1
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Xu W, Guo Y, Zhao L, Fu R, Qin X, Zhang Y, Cheng X, Xu S. The Aging Immune System: A Critical Attack on Ischemic Stroke. Mol Neurobiol 2025; 62:3322-3342. [PMID: 39271626 DOI: 10.1007/s12035-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke caused by cerebrovascular embolism is an age-related disease with high rates of disability and mortality. Although the mechanisms of immune and inflammatory development after stroke have been of great interest, most studies have neglected the critical and unavoidable factor of age. As the global aging trend intensifies, the number of stroke patients is constantly increasing, emphasizing the urgency of finding effective measures to address the needs of elderly stroke patients. The concept of "immunosenescence" appears to explain the worse stroke outcomes in older individuals. Immune remodeling due to aging involves dynamic changes at all levels of the immune system, and the overall consequences of central (brain-resident) and peripheral (non-brain-resident) immune cells in stroke vary according to the age of the individual. Lastly, the review outlines recent strategies aimed at immunosenescence to improve stroke prognosis.
Collapse
Affiliation(s)
- Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
3
|
El-Hakim Y, Mani KK, Pickle KA, Akbari Z, Samiya N, Pham C, Salas G, Pilla R, Sohrabji F. Peripheral, but not central, IGF-1 treatment attenuates stroke-induced cognitive impairment in middle-aged female Sprague Dawley rats: The gut as a therapeutic target. Brain Behav Immun 2024; 122:150-166. [PMID: 39142422 PMCID: PMC11972691 DOI: 10.1016/j.bbi.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Stroke results in immediate sensory or motor disability and increases the risk for long term cognitive-affective impairments. Thus, therapies are urgently needed to improve quality of life for stroke survivors, especially women who are at a greater risk for severe stroke after menopause. Most current research on stroke therapies target the central nervous system; however, stroke also impacts peripheral organ systems. Our studies using acyclic (estrogen-deficient) middle aged female Sprague Dawley rats show that this group not only displays worse outcomes after stroke as compared to adult females, but also has lower levels of the neuroprotective peptide Insulin-like Growth Factor (IGF1) in circulation. Intracerebroventricular (ICV) administration of IGF1 to this group decreases infarct volume and improves sensory motor performance in the acute phase. In this study, we show that, despite this neuroprotection, ICV-IGF1 did not reduce peripheral inflammation or improve post stroke cognitive impairment in the chronic phase. In view of the evidence that stroke induces rapid gut dysfunction, we tested whether systemic delivery of IGF1 (intraperitoneal, IP) would promote gut health and consequently improve long-term behavioral outcomes. Surprisingly, while IP-IGF1, delivered 4 h and 24 h after ischemic stroke, did not reduce infarct volume or acute sensory motor impairment, it significantly attenuated circulating levels of pro-inflammatory cytokines, and attenuated stroke-induced cognitive impairment. In addition, IP-IGF1 treatment reduced gut dysmorphology and gut dysbiosis. Our data support the conclusion that therapeutics targeting peripheral targets are critical for long-term stroke recovery, and that gut repair is a novel therapeutic target to improve brain health in aging females.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kaylin A Pickle
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Zara Akbari
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Chloe Pham
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Gianna Salas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine Texas A&M University, College Station, TX Brazos
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA.
| |
Collapse
|
4
|
Kim HR, Jeong JK, Young CN. Cellular Profile of Subfornical Organ Insulin Receptors in Mice. Biomolecules 2024; 14:1256. [PMID: 39456189 PMCID: PMC11506324 DOI: 10.3390/biom14101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Brain insulin receptor signaling is strongly implicated in cardiovascular and metabolic physiological regulation. In particular, we recently demonstrated that insulin receptors within the subfornical organ (SFO) play a tonic role in cardiovascular and metabolic regulation in mice. The SFO is a forebrain sensory circumventricular organ that regulates cardiometabolic homeostasis due to its direct exposure to the circulation and thus its ability to sense circulating factors, such as insulin. Previous work has demonstrated broad distribution of insulin receptor-expressing cells throughout the entire SFO, indirectly indicating insulin receptor expression in multiple cell types. Based on this, we sought to determine the cellular phenotypes that express insulin receptors within the SFO by combining immunohistochemistry with genetically modified reporter mouse models. Interestingly, SFO neurons, including both excitatory and inhibitory types, were the dominant cell site for insulin receptor expression, although a weak degree of insulin receptor expression was also detected in astrocytes. Moreover, SFO angiotensin type 1a receptor neurons also expressed insulin receptors. Collectively, these anatomical findings indicate the existence of potentially complex cellular networks within the SFO through which insulin signaling can influence physiology and further point to the SFO as a possible brain site for crosstalk between angiotensin-II and insulin.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.-R.K.); (J.-K.J.)
| |
Collapse
|
5
|
Peralta F, Vidal Escobedo AA, Hanotte JL, Avallone M, Björklund T, Reggiani PC, Pardo J. Preventive cognitive protection based on AAV9 overexpression of IGF1 in hippocampal astrocytes. Neurobiol Dis 2024; 200:106612. [PMID: 39032798 DOI: 10.1016/j.nbd.2024.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Astrocytes play key roles in the brain. When astrocyte support fails, neurological disorders follow, resulting in disrupted synaptic communication, neuronal degeneration, and cell death. We posit that astrocytes overexpressing neurotrophic factors, such as Insulin Like Growth Factor 1 (IGF1), prevent the onset of neurodegeneration. We overexpressed IGF1 and the reporter TdTomato (TOM) in hippocampal astrocytes with bicistronic Adeno-Associated Virus (AAV) harboring the Glial Fibrillary Acidic Protein (GFAP) promoter and afterwards induced neurodegeneration by the intracerebroventricular (ICV) injection of streptozotocin (STZ), a rat model of behavioral impairment, neuroinflammation and shortening of hippocampal astrocytes. We achieved a thorough transgene expression along the hippocampus with a single viral injection. Although species typical behavior was impaired, memory deficit was prevented by IGF1. STZ prompted astrocyte shortening, albeit the length of these cells in animals injected with GFP and IGF1 vectors did not statistically differ from the other groups. In STZ control animals, hippocampal microglial reactive cells increased dramatically, but this was alleviated in IGF1 rats. We conclude that overexpression of IGF1 in astrocytes prevents neurodegeneration onset. Hence, individuals with early neurotrophic exhaustion would be vulnerable to age-related neurodegeneration.
