1
|
Avloniti M, Evangelidou M, Gomini M, Loupis T, Emmanouil M, Mitropoulou A, Tselios T, Lassmann H, Gruart A, Delgado-García JM, Probert L, Kyrargyri V. IKKβ deletion from CNS macrophages increases neuronal excitability and accelerates the onset of EAE, while from peripheral macrophages reduces disease severity. J Neuroinflammation 2024; 21:34. [PMID: 38279130 PMCID: PMC10821407 DOI: 10.1186/s12974-024-03023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease characterized by motor deficits and cognitive decline. Many immune aspects of the disease are understood through studies in the experimental autoimmune encephalomyelitis (EAE) model, including the contribution of the NF-κB transcription factor to neuroinflammation. However, the cell-specific roles of NF-κB to EAE and its cognitive comorbidities still needs further investigation. We have previously shown that the myeloid cell NF-κB plays a role in the healthy brain by exerting homeostatic regulation of neuronal excitability and synaptic plasticity and here we investigated its role in EAE. METHODS We used constitutive MφIKKβΚΟ mice, in which depletion of IKKβ, the main activating kinase of NF-κB, was global to CNS and peripheral macrophages, and ΜgΙΚΚβKO mice, in which depletion was inducible and specific to CNS macrophages by 28 days after tamoxifen administration. We subjected these mice to MOG35-55 induced EAE and cuprizone-induced demyelination. We measured pathology by immunohistochemistry, investigated molecular mechanisms by RNA sequencing analysis and studied neuronal functions by in vivo electrophysiology in awake animals. RESULTS Global depletion of IKKβ from myeloid cells in MφIKKβΚΟ mice accelerated the onset and significantly supressed chronic EAE. Knocking out IKKβ only from CNS resident macrophages accelerated the onset and exacerbated chronic EAE, accompanied by earlier demyelination and immune cell infiltration but had no effect in cuprizone-induced demyelination. Peripheral T cell effector functions were not affected by myeloid cell deletion of IKKβ, but CNS resident mechanisms, such as microglial activation and neuronal hyperexcitability were altered from early in EAE. Lastly, depletion of myeloid cell IKKβ resulted in enhanced late long-term potentiation in EAE. CONCLUSIONS IKKβ-mediated activation of NF-κΒ in myeloid cells has opposing roles in EAE depending on the cell type and the disease stage. In CNS macrophages it is protective while in peripheral macrophages it is disease-promoting and acts mainly during chronic disease. Although clinically protective, CNS myeloid cell IKKβ deletion dysregulates neuronal excitability and synaptic plasticity in EAE. These effects of IKKβ on brain cognitive abilities deserve special consideration when therapeutic interventions that inhibit NF-κB are used in MS.
Collapse
Affiliation(s)
- Maria Avloniti
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Evangelidou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gomini
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Theodore Loupis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Haematology Research Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Mary Emmanouil
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Hans Lassmann
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Vasiliki Kyrargyri
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
2
|
Sorokina SS, Malkov AE, Rozanova OM, Smirnova EN, Shemyakov AE. Behavioral performance and microglial status in mice after moderate dose of proton irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:497-509. [PMID: 37794305 DOI: 10.1007/s00411-023-01044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Cognitive impairment is a remote effect of gamma radiation treatment of malignancies. The major part of the studies on the effect of proton irradiation (a promising alternative in the treatment of radio-resistant tumors and tumors located close to critical organs) on the cognitive abilities of laboratory animals and their relation to morphological changes in the brain is rather contradictory. The aim of this study was to investigate cognitive functions and the dynamics of changes in morphological parameters of hippocampal microglial cells after 7.5 Gy of proton irradiation. Two months after the cranial irradiation, 8- to 9-week-old male SHK mice were tested for total activity, spatial learning, as well as long- and short-term hippocampus-dependent memory. To estimate the morphological parameters of microglia, brain slices of control and irradiated animals each with different time after proton irradiation (24 h, 7 days, 1 month) were stained for microglial marker Iba-1. No changes in behavior or deficits in short-term and long-term hippocampus-dependent memory were found, but an impairment of episodic memory was observed. A change in the morphology of hippocampal microglial cells, which is characteristic of the transition of cells to an activated state, was detected. One day after proton exposure in the brain tissue, a slight decrease in cell density was observed, which was restored to the control level by the 30th day after treatment. The results obtained may be promising with regard to the future use of using high doses of protons per fraction in the irradiation of tumors.
