1
|
Montilla A, Zabala A, Calvo I, Bosch-Juan M, Tomé-Velasco I, Mata P, Koster M, Sierra A, Kooistra SM, Soria FN, Eggen BJL, Fresnedo O, Fernández JA, Tepavcevic V, Matute C, Domercq M. Microglia regulate myelin clearance and cholesterol metabolism after demyelination via interferon regulatory factor 5. Cell Mol Life Sci 2025; 82:131. [PMID: 40137979 PMCID: PMC11947375 DOI: 10.1007/s00018-025-05648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025]
Abstract
Interferon regulatory factor 5 (IRF5) is a transcription factor that plays a role in orchestrating innate immune responses, particularly in response to viral infections. Notably, IRF5 has been identified as a microglia risk gene linked to multiple sclerosis (MS), but its specific role in MS pathogenesis remains unclear. Through the use of Irf5-/- mice, our study uncovers a non-canonical function of IRF5 in MS recovery. Irf5-/- mice exhibited increased damage in an experimental autoimmune encephalomyelitis (EAE) model and demonstrated impaired oligodendrocyte recruitment into the lesion core following lysolecithin-induced demyelination. Transcriptomic and lipidomic analyses revealed that IRF5 has a role in microglia-mediated myelin phagocytosis, lipid metabolism, and cholesterol homeostasis. Indeed, Irf5-/- microglia phagocytose myelin, but myelin debris is not adequately degraded, leading to an accumulation of lipid droplets, cholesterol esters, and cholesterol crystals within demyelinating lesions. This abnormal buildup can hinder remyelination processes. Importantly, treatments that promote cholesterol transport were found to reduce lipid droplet accumulation and mitigate the exacerbated damage in Irf5-/- mice with EAE. Altogether, our study identified the antiviral transcription factor IRF5 as a key transcriptional regulator of lipid degradation and cholesterol homeostasis and suggest that loss of IRF5 function leads to pathogenic lipid accumulation in microglia, thereby obstructing remyelination. These data and the fact that Irf5 polymorphisms are significantly associated with MS, highlight IRF5 as a potential therapeutic target to promote regenerative responses.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Faculty of Sciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Marina Bosch-Juan
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Irene Tomé-Velasco
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Paloma Mata
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Mirjam Koster
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Olatz Fresnedo
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - José Andrés Fernández
- Department of Physical Chemistry, Faculty of Sciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
| |
Collapse
|
2
|
Sugihara R, Taneike M, Murakawa T, Tamai T, Ueda H, Kitazume-Taneike R, Oka T, Akazawa Y, Nishida H, Mine K, Hioki A, Omi J, Omiya S, Aoki J, Ikeda K, Nishida K, Arita M, Yamaguchi O, Sakata Y, Otsu K. Lysophosphatidylserine induces necrosis in pressure overloaded male mouse hearts via G protein coupled receptor 34. Nat Commun 2023; 14:4494. [PMID: 37524709 PMCID: PMC10390482 DOI: 10.1038/s41467-023-40201-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Heart failure is a leading cause of mortality in developed countries. Cell death is a key player in the development of heart failure. Calcium-independent phospholipase A2β (iPLA2β) produces lipid mediators by catalyzing lipids and induces nuclear shrinkage in caspase-independent cell death. Here, we show that lysophosphatidylserine generated by iPLA2β induces necrotic cardiomyocyte death, as well as contractile dysfunction mediated through its receptor, G protein-coupled receptor 34 (GPR34). Cardiomyocyte-specific iPLA2β-deficient male mice were subjected to pressure overload. While control mice showed left ventricular systolic dysfunction with necrotic cardiomyocyte death, iPLA2β-deficient mice preserved cardiac function. Lipidomic analysis revealed a reduction of 18:0 lysophosphatidylserine in iPLA2β-deficient hearts. Knockdown of Gpr34 attenuated 18:0 lysophosphatidylserine-induced necrosis in neonatal male rat cardiomyocytes, while the ablation of Gpr34 in male mice reduced the development of pressure overload-induced cardiac remodeling. Thus, the iPLA2β-lysophosphatidylserine-GPR34-necrosis signaling axis plays a detrimental role in the heart in response to pressure overload.
Collapse
Affiliation(s)
- Ryuta Sugihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Taneike
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomokazu Murakawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahito Tamai
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Preventive Diagnostics, Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rika Kitazume-Taneike
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takafumi Oka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Akazawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Mine
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayana Hioki
- Preventive Diagnostics, Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK.