Collapse
Affiliation(s)
- Facundo Peralta
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Ana Abril Vidal Escobedo
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Juliette López Hanotte
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Martino Avallone
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Paula Cecilia Reggiani
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Joaquín Pardo
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina; Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Suda K, Pignatelli J, Genis L, Fernandez AM, de Sevilla EF, de la Cruz IF, Pozo-Rodrigalvarez A, de Ceballos ML, Díaz-Pacheco S, Herrero-Labrador R, Aleman IT. A role for astrocytic insulin-like growth factor I receptors in the response to ischemic insult. J Cereb Blood Flow Metab 2024; 44:970-984. [PMID: 38017004 PMCID: PMC11318401 DOI: 10.1177/0271678x231217669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Increased neurotrophic support, including insulin-like growth factor I (IGF-I), is an important aspect of the adaptive response to ischemic insult. However, recent findings indicate that the IGF-I receptor (IGF-IR) in neurons plays a detrimental role in the response to stroke. Thus, we investigated the role of astrocytic IGF-IR on ischemic insults using tamoxifen-regulated Cre deletion of IGF-IR in glial fibrillary acidic protein (GFAP) astrocytes, a major cellular component in the response to injury. Ablation of IGF-IR in astrocytes (GFAP-IGF-IR KO mice) resulted in larger ischemic lesions, greater blood-brain-barrier disruption and more deteriorated sensorimotor coordination. RNAseq detected increases in inflammatory, cell adhesion and angiogenic pathways, while the expression of various classical biomarkers of response to ischemic lesion were significantly increased at the lesion site compared to control littermates. While serum IGF-I levels after injury were decreased in both control and GFAP-IR KO mice, brain IGF-I mRNA expression show larger increases in the latter. Further, greater damage was also accompanied by altered glial reactivity as reflected by changes in the morphology of GFAP astrocytes, and relative abundance of ionized calcium binding adaptor molecule 1 (Iba 1) microglia. These results suggest a protective role for astrocytic IGF-IR in the response to ischemic injury.
Collapse
Affiliation(s)
- Kentaro Suda
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Laura Genis
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana M Fernandez
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | | | | | - Maria L de Ceballos
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sonia Díaz-Pacheco
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Raquel Herrero-Labrador
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Chen Q, Wu M, Tang Q, Yan P, Zhu L. Age-Related Alterations in Immune Function and Inflammation: Focus on Ischemic Stroke. Aging Dis 2024; 15:1046-1074. [PMID: 37728582 PMCID: PMC11081165 DOI: 10.14336/ad.2023.0721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023] Open
Abstract
The aging of the global population poses significant scientific challenges. Moreover, the biological process of aging is the most significant risk factor for most chronic illnesses; therefore, understanding the molecular and cellular mechanisms underlying these aging-related challenges is crucial for extending the healthy lifespan of older individuals. Preventing brain aging remains a priority public health goal, and integrative and comprehensive aging analyses have revealed that immunosenescence is a potential cause of age-related brain damage and disease (e.g., stroke). Importantly, the neuroinflammatory and immune systems present two-way contact and thus can affect each other. Emerging evidence supports the numerous effects of immunosenescence- and inflammation-mediated immunity in neurologically injured brains. In this study, we briefly outline how aging alters the pathophysiology and transcriptional amplitude in patients who experienced stroke and then discuss how the immune system and its cellular components and molecular mechanisms are affected by age after stroke. Finally, we highlight emerging interventions with the potential to slow down or reduce aging and prevent stroke onset.
Collapse
Affiliation(s)
- Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Minmin Wu
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
9
|
Gulej R, Csik B, Faakye J, Tarantini S, Shanmugarama S, Chandragiri SS, Mukli P, Conley S, Csiszar A, Ungvari Z, Yabluchanskiy A, Nyúl-Tóth Á. Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype. Microcirculation 2024; 31:e12840. [PMID: 38082450 PMCID: PMC10922445 DOI: 10.1111/micc.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Shang P, Zheng R, Wu K, Yuan C, Pan S. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr Neuropharmacol 2024; 22:2330-2352. [PMID: 38808718 PMCID: PMC11451312 DOI: 10.2174/1570159x22666240528160237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Wang J, Zhu M, Sun J, Feng L, Yang M, Sun B, Mao L. Gene therapy of adeno-associated virus (AAV) vectors in preclinical models of ischemic stroke. CNS Neurosci Ther 2023; 29:3725-3740. [PMID: 37551863 PMCID: PMC10651967 DOI: 10.1111/cns.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Stroke has been associated with devastating clinical outcomes, with current treatment strategies proving largely ineffective. Therefore, there is a need to explore alternative treatment options for addressing post-stroke functional deficits. Gene therapy utilizing adeno-associated viruses (AAVs) as a critical gene vector delivering genes to the central nervous system (CNS) gene delivery has emerged as a promising approach for treating various CNS diseases. This review aims to provide an overview of the biological characteristics of AAV vectors and the therapeutic advancements observed in preclinical models of ischemic stroke. The study further investigates the potential of manipulating AAV vectors in preclinical applications, emphasizing the challenges and prospects in the selection of viral vectors, drug delivery strategies, immune reactions, and clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mengna Zhu
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Jingyi Sun
- Department of Spinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lina Feng
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Baoliang Sun
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
12
|
Zhou M, Su P, Liang J, Xiong T. Research progress on the roles of neurovascular unit in stroke-induced immunosuppression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:662-672. [PMID: 37899404 PMCID: PMC10630064 DOI: 10.3724/zdxbyxb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
A complex pathophysiological mechanism is involved in brain injury following cerebral infarction. The neurovascular unit (NVU) is a complex multi-cellular structure consisting of neurons, endothelial cells, pericyte, astrocyte, microglia and extracellular matrix, etc. The dyshomeostasis of NVU directly participates in the regulation of inflammatory immune process. The components of NVU promote inflammatory overreaction and synergize with the overactivation of autonomic nervous system to initiate stroke-induced immunodepression (SIID). SIID can alleviate the damage caused by inflammation, however, it also makes stroke patients more susceptible to infection, leading to systemic damage. This article reviews the mechanism of SIID and the roles of NVU in SIID, to provide a perspective for reperfusion, prognosis and immunomodulatory therapy of cerebral infarction.
Collapse
Affiliation(s)
- Mengqin Zhou
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China.
| | - Peng Su
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Jingyan Liang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
13
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Wang S, Hou K, Gui S, Ma Y, Wang S, Zhao S, Zhu X. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. STRESS BIOLOGY 2023; 3:23. [PMID: 37676529 PMCID: PMC10441889 DOI: 10.1007/s44154-023-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Abstract
Heat stress (HS) can cause a series of stress responses, resulting in numerous negative effects on the body, such as the diminished food intake, carcass quality and reproductive capacity. In addition to the negative effects on the peripheral system, HS leads to central nervous system (CNS) disorders given its toll on neuroinflammation. This neuroinflammatory process is mainly mediated by microglia and astrocytes, which are involved in the activation of glial cells and the secretion of cytokines. While the regulation of inflammatory signaling has a close relationship with the expression of heat shock protein 70 (Hsp70), HS-induced neuroinflammation is closely related to the activation of the TLR4/NF-κB pathway. Moreover, oxidative stress and endoplasmic reticulum (ER) stress are key players in the development of neuroinflammation. Chromium (Cr) has been widely shown to have neuroprotective effects in both humans and animals, despite the lack of mechanistic evidence. Evidence has shown that Cr supplementation can increase the levels of insulin-like growth factor 1 (IGF-1), a major neurotrophic factor with anti-inflammatory and antioxidant effects. This review highlights recent advances in the attenuating effects and potential mechanisms of Cr-mediated IGF-1 actions on HS-induced neuroinflammation, providing presently existing evidence supporting the neuroprotective role of Cr.
