stem Cells Induces Alterations in Extracellular Nucleotides Metabolism. J Cell Biochem 2016; 118:478-486. [PMID: 27472650 DOI: 10.1002/jcb.25664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023]
Abstract
The presented results show for the first time that the neurogenic transdifferentiation of hUC-MSCs considerably changes the elements of purinergic signaling profile. Although, it has been demonstrated in the literature that extracellular nucleotides and nucleosides determine the fate of mesenchymal and neural stem cells, there is lack of comprehensive studies on the activity of ecto-enzymes metabolizing nucleotides on the surface of neurogenically induced cells. Our study shows that human UC-MSCs sense the microenvironment and adjust their response to the environmental signals for example, adenine nucleotides and nucleosides. Nucleotides, and not adenosine, signaling alters the biological potential of MSCs-decreases their proliferation rate, increases the neurogenic transdifferentiation efficiency expressed as the number of positively labeled NCAM+ and A2B5+ cells and simultaneously increases the ecto-nucleotidases activity on neural- and glial-committed precursors. Purines implication in the proliferative and neurogenic potential of hUC-MSCs is of strong importance for the in vitro propagation of hUC-MSCs and for their successive therapeutic applications. J. Cell. Biochem. 118: 478-486, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Karol Marcinkowski Medical University, Poznan, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
19
|
A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro. Purinergic Signal 2016; 12:661-672. [PMID: 27544384 DOI: 10.1007/s11302-016-9530-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to "hybrid" cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells' neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal "druggable" target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.
Collapse
|
20
|
Roszek K, Makowska N, Czarnecka J, Porowińska D, Dąbrowski M, Danielewska J, Nowak W. Canine Adipose-Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications. J Cell Biochem 2016; 118:58-65. [PMID: 27225588 DOI: 10.1002/jcb.25610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
The presented results evidence that canine adipose-derived stem cells (ADSCs) represent the premature population of stem cells with great biological potential and properties. ADCS are easy to obtain and culture, able to differentiate into the neurogenic lineage as well as it is easy to control their proliferation rate with nucleotides and nucleosides or analogues. We report that in vitro cultured canine ADSCs response to adenosine- and ATP-mediated stimulation. Differences in canine ADSCs and human mesenchymal stem cells in ecto-nucleotidase activity have been observed. The ecto-nucleotidase activity changes during ADSCs in vitro transdifferentiation into neurogenic lineage are fast and simple to analyze. Therefore, the simple analysis of ecto-enzymes activity allows for verification of the stem cells quality: their stemness or initiation of the differentiation process. The biological potential of the cells isolated from canine fat, as well as the good quality control of this cell culture, make them a promising tool for both experimental and therapeutic usage. J. Cell. Biochem. 118: 58-65, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Noemi Makowska
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Joanna Czarnecka
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Dąbrowski
- Faculty of Physics, Astronomy and Computer Science, Department of Biophysics and Medical Physics, Institute of Physics, Nicolaus Copernicus University, Torun, Poland.,Faculty of Biology and Environment Protection, Department of Biophysics, Nicolaus Copernicus University, Torun, Poland
| | | | - Wiesław Nowak
- Faculty of Physics, Astronomy and Computer Science, Department of Biophysics and Medical Physics, Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
21
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
22
|
Zhang L, Han X, Cheng X, Tan XF, Zhao HY, Zhang XH. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regen Res 2016; 11:597-603. [PMID: 27212920 PMCID: PMC4870916 DOI: 10.4103/1673-5374.180744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Feng Tan
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
23
|
Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury. Neural Plast 2016; 2016:1347987. [PMID: 27274873 PMCID: PMC4870378 DOI: 10.1155/2016/1347987] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a widespread epidemic with severe cognitive, affective, and behavioral consequences. TBIs typically result in a relatively rapid inflammatory and neuroinflammatory response. A major component of the neuroinflammatory response is astrocytes, a type of glial cell in the brain. Astrocytes are important in maintaining the integrity of neuronal functioning, and it is possible that astrocyte hypertrophy after TBIs might contribute to pathogenesis. The hippocampus is a unique brain region, because neurogenesis persists in adults. Accumulating evidence supports the functional importance of these newborn neurons and their associated astrocytes. Alterations to either of these cell types can influence neuronal functioning. To determine if hypertrophied astrocytes might negatively influence immature neurons in the dentate gyrus, astrocyte and newborn neurons were analyzed at 30 days following a TBI in mice. The results demonstrate a loss of radial glial-like processes extending through the granule cell layer after TBI, as well as ectopic growth and migration of immature dentate neurons. The results further show newborn neurons in close association with hypertrophied astrocytes, suggesting a role for the astrocytes in aberrant neurogenesis. Future studies are needed to determine the functional significance of these alterations to the astrocyte/immature neurons after TBI.