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
3
|
Ikubo M, Uwamizu A, Chen L, Nakamura S, Sayama M, Kawana H, Otani Y, Kano K, Inoue A, Aoki J, Ohwada T. Isosteric Replacement of Ester Linkage of Lysophospholipids with Heteroaromatic Rings Retains Potency and Subtype Selectivity. Chem Pharm Bull (Tokyo) 2023; 71:584-615. [PMID: 37394607 DOI: 10.1248/cpb.c23-00250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Our group has reported various derivatives of lysophosphatidylserine (LysoPS) as potent and subtype-selective agonists for G-protein-coupled receptors (GPCRs). However, the ester linkage between the glycerol moiety and fatty acid or fatty acid surrogate is present in all of them. In order to develop these LysoPS analogs as drug candidates, appropriate pharmacokinetic consideration is essential. Here, we found that the ester bond of LysoPS is highly susceptible to metabolic degradation in mouse blood. Accordingly, we examined isosteric replacement of the ester linkage with heteroaromatic rings. The resulting compounds showed excellent retention of potency and receptor subtype selectivity, as well as increased metabolic stability in vitro.
Collapse
Affiliation(s)
- Masaya Ikubo
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Sho Nakamura
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Misa Sayama
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
- AMED-PRIME, Japan Science and Technology Corporation
- AMED-LEAP, Japan Science and Technology Corporation
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
- AMED-LEAP, Japan Science and Technology Corporation
- AMED-CREST, Japan Science and Technology Corporation
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
4
|
Minamihata T, Takano K, Moriyama M, Nakamura Y. Lysophosphatidylinositol, an Endogenous Ligand for G Protein-Coupled Receptor 55, Has Anti-inflammatory Effects in Cultured Microglia. Inflammation 2021; 43:1971-1987. [PMID: 32519268 DOI: 10.1007/s10753-020-01271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lysophosphatidylinositol (LysoPI), an endogenous ligand for G protein-coupled receptor (GPR) 55, has been known to show various functions in several tissues and cells; however, its roles in the central nervous system (CNS) are not well known. In particular, the detailed effects of LysoPI on microglial inflammatory responses remain unknown. Microglia is the immune cell that has important functions in maintaining immune homeostasis of the CNS. In this study, we explored the effects of LysoPI on inflammatory responses using the mouse microglial cell line BV-2, which was stimulated with lipopolysaccharide (LPS), and some results were confirmed also in rat primary microglia. LysoPI was found to reduce LPS-induced nitric oxide (NO) production and inducible NO synthase protein expression without affecting cell viability in BV-2 cells. LysoPI also suppressed intracellular generation of reactive oxygen species both in BV-2 cells and primary microglia and cytokine release in BV-2 cells. In addition, LysoPI treatment decreased phagocytic activity of LPS-stimulated BV-2 cells and primary microglia. The GPR55 antagonist CID16020046 completely inhibited LysoPI-induced downregulation of phagocytosis in BV-2 microglia, but did not affect the LysoPI-induced decrease in NO production. Our results suggest that LysoPI suppresses microglial phagocytosis via a GPR55-dependent pathway and NO production via a GPR55-independent pathway. LysoPI may contribute to neuroprotection in pathological conditions such as brain injury or neurodegenerative diseases, through its suppressive role in the microglial inflammatory response.