Collapse
Affiliation(s)
- Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kanghui Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Siqi Gui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
15
|
Włodarczyk L, Cichoń N, Karbownik MS, Saso L, Saluk J, Miller E. Circulating Serum VEGF, IGF-1 and MMP-9 and Expression of Their Genes as Potential Prognostic Markers of Recovery in Post-Stroke Rehabilitation-A Prospective Observational Study. Brain Sci 2023; 13:846. [PMID: 37371326 DOI: 10.3390/brainsci13060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The key period in post-stroke recovery is the first three months due to the high activity of spontaneous and therapeutic-induced processes related to neuroplasticity, angiogenesis and reperfusion. Therefore, the present study examines the expression of VEGF, IGF-1 and MMP-9 proteins and their genes to identify biomarkers that can prognose brain repair ability and thus estimate the outcome of stroke. It also identifies possible associations with clinical scales, including cognitive assessment and depression scales. The study group comprised 32 patients with moderate ischemic stroke severity, three to four weeks after incident. The results obtained after three-week hospitalization indicate a statistically significant change in clinical parameter estimations, as well as in MMP9 and VEGF protein and mRNA expression, over the rehabilitation process. Our findings indicate that combined MMP9 protein and mRNA expression might be a useful biomarker for cognitive improvement in post-stroke patients, demonstrating 87% sensitivity and 71% specificity (p < 0.0001).
Collapse
Affiliation(s)
- Lidia Włodarczyk
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| | - Natalia Cichoń
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| |
Collapse
|
16
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Mani KK, El-Hakim Y, Branyan TE, Samiya N, Pandey S, Grimaldo MT, Habbal A, Wertz A, Sohrabji F. Intestinal epithelial stem cell transplants as a novel therapy for cerebrovascular stroke. Brain Behav Immun 2023; 107:345-360. [PMID: 36328163 PMCID: PMC11906171 DOI: 10.1016/j.bbi.2022.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Almost 2/3rds of stroke survivors exhibit vascular cognitive impairment and a third of stroke patients will develop dementia 1-3 years after stroke. These dire consequences underscore the need for effective stroke therapies. In addition to its damaging effects on the brain, stroke rapidly dysregulates the intestinal epithelium, resulting in elevated blood levels of inflammatory cytokines and toxic gut metabolites due to a 'leaky' gut. We tested whether repairing the gut via intestinal epithelial stem cell (IESC) transplants would also improve stroke recovery. Organoids containing IESCs derived from young rats transplanted into older rats after stroke were incorporated into the gut, restored stroke-induced gut dysmorphology and decreased gut permeability, and reduced circulating levels of endotoxin LPS and the inflammatory cytokine IL-17A. Remarkably, IESC transplants also improved stroke-induced acute (4d) sensory-motor disability and chronic (30d) cognitive-affective function. Moreover, IESCs from older animals displayed senescent features and were not therapeutic for stroke. These data underscore the gut as a critical therapeutic target for stroke and demonstrate the effectiveness of gut stem cell therapy.
Collapse
Affiliation(s)
- Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Ali Habbal
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Anna Wertz
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States.
| |
Collapse
|
18
|
Huang S, Liu L, Tang X, Xie S, Li X, Kang X, Zhu S. Research progress on the role of hormones in ischemic stroke. Front Immunol 2022; 13:1062977. [PMID: 36569944 PMCID: PMC9769407 DOI: 10.3389/fimmu.2022.1062977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability around the world. However, ischemic stroke treatment is currently limited, with a narrow therapeutic window and unsatisfactory post-treatment outcomes. Therefore, it is critical to investigate the pathophysiological mechanisms following ischemic stroke brain injury. Changes in the immunometabolism and endocrine system after ischemic stroke are important in understanding the pathophysiological mechanisms of cerebral ischemic injury. Hormones are biologically active substances produced by endocrine glands or endocrine cells that play an important role in the organism's growth, development, metabolism, reproduction, and aging. Hormone research in ischemic stroke has made very promising progress. Hormone levels fluctuate during an ischemic stroke. Hormones regulate neuronal plasticity, promote neurotrophic factor formation, reduce cell death, apoptosis, inflammation, excitotoxicity, oxidative and nitrative stress, and brain edema in ischemic stroke. In recent years, many studies have been done on the role of thyroid hormone, growth hormone, testosterone, prolactin, oxytocin, glucocorticoid, parathyroid hormone, and dopamine in ischemic stroke, but comprehensive reviews are scarce. This review focuses on the role of hormones in the pathophysiology of ischemic stroke and discusses the mechanisms involved, intending to provide a reference value for ischemic stroke treatment and prevention.
Collapse
Affiliation(s)
- Shuyuan Huang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Liu
- Department of Anesthesiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaodong Tang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulan Xie
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinrui Li
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| |
Collapse
|
19
|
Toth L, Czigler A, Hegedus E, Komaromy H, Amrein K, Czeiter E, Yabluchanskiy A, Koller A, Orsi G, Perlaki G, Schwarcz A, Buki A, Ungvari Z, Toth PJ. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. GeroScience 2022; 44:2771-2783. [PMID: 35869380 PMCID: PMC9768079 DOI: 10.1007/s11357-022-00623-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023] Open
Abstract
Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Hedvig Komaromy
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Akos Koller
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Gergely Orsi
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Gabor Perlaki
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andras Buki
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter J Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci Biobehav Rev 2022; 142:104896. [PMID: 36191807 DOI: 10.1016/j.neubiorev.2022.104896] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), a pleiotropic polypeptide, plays an essential role in CNS development and maturation. Glucagon-like peptide-1 (GLP-1) is an endogenous incretin hormone that regulates blood glucose levels and fatty acid oxidation in the brain. GLP-1 also exhibits similar functions and growth factor-like properties to IGF-1, which is likely how it exerts its neuroprotective effects. Recent preclinical and clinical evidence indicate that IGF-1 and GLP-1, apart from regulating growth and development, prevent neuronal death mediated by amyloidogenesis, cerebral glucose deprivation, neuroinflammation and apoptosis through modulation of PI3/Akt kinase, mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK/ERK). IGF-1 resistance and GLP-1 deficiency impair protective cellular signaling mechanisms, contributing to the progression of neurodegenerative diseases. Over the past decades, IGF-1 and GLP-1 have emerged as an essential component of the neuronal system and as potential therapeutic targets for several neurodegenerative and neuropsychiatric dysfunctions. There is substantial evidence that IGF-1 and GLP-1 analogues penetrate the blood-brain barrier (BBB) and exhibit neuroprotective functions, including synaptic formation, neuronal plasticity, protein synthesis, and autophagy. Conclusively, this review represents the therapeutic potential of IGF-1 and GLP-1 signaling target activators in ameliorating neurological disorders.
Collapse
|
21
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
22
|
Skukan L, Brezak M, Ister R, Klimaschewski L, Vojta A, Zoldoš V, Gajović S. Lentivirus- or AAV-mediated gene therapy interventions in ischemic stroke: A systematic review of preclinical in vivo studies. J Cereb Blood Flow Metab 2022; 42:219-236. [PMID: 34427147 PMCID: PMC8795232 DOI: 10.1177/0271678x211039997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to the limited therapeutic options after ischemic stroke, gene therapy has emerged as a promising choice, especially with recent advances in viral vector delivery systems. Therefore, we aimed to provide the current state of the art of lentivirus (LV) and adeno-associated virus (AAV) mediated gene interventions in preclinical ischemic stroke models. A systematic analysis including qualitative and quantitative syntheses of studies published until December 2020 was performed. Most of the 87 selected publications used adult male rodents and the preferred stroke model was transient middle cerebral artery occlusion. LV and AAV vectors were equally used for transgene delivery, however loads of AAVs were higher than LVs. Serotypes having broad cell tropism, the use of constitutive promoters, and virus delivery before the stroke induction via stereotaxic injection in the cortex and striatum were preferred in the analyzed studies. The meta-analysis based on infarct volume as the primary outcome confirmed the efficacy of the preclinical interventions. The quality assessment exposed publication bias and setbacks in regard to risks of bias and study relevance. The translational potential could increase by using specific cell targeting, post-stroke interventions, non-invasive systematic delivery, and use of large animals.