Collapse
|
24
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
25
|
Purines in neurite growth and astroglia activation. Neuropharmacology 2015; 104:255-71. [PMID: 26498067 DOI: 10.1016/j.neuropharm.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
26
|
Oliveira Á, Illes P, Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 2015; 104:272-81. [PMID: 26456352 DOI: 10.1016/j.neuropharm.2015.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/14/2023]
Abstract
ATP (adenosine 5'-triphosphate), one of the most ancient neurotransmitters, exerts essential functions in the brain, including neurotransmission and modulation of synaptic activity. Moreover, this nucleotide has been attributed with trophic properties and experimental evidence points to the participation of ATP-activated P2X and P2Y purinergic receptors in embryonic brain development as well as in adult neurogenesis for maintenance of normal brain functions and neuroregeneration upon brain injury. We discuss here the available data on purinergic P2 receptor expression and function during brain development and in the neurogenic zones of the adult brain, as well as the insights based on the use of in vitro stem cell cultures. While several P2 receptor subtypes were shown to be expressed during in vitro and in vivo neurogenesis, specific functions have been proposed for P2Y1, P2Y2 metabotropic as well as P2X2 ionotropic receptors to promote neurogenesis. Further, the P2X7 receptor is suggested to function in the maintenance of pools of neural stem and progenitor cells through induction of proliferation or cell death, depending on the microenvironment. Pathophysiological actions have been proposed for this receptor in worsening damage in brain disease. The P2X7 receptor and possibly additional P2 receptor subtypes have been implicated in pathophysiology of neurological diseases including Parkinson's disease, Alzheimer's disease and epilepsy. New strategies in cell therapy could involve modulation of purinergic signaling, either in the achievement of more effective protocols to obtain viable and homogeneous cell populations or in the process of functional engraftment of transplanted cells into the damaged brain. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ágatha Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie der Universität Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil.
| |
Collapse
|
27
|
Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 2015; 33:253-64. [PMID: 25205248 DOI: 10.1002/stem.1846] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
Abstract
Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.
Collapse
Affiliation(s)
- Kristine Gampe
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cavaliere F, Donno C, D'Ambrosi N. Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 2015; 9:211. [PMID: 26082684 PMCID: PMC4451364 DOI: 10.3389/fncel.2015.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/16/2015] [Indexed: 01/25/2023] Open
Abstract
Extracellular ATP, related nucleotides and adenosine are among the earliest signaling molecules, operating in virtually all tissues and cells. Through their specific receptors, namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide array of physiological effects ranging from neurotransmission and muscle contraction to endocrine secretion, vasodilation, immune response, and fertility. The purinergic system also participates in the proliferation and differentiation of stem cells from different niches. In particular, both mesenchymal stem cells (MSCs) and neural stem cells are endowed with several purinergic receptors and ecto-nucleotide metabolizing enzymes, and release extracellular purines that mediate autocrine and paracrine growth/proliferation, pro- or anti-apoptotic processes, differentiation-promoting effects and immunomodulatory actions. Here, we discuss the often opposing roles played by ATP and adenosine in adult neurogenesis in both physiological and pathological conditions, as well as in adipogenic and osteogenic MSC differentiation. We also focus on how purinergic ligands produced and released by transplanted stem cells can be regarded as ideal candidates to mediate the crosstalk with resident stem cell niches, promoting cell growth and survival, regulating inflammation and, therefore, contributing to local tissue homeostasis and repair.