Collapse
Affiliation(s)
- Tomoki Minamihata
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
5
|
Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, Osako F, Kobayashi M, Nishiyama A, Kataoka Y, Takai T, Udagawa N, Jung S, Ozato K, Tamura T, Tsuda M, Yamanaka K, Ogi T, Sato K, Kiyama H. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J 2020; 39:e104464. [PMID: 32959911 PMCID: PMC7667883 DOI: 10.15252/embj.2020104464] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Microglia are the principal phagocytes that clear cell debris in the central nervous system (CNS). This raises the question, which cells remove cell debris when microglial phagocytic activity is impaired. We addressed this question using Siglechdtr mice, which enable highly specific ablation of microglia. Non‐microglial mononuclear phagocytes, such as CNS‐associated macrophages and circulating inflammatory monocytes, did not clear microglial debris. Instead, astrocytes were activated, exhibited a pro‐inflammatory gene expression profile, and extended their processes to engulf microglial debris. This astrocytic phagocytosis was also observed in Irf8‐deficient mice, in which microglia were present but dysfunctional. RNA‐seq demonstrated that even in a healthy CNS, astrocytes express TAM phagocytic receptors, which were the main astrocytic phagocytic receptors for cell debris in the above experiments, indicating that astrocytes stand by in case of microglial impairment. This compensatory mechanism may be important for the maintenance or prolongation of a healthy CNS.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Okamoto
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumika Osako
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Keiko Ozato
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Morales I, Sanchez A, Puertas-Avendaño R, Rodriguez-Sabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia 2020; 68:2277-2299. [PMID: 32415886 DOI: 10.1002/glia.23839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Mitophagy is essential for the health of dopaminergic neurons because mitochondrial damage is a keystone of Parkinson's disease. The aim of the present work was to study the degradation of mitochondria in the degenerating dopaminergic synapse. Adult Sprague-Dawley rats and YFP-Mito-DAn mice with fluorescent mitochondria in dopaminergic neurons were injected in the lateral ventricles with 6-hydroxydopamine, a toxic that inhibits the mitochondrial chain of dopaminergic neurons and blockades the axonal transport. Dopaminergic terminals closest to the lateral ventricle showed an axonal fragmentation and an accumulation of damaged mitochondria in 2-9 μ saccular structures (spheroids). Damaged mitochondria accumulated in spheroids initiated (showing high Pink1, parkin, ubiquitin, p-S65-Ubi, AMBRA1, and BCL2L13 immunoreactivity and developing autophagosomes) but did not complete (mitochondria were not polyubiquitinated, autophagosomes had no STX17, and no lysosomes were found in spheroids) the mitophagy process. Then, spheroids were penetrated by astrocytic processes and DAergic mitochondria were transferred to astrocytes where they were polyubiquitinated (UbiK63+) and linked to mature autophagosomes (STX17+) which became autophagolysosomes (Lamp1/Lamp2 which co-localized with LC3). Present data provide evidence that the mitophagy of degenerating dopaminergic terminals starts in the dopaminergic spheroids and finishes in the surrounding astrocytes (spheroid-mediated transmitophagy). The neuron-astrocyte transmitophagy could be critical for preventing the release of damaged mitochondria to the extracellular medium and the neuro-inflammatory activity which characterizes Parkinson's disease.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | | | - Adrian Perez-Barreto
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
7
|
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J, Wake H. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 2019; 10:5816. [PMID: 31862977 PMCID: PMC6925219 DOI: 10.1038/s41467-019-13812-z] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood-brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions.
Collapse
Affiliation(s)
- Koichiro Haruwaka
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan
| | - Ako Ikegami
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Tochigi, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akari Hashimoto
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Kato
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Riho Ono
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew J Moorhouse
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan
| | - Hiroaki Wake
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
8
|
Ouyang Y, Li D, Wang H, Wan Z, Luo Q, Zhong Y, Yin M, Qing Z, Li Z, Bao B, Chen Z, Yin X, Zhu L. MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. Aging Cell 2019; 18:e13022. [PMID: 31400088 PMCID: PMC6826124 DOI: 10.1111/acel.13022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/04/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022] Open
Abstract
Intracerebral haemorrhage (ICH) is a severe neurological disorder caused by bleeding within the brain tissue. Inflammation has been implicated in ICH pathogenesis and is a potential therapeutic target for ICH. Haemin, an activator of haem oxygenase-1 (HO-1), rapidly increases HO-1 protein expression and activity and has been shown to distinctly affect anti-inflammatory functions after central nervous system (CNS) injury. However, less is known about the mechanisms that underlie the anti-inflammatory effects of haemin in aged rats post-ICH. Here, we performed microarray analysis to identify miRNAs that respond strongly to HO-1 regulation in ICH rats and found that miR-21-5p induced the most significant change. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) analysis, we focused on dual-specificity phosphatase 8 (DUSP8) from the predicted miR-21-5p targets. Luciferase reporter assays confirmed that miR-21-5p bound directly to DUSP8. MiR-21-5p upregulation in vitro downregulated DUSP8 expression. Importantly, intracerebroventricularly injecting antagomir for miR-21-5p (A-miR-21-5p), which was used to inhibit miR-21-5p in aged ICH rats, significantly reduced the neurological defects, repaired cognitive impairment, alleviated blood-brain barrier (BBB) permeability, inhibited neuronal apoptosis posthaemorrhage and accelerated haematoma absorption. In addition, serum miR-21-5p levels were notably elevated in patients relative to healthy individuals and were correlated with National Institutes of Health Stroke Scale (NIHSS) scores and clinical outcomes. In summary, A-miR-21-5p increased HO-1 expression in cerebral haematomas, thus eliciting the DUSP8-modulated perifocal neuroprotective effect of haemin. MiR-21-5p with haemin therapy may be a potential therapy post-ICH.