Collapse
Affiliation(s)
- Laura Skukan
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Matea Brezak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Rok Ister
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Aleksandar Vojta
- Department for Molecular Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Vlatka Zoldoš
- Department for Molecular Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
23
|
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience 2021; 43:2387-2394. [PMID: 34383203 PMCID: PMC8599783 DOI: 10.1007/s11357-021-00405-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; or "functional hyperemia") compromises moment-to-moment adjustment of regional cerebral blood flow to increased neuronal activity and thereby contributes to the pathogenesis of vascular cognitive impairment (VCI). Previous studies established a causal link among age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), neurovascular dysfunction and cognitive impairment. Endothelium-mediated microvascular dilation plays a central role in NVC responses. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, endothelium-mediated NVC responses were studied in a novel mouse model of accelerated neurovascular aging: mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in cerebral blood flow in the somatosensory whisker barrel cortex (assessed using laser speckle contrast imaging through a cranial window) in response to contralateral whisker stimulation were significantly attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as compared to control mice. In VE-Cadherin-CreERT2/Igf1rf/f mice, the effects of the NO synthase inhibitor L-NAME were significantly decreased, suggesting that endothelium-specific disruption of IGF1R signaling impairs the endothelial NO-dependent component of NVC responses. Collectively, these findings provide additional evidence that IGF-1 is critical for cerebromicrovascular endothelial health and maintenance of normal NVC responses.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Peter Toth
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, 72359, Pecs, Baranya, Hungary
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences, Center 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
24
|
Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2475-2491. [PMID: 33757314 PMCID: PMC8504958 DOI: 10.1177/0271678x211000894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ischemic strokes are highly prevalent in the elderly population and are a leading cause of mortality and morbidity worldwide. The risk of ischemic stroke increases in advanced age, corresponding with a noted decrease in circulating insulin growth factor-1 (IGF-1). IGF-1 is a known neuroprotectant involved in embryonic development, neurogenesis, neurotransmission, cognition, and lifespan. Clinically, several studies have shown that reduced levels of IGF-1 correlate with increased mortality rate, poorer functional outcomes, and increased morbidities following an ischemic stroke. In animal models of ischemia, administering exogenous IGF-1 using various routes of administration (intranasal, intravenous, subcutaneous, or topical) at various time points prior to and following insult attenuates neurological damage and accompanying behavioral changes caused by ischemia. However, there are some contrasting findings in select clinical and preclinical studies. This review discusses the role of IGF-1 as a determinant factor of ischemic stroke outcomes, both within the clinical settings and preclinical animal models. Furthermore, the review provides insight on the role of IGF-1 in mechanisms and cellular processes that contribute to stroke damage.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - M Noa Valcarcel-Ares
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
25
|
Zhang S, Shang D, Shi H, Teng W, Tian L. Function of Astrocytes in Neuroprotection and Repair after Ischemic Stroke. Eur Neurol 2021; 84:426-434. [PMID: 34455410 DOI: 10.1159/000517378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Astrocytes are the most numerous cell types within the central nervous system, and many efforts have been put into determining the exact role of astrocytes in neuroprotection and repair after ischemic stroke. Although numerous studies have been done in recent years, there is still no thorough understanding of the exact function of astrocytes in the whole course of the stroke. SUMMARY According to the recent literature, there are many structures and factors that play important roles in the process of ischemic stroke, among which blood-brain barrier, various growth factors, gap junctions, AQP4, and glial scars have been studied most comprehensively, and all these factors are closely related to astrocytes. The role of astrocytes in ischemic stroke, therefore, can be analyzed more comprehensively. Key Message: The present review mainly summarized the current knowledge about astrocytes and their potential roles after ischemic stroke.
Collapse
Affiliation(s)
- Shufen Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China,
| | - Deshu Shang
- Cell Biology Division, Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Han Shi
- The First Clinical College, China Medical University, Shenyang, China
| | - Weiyu Teng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Tian
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Guan Y, Wang R, Li X, Zou H, Yu W, Liang Z, Li L, Chen L, Zhou L, Chen Z. Astrocytes constitute the major TNF-α-producing cell population in the infarct cortex in dMCAO rats receiving intravenous MSC infusion. Biomed Pharmacother 2021; 142:111971. [PMID: 34343893 DOI: 10.1016/j.biopha.2021.111971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies report that inhibiting TNF-α might be a novel therapeutic strategy for managing brain ischemia. Our previous study reported that mesenchymal stem cell (MSC) transplantation could suppress TNF-α level in both serum and brain. However, the cell type(s) that contribute to the production of TNF-α during ischemia following MSC transplantation has not been well studied. In the present study, we found by fluorescent immunohistochemistry, that 7.95 ± 6.17% of TNF-α+ cells co-expressed Iba-1 in the infarct area of dMCAO rats, a majority of which were found to be CD68+ (activated microglia), suggesting that resident microglial population were not the major source of TNF-α expression. 68.49 ± 5.12% of the TNF-α+ cells in the infarct area could be labeled by GFAP, a specific marker for astrocytes, indicating that resident GFAP+ astrocytes might be the major source of TNF-α expression in the infarct area. In addition to the infarct area, the GFAP+/TNF-α+ double-positive astrocytes accounted for 73.68 ± 7.48% of the TNF-α+ cells in striatum and corpus callosum. The infiltrating cells, including monocytes and lymphocytes, were not the main source of TNF-α either. In response to MSC transplantation, the total TNF-α+ cells as well as the percentage of TNF-α-expressing astrocytes were significantly reduced in the infarct area, suggesting that MSC transplantation could suppress the expression of TNF-α by astrocytes. Taken together, the results demonstrated that resident astrocytes, but not microglia, were the major source of TNF-α expression and could be suppressed by MSC infusion.