Collapse
Affiliation(s)
- Fabio Cavaliere
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED and University of Basque Country, Leioa Spain
| | - Claudia Donno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| | - Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| |
Collapse
|
29
|
Heine C, Sygnecka K, Scherf N, Grohmann M, Bräsigk A, Franke H. P2Y(1) receptor mediated neuronal fibre outgrowth in organotypic brain slice co-cultures. Neuropharmacology 2015; 93:252-66. [PMID: 25683778 DOI: 10.1016/j.neuropharm.2015.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/16/2022]
Abstract
Extracellular purines have multiple functional roles in development, plastic remodelling, and regeneration of the CNS by stimulating certain P2X/Y receptor (R) subtypes. In the present study we elucidated the involvement of P2YRs in neuronal fibre outgrowth in the developing nervous system. We particularly focused on the P2Y1R subtype and the dopaminergic system, respectively. For this purpose, we used organotypic slice co-cultures consisting of the ventral tegmental area/substantia nigra (VTA/SN) and the prefrontal cortex (PFC). After detecting the presence of the P2Y1R in VTA/SN, PFC, and on outgrowing fibres in the border region (e.g. on glial processes) connecting both brain slices, we could show that pharmacological modulation of the receptor influenced neuronal fibre outgrowth. Biocytin-tracing and tyrosine hydroxylase-immunolabelling together with quantitative image analysis revealed a significant increase in fibre growth in the border region of the co-cultures after treatment with ADPβS (P2Y1,12,13R agonist). The observed stimulatory potential of ADPβS was inhibited by pre-treatment with the P2X/YR antagonist PPADS. In P2Y1R knockout (P2Y1R(-/-)) mice, the ADPβS-induced stimulatory effect was absent, while growth was significantly enhanced in the co-cultures of the respective wild-type. This observation was confirmed in entorhino-hippocampal co-cultures, an example of a different projection system, expressing the P2Y1R. Using wortmannin and PD98059 we further showed that PI3K/Akt and MAPK/ERK cascades are involved in the mechanism underlying ADPβS-induced fibre growth. In conclusion, the data of this study clearly indicate that activation of the P2Y1R stimulates fibre growth and thereby emphasises the general role of this particular receptor subtype during development and regeneration.
Collapse
Affiliation(s)
- Claudia Heine
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Katja Sygnecka
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Nico Scherf
- Institute for Medical Informatics and Biometry (IMB), Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Marcus Grohmann
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Annett Bräsigk
- Centre for Biotechnology and Biomedicine (BBZ), Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
30
|
NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation. Purinergic Signal 2014; 11:155-60. [PMID: 25504514 DOI: 10.1007/s11302-014-9440-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Eye formation in vertebrates is controlled by a conserved pattern of molecular networks. Homeobox transcription factors are crucially involved in the establishment and maintenance of the retina. A previous study of Massé et al. (Nature, 449: 1058-62, 2007) using morpholino knockdown identified the ectonucleotidase NTPDase2 and the P2Y1 receptor as essential elements for eye formation in embryos of the clawed frog Xenopus laevis. In order to investigate whether a similarly essential mechanism would be active in mammalian eye development, we analyzed mice KO for Entpd2 or P2ry1 as well as double KO for Entpd2/P2ry1. These mice developed normal eyes. In order to identify potential deficits in the molecular identity or in the arrangement of the cellular elements of the retina, we performed an immunohistological analysis using a variety of retinal markers. The analysis of single and double KO mice demonstrated that NTPDase2 and P2Y1 receptors are not required for murine eye formation, as previously shown for eye development in Xenopus laevis.
Collapse
|
31
|
The purinergic system and glial cells: emerging costars in nociception. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495789. [PMID: 25276794 PMCID: PMC4168030 DOI: 10.1155/2014/495789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022]
Abstract
It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.
Collapse
|