Collapse
Affiliation(s)
- Yetong Ouyang
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
- Center for Clinical Precision MedicineJiujiang UniversityJiujiangChina
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Dongling Li
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
- Center for Clinical Precision MedicineJiujiang UniversityJiujiangChina
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Han Wang
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhigang Wan
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qinghua Luo
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yuqin Zhong
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Min Yin
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhengfang Qing
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhengyu Li
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bing Bao
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangChina
- Center for Clinical Precision MedicineJiujiang UniversityJiujiangChina
| | - Ling‐Qiang Zhu
- Department of Pathophysiology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Zhao X, Liao Y, Morgan S, Mathur R, Feustel P, Mazurkiewicz J, Qian J, Chang J, Mathern GW, Adamo MA, Ritaccio AL, Gruenthal M, Zhu X, Huang Y. Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy. Cell Rep 2019; 22:2080-2093. [PMID: 29466735 PMCID: PMC5880308 DOI: 10.1016/j.celrep.2018.02.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/27/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022] Open
Abstract
Microglia are well known to play a critical role in maintaining brain homeostasis. However, their role in epileptogenesis has yet to be determined. Here, we demonstrate that elevated mTOR signaling in mouse microglia leads to phenotypic changes, including an amoeboid-like morphology, increased proliferation, and robust phagocytosis activity, but without a significant induction of pro-inflammatory cytokines. We further provide evidence that these noninflammatory changes in microglia disrupt homeostasis of the CNS, leading to reduced synapse density, marked microglial infiltration into hippocampal pyramidal layers, moderate neuronal degeneration, and massive proliferation of astrocytes. Moreover, the mice thus affected develop severe early-onset spontaneous recurrent seizures (SRSs). Therefore, we have revealed an epileptogenic mechanism that is independent of the microglial inflammatory response. Our data suggest that microglia could be an opportune target for epilepsy prevention.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Yuan Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Shannon Morgan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Ramkumar Mathur
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Joseph Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, NY 12208, USA
| | - Julia Chang
- Department of Neurosurgery, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gary W Mathern
- Department of Neurosurgery, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY 12208, USA
| | | | - Michael Gruenthal
- Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| | - Xinjun Zhu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Yunfei Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
10
|
Sayo A, Konishi H, Kobayashi M, Kano K, Kobayashi H, Hibi H, Aoki J, Kiyama H. GPR34 in spinal microglia exacerbates neuropathic pain in mice. J Neuroinflammation 2019; 16:82. [PMID: 30975169 PMCID: PMC6458787 DOI: 10.1186/s12974-019-1458-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neuropathic pain is caused by sensory nerve injury, but effective treatments are currently lacking. Microglia are activated in the spinal dorsal horn after sensory nerve injury and contribute to neuropathic pain. Accordingly, molecules expressed by these cells are considered potential targets for therapeutic strategies. Our previous gene screening study using a mouse model of motor nerve injury showed that the G-protein-coupled receptor 34 gene (GPR34) is induced by nerve injury. Because GPR34 is now considered a microglia-enriched gene, we explored the possibility that it might be involved in microglial activation in the dorsal horn in a mouse model of neuropathic pain. Methods mRNA expression of GPR34 and pro-inflammatory molecules was determined by quantitative real-time PCR in wild-type and GPR34-deficient mice with L4 spinal nerve injury. In situ hybridization was used to identify GPR34 expression in microglia, and immunohistochemistry with the microglial marker Iba1 was performed to examine microglial numbers and morphology. Mechanical sensitivity was evaluated by the von Frey hair test. Liquid chromatography–tandem mass spectrometry quantified expression of the ligand for GPR34, lysophosphatidylserine (LysoPS), in the dorsal horn, and a GPR34 antagonist was intrathecally administrated to examine the effect of inhibiting LysoPS-GPR34 signaling on mechanical sensitivity. Results GPR34 was predominantly expressed by microglia in the dorsal horn after L4 nerve injury. There were no histological differences in microglial numbers or morphology between