Collapse
Affiliation(s)
- Yunqian Guan
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Ren Wang
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Xiaobo Li
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Haiqiang Zou
- Department of Neurology, the General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Wenxiu Yu
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Zhaohui Liang
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Lei Li
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Ling Chen
- Department of neurosurgery, PLA General Hospital, Beijing, China
| | - Liping Zhou
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
27
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
28
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, Ungvari A, Nyúl-Tóth Á, Schwartzman ML, Benyo Z, Sonntag WE, Csiszar A, Ungvari Z. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience 2021; 43:901-911. [PMID: 33674953 PMCID: PMC8110646 DOI: 10.1007/s11357-021-00350-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Sreemathi Logan
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Zang L, Yang B, Zhang M, Cui J, Ma X, Wei L. Trelagliptin Mitigates Macrophage Infiltration by Preventing the Breakdown of the Blood-Brain Barrier in the Brain of Middle Cerebral Artery Occlusion Mice. Chem Res Toxicol 2021; 34:1016-1023. [PMID: 33728903 DOI: 10.1021/acs.chemrestox.0c00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stroke is a significant cardiovascular disease that influences the health of human beings all over the world, especially the elderly population. It is reported that the blood-brain barrier (BBB) can be easily destroyed by stroke, which is one of the main factors responsible for macrophage infiltration and central nervous inflammation. Here, we report the protective effects of Trelagliptin against BBB injury and macrophage infiltration. Our results indicate that the infraction volume, the neurological score, and macrophage infiltration staining with CD68 were increased in middle cerebral artery occlusion (MCAO) mice but significantly reversed by treatment with Trelagliptin. Additionally, Trelagliptin reduced the permeability of the BBB by increasing the expression of the tight junction zonula occludens protein-1 (ZO-1) in the cerebral cortex. In an in vitro hypoxia model of endothelial cells, the increased migration of macrophages, enlarged permeability of endothelial monolayer, downregulation of ZO-1, and elevated expression level of CXCL1 by hypoxic conditions were all reversed by treatment with Trelagliptin in a dose-dependent manner. Our results demonstrate that Trelagliptin might mitigate macrophage infiltration by preventing the breakdown of the blood-brain barrier in the brains of MCAO mice.
Collapse
Affiliation(s)
- Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Bo Yang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Mingyuan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jingwen Cui
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xue Ma
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Linlin Wei
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
31
|
An Improved Method for Physical Separation of Cerebral Vasculature and Parenchyma Enables Detection of Blood-Brain-Barrier Dysfunction. NEUROSCI 2021. [DOI: 10.3390/neurosci2010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The neurovascular niche is crucial for constant blood supply and blood-brain barrier (BBB) function and is altered in a number of different neurological conditions, making this an intensely active field of research. Brain vasculature is unique for its tight association of endothelial cells with astrocytic endfeet processes. Separation of the vascular compartment by centrifugation-based methods confirmed enrichment of astrocytic endfeet processes, making it possible to study the entire vascular niche with such methods. Several centrifugation-based separation protocols are found in the literature; however, with some constraints which limit their applicability and the scope of the studies. Here, we describe and validate a protocol for physically separating the neurovascular niche from the parenchyma, which is optimized for smaller tissue quantities. Using endothelial, neuronal, and astrocyte markers, we show that quantitative Western blot-based target detection can be performed of both the vessel-enriched and parenchymal fractions using as little as a single mouse brain hemisphere. Validation of our protocol in rodent stroke models by detecting changes in tight junction protein expression, serum albumin signals and astrocyte activation, i.e., increased glial fibrillary acidic protein expression, between the ipsilateral and the lesion-free contralateral hemisphere demonstrates this protocol as a new way of detecting BBB breakdown and astrogliosis, respectively.
Collapse
|
32
|
Tatomir A, Beltrand A, Nguyen V, Boodhoo D, Mekala A, Cudrici C, Badea TC, Muresanu DF, Rus V, Rus H. RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 11:608294. [PMID: 33569054 PMCID: PMC7868332 DOI: 10.3389/fimmu.2020.608294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are increasingly recognized as critical contributors to multiple sclerosis pathogenesis. We have previously shown that lack of Response Gene to Complement 32 (RGC-32) alters astrocyte morphology in the spinal cord at the peak of experimental autoimmune encephalomyelitis (EAE), suggesting a role for RGC-32 in astrocyte differentiation. In this study, we analyzed the expression and distribution of astrocytes and astrocyte progenitors by immunohistochemistry in spinal cords of wild-type (WT) and RGC-32-knockout (KO) mice with EAE and of normal adult mice. Our analysis showed that during acute EAE, WT astrocytes had a reactive morphology and increased GFAP expression, whereas RGC-32 KO astrocytes had a morphology similar to that of radial glia and an increased expression of progenitor markers such as vimentin and fatty acid binding protein 7 (FABP7). In control mice, GFAP expression and astrocyte density were also significantly higher in the WT group, whereas the number of vimentin and FABP7-positive radial glia was significantly higher in the RGC-32 KO group. In vitro studies on cultured neonatal astrocytes from WT and RGC-32 KO mice showed that RGC-32 regulates a complex array of molecular networks pertaining to signal transduction, growth factor expression and secretion, and extracellular matrix (ECM) remodeling. Among the most differentially expressed factors were insulin-like growth factor 1 (IGF1), insulin-like growth factor binding proteins (IGFBPs), and connective tissue growth factor (CTGF); their expression was downregulated in RGC-32-depleted astrocytes. The nuclear translocation of STAT3, a transcription factor critical for astrogliogenesis and driving glial scar formation, was also impaired after RGC-32 silencing. Taken together, these data suggest that RGC-32 is an important regulator of astrocyte differentiation during EAE and that in the absence of RGC-32, astrocytes are unable to fully mature and become reactive astrocytes.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fatty Acid-Binding Protein 7/metabolism
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Rats, Sprague-Dawley
- Signal Transduction
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Vimentin/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Armugam Mekala
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
33
|
Peripheral Circulation and Astrocytes Contribute to the MSC-Mediated Increase in IGF-1 Levels in the Infarct Cortex in a dMCAO Rat Model. Stem Cells Int 2020; 2020:8853444. [PMID: 32952570 PMCID: PMC7481998 DOI: 10.1155/2020/8853444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023] Open
Abstract
Materials and Methods Ischemic brain injury was induced by dMCAO in Sprague-Dawley rats. The transplantation group received MSC infusion 1 h after dMCAO. Expression of IGF-1 in GFAP+ astrocytes, Iba-1+ microglia/macrophages, CD3+ lymphocytes, Ly6C+ monocytes/macrophages, and neutrophil elastase (NE)+ neutrophils was examined to determine the contribution of these cells to the increase of IGF-1. ELISA was performed to examine IGF-1 levels in blood plasma at days 2, 4, and 7 after ischemia onset. Results In total, only 5-6% of Iba-1+ microglia were colabeled with IGF-1 in the infarct cortex, corpus callosum, and striatum at day 2 post-dMCAO. MSC transplantation did not lead to a higher proportion of Iba-1+ cells that coexpressed IGF-1. In the infarct cortex, all Iba-1+/IGF-1+ double-positive cells were also positive for CD68. In the infarct, corpus callosum, and striatum, the majority (50-80%) of GFAP+ cells were colabeled with ramified IGF-1 signals. The number of GFAP+/IGF-1+ cells was further increased following MSC treatment. In the infarct cortex, approximately 15% of IGF-1+ cells were double-positive for CD3. MSC treatment reduced the number of infiltrated CD3+/IGF-1+ cells by 70%. In the infarct, few Ly6C+ monocytes/macrophages or NE+ neutrophils expressed IGF-1, and MSC treatment did not induce a higher percentage of these cells that coexpressed IGF-1. The IGF-1 level in peripheral blood plasma was significantly higher in the MSC group than in the ischemia control group. Conclusion The MSC-mediated increase in IGF-1 levels in the infarct cortex mainly derives from two sources, astrocytes in brain and blood plasma in periphery. Manipulating the IGF-1 level in the peripheral circulation may lead to a higher level of IGF-1 in brain, which could be conducive to recovery at the early stage of dMCAO.
Collapse
|
34
|
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Sypecka J. Oligodendrocyte Response to Pathophysiological Conditions Triggered by Episode of Perinatal Hypoxia-Ischemia: Role of IGF-1 Secretion by Glial Cells. Mol Neurobiol 2020; 57:4250-4268. [PMID: 32691304 PMCID: PMC7467917 DOI: 10.1007/s12035-020-02015-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Differentiation of oligodendrocyte progenitors towards myelinating cells is influenced by a plethora of exogenous instructive signals. Insulin-like growth factor 1 (IGF-1) is one of the major factors regulating cell survival, proliferation, and maturation. Recently, there is an ever growing recognition concerning the role of autocrine/paracrine IGF-1 signaling in brain development and metabolism. Since oligodendrocyte functioning is altered after the neonatal hypoxic-ischemic (HI) insult, a question arises if the injury exerts any influence on the IGF-1 secreted by neural cells and how possibly the change in IGF-1 concentration affects oligodendrocyte growth. To quantify the secretory activity of neonatal glial cells, the step-wise approach by sequentially using the in vivo, ex vivo, and in vitro models of perinatal asphyxia was applied. A comparison of the results of in vivo and ex vivo studies allowed evaluating the role of autocrine/paracrine IGF-1 signaling. Accordingly, astroglia were indicated to be the main local source of IGF-1 in the developing brain, and the factor secretion was shown to be significantly upregulated during the first 24 h after the hypoxic-ischemic insult. And conversely, the IGF-1 amounts released by oligodendrocytes and microglia significantly decreased. A morphometric examination of oligodendrocyte differentiation by means of the Sholl analysis showed that the treatment with low IGF-1 doses markedly improved the branching of oligodendroglial cell processes and, in this way, promoted their differentiation. The changes in the IGF-1 amounts in the nervous tissue after HI might contribute to the resulting white matter disorders, observed in newborn children who experienced perinatal asphyxia. Pharmacological modulation of IGF-1 secretion by neural cells could be reasonable solution in studies aimed at searching for therapies alleviating the consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Justyna Gargas
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
35
|
Nishida F, Zanuzzi CN, Sisti MS, Falomir Lockhart E, Camiña AE, Hereñú CB, Bellini MJ, Portiansky EL. Intracisternal IGF-1 gene therapy abrogates kainic acid-induced excitotoxic damage of the rat spinal cord. Eur J Neurosci 2020; 52:3339-3352. [PMID: 32573850 DOI: 10.1111/ejn.14876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Development of alternative therapies for treating functional deficits after different neurological damages is a challenge in neuroscience. Insulin-like growth factor-1 (IGF-1) is a potent neurotrophic factor exerting neuroprotective actions in brain and spinal cord. It is used to prevent or treat injuries of the central nervous system using different administration routes in different animal models. In this study, we evaluated whether intracisternal (IC) route for IGF-1 gene therapy may abrogate or at least reduce the structural and behavioral damages induced by the intraparenchymal injection of kainic acid (KA) into the rat spinal cord. Experimental (Rad-IGF-1) and control (Rad-DsRed-KA) rats were evaluated using a battery of motor and sensory tests before the injection of the recombinant adenovector (day -3), before KA injection (day 0) and at every post-injection (pi) time point (days 1, 2, 3 and 7 pi). Histopathological changes and neuronal and glial counting were assessed. Pretreatment using IC delivery of RAd-IGF-1 improved animal's general condition and motor and sensory functions as compared to Rad-DsRed-KA-injected rats. Besides, IC Rad-IGF-1 therapy abrogated later spinal cord damage and reduced the glial response induced by KA as observed in Rad-DsRed-KA rats. We conclude that the IC route for delivering RAd-IGF-1 prevents KA-induced excitotoxicity in the spinal cord.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Eugenia Falomir Lockhart
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Claudia B Hereñú
- Department of Pharmacology, School of Chemistry, National University of Córdoba (UNC), Córdoba, Argentina.,Institute for Experimental Pharmacology, Córdoba, Argentina
| | - María J Bellini
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
36
|
Reproductive Senescence and Ischemic Stroke Remodel the Gut Microbiome and Modulate the Effects of Estrogen Treatment in Female Rats. Transl Stroke Res 2019; 11:812-830. [PMID: 31845185 DOI: 10.1007/s12975-019-00760-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Our previous work has shown that reproductively senescent (or middle-aged; 10-12-month-old) Sprague-Dawley female rats, that are naturally estrogen-deficient, have worse stroke outcomes as compared to normally estrous-cycling adult (5-6-month-old) females. Paradoxically, estrogen replacement to this middle-aged group exacerbates stroke outcomes, while it is neuroprotective in adult females. Recent studies reveal an important role for the gut microbiome and gut metabolites in cardiovascular health, including stroke outcomes. To determine whether gut dysbiosis underlies stroke severity in reproductive senescent females, and underlies the anomalous effects of estrogen on stroke, we compared the gut microbiota and gut metabolites pre and post stroke in (a) gonadally intact adult and middle-aged females, (b) in ovariectomized and estrogen-treated (OVX+E) adult and OVX+E middle-aged females, and (c) in middle-aged OVX+E females after fecal microbiome transfer. Our data show significant gut dysbiosis in reproductive senescent females at baseline and after stroke as indicated by an elevated ratio of the major phyla, Firmicutes/Bacteroidetes (F:B), reduced alpha diversity, and significant shifts in beta diversity as compared with adult females. Specific bacterial families were also altered as a result of reproductive aging, as well as gut metabolites, including elevated serum endotoxin levels and decreased short-chain fatty acids (SCFAs), with a concomitant increase in IL-17A, indicating that reproductive senescence significantly affects gut communities under pathologic conditions. Despite the differences in gonadally intact adult and middle-aged females, estrogen-treated ovariectomized (OVX+E) females of either age group displayed no differences in the major phyla, but there was increased abundance in specific bacterial taxa, including Prevotella and Lactobacillus. The SCFA butyrate was significantly reduced at baseline in the middle-aged OVX+E females, while circulating endotoxin LPS were elevated in this group after stroke, suggesting that gut metabolites were differently affected by estrogen treatment in the two age groups. A fecal transfer from adult OVX+E females to middle-aged OVX+E females significantly reduced infarct volume, improved behavioral recovery and transiently reduced IL-17A expression. These data provide the first evidence that microbial gut communities and metabolites are altered by reproductive senescence in female rats at baseline and after stroke, and suggest that estrogen may impact stroke recovery differently in adult and reproductive senescent females due to an age-specific effect on gut microbiota and metabolites.