WT and GPR34-deficient mice. However, nerve injury-induced pro-inflammatory cytokine expression levels in microglia and pain behaviors were significantly attenuated in GPR34-deficient mice. Furthermore, the intrathecal administration of the GPR34 antagonist reduced neuropathic pain. Conclusions Inhibition of GPR34-mediated signal by GPR34 gene deletion reduced nerve injury-induced neuropathic pain by suppressing pro-inflammatory responses of microglia without affecting their morphology. Therefore, the suppression of GPR34 activity may have therapeutic potential for alleviating neuropathic pain. Electronic supplementary material The online version of this article (10.1186/s12974-019-1458-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Sayo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kuniyuki Kano
- Department of Molecular and Cellular Biochemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
11
|
Kawana H, Kano K, Shindou H, Inoue A, Shimizu T, Aoki J. An accurate and versatile method for determining the acyl group-introducing position of lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1053-1060. [PMID: 30853650 DOI: 10.1016/j.bbalip.2019.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/02/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
Lysophospholipid acyltransferases (LPLATs) incorporate a fatty acid into the hydroxyl group of lysophospholipids (LPLs) and are critical for determining the fatty acid composition of phospholipids. Previous studies have focused mainly on their molecular identification and their substrate specificity regarding the polar head groups and acyl-CoAs. However, little is known about the positional specificity of the hydroxyl group of the glycerol backbone (sn-2 or sn-1) at which LPLATs introduce a fatty acid. This is mainly due to the instability of LPLs used as an acceptor, especially for LPLs with a fatty acid at the sn-2 position of the glycerol backbone (sn-2-LPLs), which are essential for the enzymatic assay to determine the positional specificity. In this study, we established a method to determine the positional specificity of LPLAT by preparing stable sn-2-LPLs in combination with PLA2 digestion, and applied the method for determining the positional specificity of several LPLATs including LPCAT1, LYCAT and LPCAT3. We found that LPCAT1 introduced palmitic acid both at the sn-1 and sn-2 positions of palmitoyl-LPC, while LYCAT and LPCAT3 specifically introduced stearic acid at the sn-1 position of LPG and arachidonic acid at the sn-2 position of LPC, respectively. The present method for evaluating the positional specificity could also be used for biochemical characterization of other LPLATs.
Collapse
Affiliation(s)
- Hiroki Kawana
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan; AMED-LEAP, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan; AMED-LEAP, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan; AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan; AMED-LEAP, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takao Shimizu
- AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan; Departments of Lipidomics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan; AMED-LEAP, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
12
|
Kita M, Ano Y, Inoue A, Aoki J. Identification of P2Y receptors involved in oleamide-suppressing inflammatory responses in murine microglia and human dendritic cells. Sci Rep 2019; 9:3135. [PMID: 30816271 PMCID: PMC6395661 DOI: 10.1038/s41598-019-40008-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Microglia, a type of immune cell in the central nervous system, are involved in inflammation leading to neurodegenerative diseases. We previously identified oleamide from fermented dairy products as a neuroprotective compound suppressing microglial inflammation. Oleamide is an endocannabinoid and displays anti-inflammatory activity via the cannabinoid-2 (CB2) receptor; however, the mechanism underlying this anti-inflammatory activity has not been fully elucidated. Here, we found that the suppressive effect of oleamide on microglial tumor necrosis factor-α (TNF-α) production was canceled by inhibitors of G-protein-coupled receptor (GPCR) downstream signaling but not by a CB2 antagonist, suggesting that GPCRs other than CB2 are involved in the anti-inflammatory effects of oleamide. An extensive screen for GPCRs using a transforming growth factor-α shedding assay system identified P2Y1, P2Y4, P2Y6, P2Y10, and P2Y11 as candidates for the oleamide target. P2Y1 and P2Y10 agonists suppressed microglial TNF-α production, while a pan P2 receptor antagonist canceled the suppressive effect. Furthermore, we observed a relationship between the P2Y1 agonistic activities and the suppressive activities of oleamide and its analogs. Taken together, our results suggest that, in addition to CB2, P2Y type receptors are the potential targets of oleamide, and P2Y1 plays a role in the suppression of microglial inflammatory responses by oleamide. (200/200 words)
Collapse
Affiliation(s)
- Masahiro Kita
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan.
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi, 980-8578, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi, 980-8578, Japan
| |
Collapse
|
13
|
Wu Y, Gao M, Wu J, Hu P, Xu X, Zhang Y, Wang D, Chen Z, Huang C. Sulforaphane triggers a functional elongation of microglial process via the Akt signal. J Nutr Biochem 2019; 67:51-62. [PMID: 30856464 DOI: 10.1016/j.jnutbio.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Microglia are a kind of innate immune cells in the nervous system. The amoeboid morphology in microglia indicates a pro-inflammatory status, while their ramified morphologies are associated with anti-neuroinflammation. Recently, we and others have reported that drugs that trigger microglial process elongation may be beneficial for neuroinflammation inhibition. In this study, we found that sulforaphane (SFN), a compound extracted from broccoli sprouts, promotes primary cultured microglial process elongation in both normal and pro-inflammatory conditions in a reversible manner. This pro-elongation effect of SFN was also observed in the prefrontal cortex in vivo and accompanied with an attenuation of pro-inflammatory response as well as an enhancement of anti-inflammatory response in primary cultured microglia. Mechanistic studies revealed that the SFN treatment increased Akt phosphorylation levels in primary cultured microglia and Akt inhibition blocked the effect of SFN on microglial process elongation, suggesting that the regulation of microglial process by SFN is mediated by Akt activation. Functional studies showed that Akt inhibition reversed the effect of SFN on both pro- and anti-inflammatory responses in lipopolysaccharide (LPS)-stimulated microglia. In an inflammation model in vivo, SFN pretreatment not only prevented LPS-induced retractions of microglial process in the prefrontal cortex, but improved LPS-induced behavioral abnormalities in mice, including the increase in immobility time in the tail suspension test and forced swim test as well as the decrease in sucrose preference. These results indicate that the SFN inhibits microglial activation and neuroinflammation-triggered behavioral abnormalities likely through triggering Akt-mediated microglial process elongation.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Minhui Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Peili Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Xing Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Yaru Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu Province, China 226001.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001.
| |
Collapse
|
14
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Wei L, Tokizane K, Konishi H, Yu HR, Kiyama H. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia. J Neuroinflammation 2017; 14:198. [PMID: 28974234 PMCID: PMC5627487 DOI: 10.1186/s12974-017-0970-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. Methods We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. Results 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. Conclusions GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.
Collapse
Affiliation(s)
- Li Wei
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,National Key Laboratory of Birth Defects and Reproductive Health, Chongqing Institute of Population and Family Planning, Chongqing, 400020, China.,College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Kyohei Tokizane
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hua-Rong Yu
- College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
16
|
Sayama M, Inoue A, Nakamura S, Jung S, Ikubo M, Otani Y, Uwamizu A, Kishi T, Makide K, Aoki J, Hirokawa T, Ohwada T. Probing the Hydrophobic Binding Pocket of G-Protein-Coupled Lysophosphatidylserine Receptor GPR34/LPS 1 by Docking-Aided Structure-Activity Analysis. J Med Chem 2017; 60:6384-6399. [PMID: 28715213 DOI: 10.1021/acs.jmedchem.7b00693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ligands of certain G-protein-coupled receptors (GPCRs) have been identified as endogenous lipids, such as lysophosphatidylserine (LysoPS). Here, we analyzed the molecular basis of the structure-activity relationship of ligands of GPR34, one of the LysoPS receptor subtypes, focusing on recognition of the long-chain fatty acid moiety by the hydrophobic pocket. By introducing benzene ring(s) into the fatty acid moiety of 2-deoxy-LysoPS, we explored the binding site's preference for the hydrophobic shape. A tribenzene-containing fatty acid surrogate with modifications of the terminal aromatic moiety showed potent agonistic activity toward GPR34. Computational docking of these derivatives with a homology modeling/molecular dynamics-based virtual binding site of GPR34 indicated that a kink in the benzene-based lipid surrogates matches the L-shaped hydrophobic pocket of GPR34. A tetrabenzene-based lipid analogue bearing a bulky tert-butyl group at the 4-position of the terminal benzene ring exhibited potent GPR34 agonistic activity, validating the present hydrophobic binding pocket model.
Collapse
Affiliation(s)
- Misa Sayama
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,PRESTO, Japan Science and Technology Agency (JST) , 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Sho Nakamura
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sejin Jung
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Ikubo
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Otani
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiharu Uwamizu
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Kishi
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kumiko Makide
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,PRESTO, Japan Science and Technology Agency (JST) , 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-CREST, Japan Agency for Medical Research and Development , 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center of Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba , 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|