Collapse
|
37
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Chen W, He B, Tong W, Zeng J, Zheng P. Astrocytic Insulin-Like Growth Factor-1 Protects Neurons Against Excitotoxicity. Front Cell Neurosci 2019; 13:298. [PMID: 31338023 PMCID: PMC6629877 DOI: 10.3389/fncel.2019.00298] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 01/14/2023] Open
Abstract
Background Exogenous insulin like growth factor-1 (IGF-1) is known to be neuroprotective in animal models with brain insults, while it can also cause hyperexcitability in rodents. In this regard, the role of endogenous IGF-1 in brain responses to brain insults like excitotoxicity, a common pathology in brain injuries, remains to be elucidated. Here, we investigated the potential role of cell-specific endogenous IGF-1 in the kainic acid (KA) -induced degeneration of the neurons. Methods Kainic acid was given to primary cultured cortical neurons and co-cultured astrocytes were added as a supportive system. We evaluated the cell proliferation rate, IGF-1 level in different groups and applied the PCR-Chip assay to explore the downstream of IGF-1. In addition, we applied the viral transfer of astrocytic IGF-1 to rodents treated with KA and assessed the associated molecular marker and behavioral outcomes in these rodents. Results We found KA induced increased cell death and hyperphosphorylated tau in neurons; co-cultured astrocytes could prevent these pathologies, and this rescuing effect was abrogated with blockade of the astrocytic IGF-1 with AG1024 (IGF-1R inhibitor). PCR-Chip assay identified that astrocytic IGF-1 could decrease the p-GSK-3 at Tyr 216 in neurons treated with KA and this effect was abrogated with AG1024 as well. In addition, in vivo study showed that gene transfer of astrocytic IGF-1 decreased p-tau and cognitive dysfunction in KA mice. Conclusion Our results show astrocytic IGF-1 exhibits neuroprotective properties in neurodegenerative processes in the CNS.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bin He
- Department of Neurosurgery, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Pudong, China
| | - Jinsong Zeng
- Department of Neurosurgery, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Pudong, China
| |
Collapse
|
39
|
Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun 2019; 78:31-40. [PMID: 30639697 PMCID: PMC6488367 DOI: 10.1016/j.bbi.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/09/2023] Open
Abstract
Women are more likely to develop Post Stroke Depression (PSD) than men and generally do not respond well to anti-depressants with age. This study investigated the effect of microRNA mir363-3p treatment on PSD using a physiologically-relevant animal model. Our previous work showed that mir363-3p treatment, delivered post-stroke, effectively reduces infarct volume in the acute phase of stroke in middle-aged females but not males. Middle-aged female Sprague Dawley rats were tested for baseline sensory motor function and depressive-like behaviors, and then subjected to ischemic stroke via middle cerebral artery occlusion (MCAo) or sham surgery. Animals received either control oligos (MCAo+scrambled, Sham+scrambled) or mir363-3p (MCAo+mir363-3p, Sham+mir363-3p) treatment 4 h later. Sensory motor function and depressive-like behaviors were reassessed up to 100 d after stroke, and circulating levels of IL-6, TNF-alpha and Brain-Derived Neurotrophic Factor (BDNF) were quantified at regular intervals. Prior to termination, Fluorogold was injected into the striatum to assess meso-striatal projections. MCAo+scrambled animals had impaired sensorimotor performance in the acute phase (5 days) of stroke and developed anhedonia, decreased sociability and increased helplessness in the chronic phase. MCAo+mir363-3p animals showed significantly less sensory motor impairment and fewer depressive-like behaviors. IL-6 and TNF-alpha were elevated transiently at 4 weeks after MCAo in both groups. BDNF levels decreased progressively after stroke in the MCAo+scrambled group, and this was attenuated in the mir363-3p group. The number of retrogradely-labeled SNc and VTA cells was reduced in the ischemic hemisphere of the MCAo+scrambled group. In contrast, there was no interhemispheric difference in the number of retrogradely-labeled SNc and VTA cells of MCAo+mir363-3p treated animals. Our results support a therapeutic role for mir363-3p for long-term stroke disability.
Collapse
|
40
|
Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol 2019; 46:100413. [PMID: 31005351 DOI: 10.1016/j.cpcardiol.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) and depression are common disorders that markedly impair quality of life and impose a great financial burden on society. They are also frequently comorbid, exacerbating patient condition, and worsening prognosis. This comorbidity strongly suggests shared pathologic mechanisms. This review focuses on the incidence of depression in patients with CHD, deleterious effects of depression on CHD symptoms, and the potential mechanisms underlying comorbidity. In addition to the existing frequent mechanisms that are well known for decades, this review summarized interesting and original potential mechanisms to underlie the comorbidity, such as endocrine substances, gut microbiome, and microRNA. Finally, there are several treatment strategies for the comorbidity, involving drugs and psychotherapy, which may provide a theoretical basis for further basic research and clinical investigations on improved therapeutic interventions.
Collapse
|
41
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
42
|
Morrison HW, Filosa JA. Stroke and the neurovascular unit: glial cells, sex differences, and hypertension. Am J Physiol Cell Physiol 2019; 316:C325-C339. [PMID: 30601672 DOI: 10.1152/ajpcell.00333.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A functional neurovascular unit (NVU) is central to meeting the brain's dynamic metabolic needs. Poststroke damage to the NVU within the ipsilateral hemisphere ranges from cell dysfunction to complete cell loss. Thus, understanding poststroke cell-cell communication within the NVU is of critical importance. Loss of coordinated NVU function exacerbates ischemic injury. However, particular cells of the NVU (e.g., astrocytes) and those with ancillary roles (e.g., microglia) also contribute to repair mechanisms. Epidemiological studies support the notion that infarct size and recovery outcomes are heterogeneous and greatly influenced by modifiable and nonmodifiable factors such as sex and the co-morbid condition common to stroke: hypertension. The mechanisms whereby sex and hypertension modulate NVU function are explored, to some extent, in preclinical laboratory studies. We present a review of the NVU in the context of ischemic stroke with a focus on glial contributions to NVU function and dysfunction. We explore the impact of sex and hypertension as modifiable and nonmodifiable risk factors and the underlying cellular mechanisms that may underlie heterogeneous stroke outcomes. Most of the preclinical investigative studies of poststroke NVU dysfunction are carried out primarily in male stroke models lacking underlying co-morbid conditions, which is very different from the human condition. As such, the evolution of translational medicine to target the NVU for improved stroke outcomes remains elusive; however, it is attainable with further research.
Collapse
|
43
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
44
|
Bake S, Okoreeh A, Khosravian H, Sohrabji F. Insulin-like Growth Factor (IGF)-1 treatment stabilizes the microvascular cytoskeleton under ischemic conditions. Exp Neurol 2018; 311:162-172. [PMID: 30287160 DOI: 10.1016/j.expneurol.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
Our previous studies showed that Insulin-like Growth Factor (IGF)-1 reduced blood brain barrier permeability and decreased infarct volume caused by middle cerebral artery occlusion (MCAo) in middle aged female rats. Similarly, cultures of primary brain microvessel endothelial cells from middle-aged female rats and exposed to stroke-like conditions (oxygen glucose deprivation; OGD) confirmed that IGF-1 reduced dye transfer across this cell monolayer. Surprisingly, IGF-1 did not attenuate endothelial cell death caused by OGD. To reconcile these findings, the present study tested the hypothesis that, at the earliest phase of ischemia, IGF-1 promotes barrier function by increasing anchorage and stabilizing cell geometry of surviving endothelial cells. Cultures of human brain microvessel endothelial cells were subject to oxygen-glucose deprivation (OGD) in the presence of IGF-1, IGF-1 + JB-1 (IGFR inhibitor) or vehicle. OGD disrupted the cell monolayer and reduced cell-cell interactions, which was preserved in IGF-1-treated cultures and reversed by concurrent treatment with JB-1. IGF-1-mediated preservation of the endothelial monolayer was reversed with LY294002 treatment, but not by Rapamycin, indicating that IGF-1 s actions on cell-cell contacts are likely mediated via the PI3K pathway. In vivo, microvessel morphology was evaluated in middle-aged female rats that were subjected to ischemia by MCAo, and treated ICV with IGFI, IGF-1 + JB-1, or artificial CSF (aCSF; vehicle) after reperfusion. Compared to vehicle controls, IGF-1 treated animals displayed larger microvessel diameters in the peri-infarct area and increased staining density for vinculin, an anchorage protein. Both these measures were reversed by concurrent IGF-1 + JB-1 treatment. Moreover these effects were restricted to 24 h after ischemia-reperfusion and no treatment effects were seen at 5d post stroke. Collectively, these data suggest that in the earliest hours during ischemia, IGF-1 promotes receptor-mediated anchorage of endothelial cells, and its actions may be accurately characterized as vasculoprotective.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States
| | - Andre Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States
| | - Homa Khosravian
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
45
|
Åberg ND, Åberg D, Jood K, Nilsson M, Blomstrand C, Kuhn HG, Svensson J, Jern C, Isgaard J. Altered levels of circulating insulin-like growth factor I (IGF-I) following ischemic stroke are associated with outcome - a prospective observational study. BMC Neurol 2018; 18:106. [PMID: 30081862 PMCID: PMC6091156 DOI: 10.1186/s12883-018-1107-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/22/2018] [Indexed: 01/12/2023] Open
Abstract
Background Insulin-like growth factor I (IGF-I) has neuroprotective effects in experimental ischemic stroke (IS). However, in patients who have suffered IS, various associations between the levels of serum IGF-I (s-IGF-I) and clinical outcome have been reported, probably reflecting differences in sampling time-points and follow-up periods. Since changes in the levels of post-stroke s-IGF-I have not been extensively explored, we investigated whether decreases in the levels of s-IGF-I between the acute time-point (median, 4 days) and 3 months (ΔIGF-I, further transformed into ΔIGF-I-quintiles, ΔIGF-I-q) are associated with IS severity and outcome. Methods In the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS) conducted in Gothenburg, Sweden, patients with IS who had s-IGF-I measurements available were included (N = 354; 65% males; mean age, 55 years). Baseline stroke severity was evaluated using the National Institutes of Health Stroke Scale (NIHSS) and converted into NIHSS-quintiles (NIHSS-q). Outcomes were assessed using the modified Rankin Scale (mRS) at 3 months and 2 years. Results In general, the levels of s-IGF-I decreased (positive ΔIGF-I), except for those patients with the most severe NIHSS-q. After correction for sex and age, the 3rd ΔIGF-I-q showed the strongest association to mRS 0–2 [Odds Ratio (OR) 5.11, 95% confidence interval (CI) 2.18–11.9], and after 2 years, the 5th ΔIGF-I-q (OR 3.63, 95% CI 1.40–9.38) showed the strongest association to mRS 0–2. The associations remained significant after multivariate correction for diabetes, smoking, hypertension, and hyperlipidemia after 3 months, but were not significant (p = 0.057) after 2 years. The 3-month associations withstood additional correction for baseline stroke severity (p = 0.035), whereas the 2-year associations were further attenuated (p = 0.31). Conclusions Changes in the levels of s-IGF-I are associated primarily with temporally near 3-month outcomes, while associations with long-term 2-year outcomes are weakened and attenuated by other factors. The significance of the change in post-stroke s-IGF-I is compatible with a positive role for IGF-I in IS recovery. However, the exact mechanisms are unknown and probably reflects combinations of multiple peripheral and central actions. Electronic supplementary material The online version of this article (10.1186/s12883-018-1107-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden.
| | - Daniel Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Christian Blomstrand
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| |
Collapse
|
46
|
Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, Sun FY. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018; 66:1346-1362. [PMID: 29451327 PMCID: PMC6001668 DOI: 10.1002/glia.23308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Abstract
Reactive astrocytes induced by ischemia can transdifferentiate into mature neurons. This neurogenic potential of astrocytes may have therapeutic value for brain injury. Epigenetic modifications are widely known to involve in developmental and adult neurogenesis. PAX6, a neurogenic fate determinant, contributes to the astrocyte‐to‐neuron conversion. However, it is unclear whether microRNAs (miRs) modulate PAX6‐mediated astrocyte‐to‐neuron conversion. In the present study we used bioinformatic approaches to predict miRs potentially targeting Pax6, and transient middle cerebral artery occlusion (MCAO) to model cerebral ischemic injury in adult rats. These rats were given striatal injection of glial fibrillary acidic protein targeted enhanced green fluorescence protein lentiviral vectors (Lv‐GFAP‐EGFP) to permit cell fate mapping for tracing astrocytes‐derived neurons. We verified that miR‐365 directly targets to the 3′‐UTR of Pax6 by luciferase assay. We found that miR‐365 expression was significantly increased in the ischemic brain. Intraventricular injection of miR‐365 antagomir effectively increased astrocytic PAX6 expression and the number of new mature neurons derived from astrocytes in the ischemic striatum, and reduced neurological deficits as well as cerebral infarct volume. Conversely, miR‐365 agomir reduced PAX6 expression and neurogenesis, and worsened brain injury. Moreover, exogenous overexpression of PAX6 enhanced the astrocyte‐to‐neuron conversion and abolished the effects of miR‐365. Our results demonstrate that increase of miR‐365 in the ischemic brain inhibits astrocyte‐to‐neuron conversion by targeting Pax6, whereas knockdown of miR‐365 enhances PAX6‐mediated neurogenesis from astrocytes and attenuates neuronal injury in the brain after ischemic stroke. Our findings provide a foundation for developing novel therapeutic strategies for brain injury.
Collapse
Affiliation(s)
- Jia-Lin Mo
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zeng-Wei Kou
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kun-Wei Wu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xian-Hua Chen
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
47
|
Dong X. Current Strategies for Brain Drug Delivery. Am J Cancer Res 2018; 8:1481-1493. [PMID: 29556336 PMCID: PMC5858162 DOI: 10.7150/thno.21254] [Citation(s) in RCA: 589] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
The blood-brain barrier (BBB) has been a great hurdle for brain drug delivery. The BBB in healthy brain is a diffusion barrier essential for protecting normal brain function by impeding most compounds from transiting from the blood to the brain; only small molecules can cross the BBB. Under certain pathological conditions of diseases such as stroke, diabetes, seizures, multiple sclerosis, Parkinson's disease and Alzheimer disease, the BBB is disrupted. The objective of this review is to provide a broad overview on current strategies for brain drug delivery and related subjects from the past five years. It is hoped that this review could inspire readers to discover possible approaches to deliver drugs into the brain. After an initial overview of the BBB structure and function in both healthy and pathological conditions, this review re-visits, according to recent publications, some questions that are controversial, such as whether nanoparticles by themselves could cross the BBB and whether drugs are specifically transferred to the brain by actively targeted nanoparticles. Current non-nanoparticle strategies are also reviewed, such as delivery of drugs through the permeable BBB under pathological conditions and using non-invasive techniques to enhance brain drug uptake. Finally, one particular area that is often neglected in brain drug delivery is the influence of aging on the BBB, which is captured in this review based on the limited studies in the literature.
Collapse
|