Collapse
Affiliation(s)
- S S Sorokina
- Laboratory of Isotope Investigations, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia.
| | - A E Malkov
- Laboratory of Neurons Systematic Organization, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| | - O M Rozanova
- Laboratory of Cell Engineering, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| | - E N Smirnova
- Laboratory of Cell Engineering, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| | - A E Shemyakov
- Theranostics and Nuclear Medicine Laboratory, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| |
Collapse
|
3
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
4
|
Wang SK, Cepko CL. Targeting Microglia to Treat Degenerative Eye Diseases. Front Immunol 2022; 13:843558. [PMID: 35251042 PMCID: PMC8891158 DOI: 10.3389/fimmu.2022.843558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia have been implicated in many degenerative eye disorders, including retinitis pigmentosa, age-related macular degeneration, glaucoma, diabetic retinopathy, uveitis, and retinal detachment. While the exact roles of microglia in these conditions are still being discovered, evidence from animal models suggests that they can modulate the course of disease. In this review, we highlight current strategies to target microglia in the eye and their potential as treatments for both rare and common ocular disorders. These approaches include depleting microglia with chemicals or radiation, reprogramming microglia using homeostatic signals or other small molecules, and inhibiting the downstream effects of microglia such as by blocking cytokine activity or phagocytosis. Finally, we describe areas of future research needed to fully exploit the therapeutic value of microglia in eye diseases.
Collapse
Affiliation(s)
- Sean K. Wang
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- *Correspondence: Constance L. Cepko,
| |
Collapse
|
5
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Whitelaw BS, Tanny S, Johnston CJ, Majewska AK, O'Banion MK, Marples B. In Vivo Imaging of the Microglial Landscape After Whole Brain Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:1066-1071. [PMID: 34314813 PMCID: PMC8530951 DOI: 10.1016/j.ijrobp.2021.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Whole brain radiation therapy (WBRT) is an important treatment for patients with multiple brain metastases, but can also cause cognitive deterioration. Microglia, the resident immune cells of the brain, promote a proinflammatory environment and likely contribute to cognitive decline after WBRT. To investigate the temporal dynamics of the microglial reaction in individual mice to WBRT, we developed a novel in vivo experimental model using cranial window implants and longitudinal imaging. METHODS AND MATERIALS Chronic cranial windows were surgically implanted over the somatosensory cortex of transgenic Cx3cr1-enhanced green fluorescent protein (EGFP)/+ C57BL/6 mice, where microglia were fluorescently tagged with EGFP. Cx3cr1-EGFP/+ mice were also crossed with Thy1-YFP mice to fluorescently dual label microglia and subsets of neurons throughout the brain. Three weeks after window implantation and recovery, computed tomography image guided WBRT was delivered (single dose 10 Gy using two 5 Gy parallel-opposed lateral beams). Radiation dosing was confirmed using radiochromic film. Then, in vivo 2-photon microscopy was used to longitudinally image the microglial landscape and microglial motility at 7 days and 16 days after irradiation in the same mice. RESULTS Film dosimetry confirmed the average delivered dose per beam at midpoint was accurate within 2%, with no attenuation from the window frame. By 7 days after WBRT, significant changes in the microglial landscape were seen, characterized by apparent loss of microglial cells (20%) and significant rearrangements of microglial location with time after irradiation (36% of cells not found in original location). CONCLUSIONS Using longitudinal in vivo 2-photon imaging, this study demonstrated the feasibility of imaging microglia-neuron interactions and defining how microglia react to WBRT in the same mouse. Having demonstrated utility of the model, this experimental paradigm can be used to investigate the dynamic changes of many different brain cell types and their interactions after WBRT and uncover the underlying cellular mechanisms of WBRT-induced cognitive decline.
Collapse
Affiliation(s)
| | | | | | - Ania K Majewska
- Department of Neuroscience; Center for Visual Science; Del Monte Neuroscience Institute, University of Rochester, Rochester, New York
| | - M Kerry O'Banion
- Department of Neuroscience; Department of Neurology; Del Monte Neuroscience Institute, University of Rochester, Rochester, New York
| | | |
Collapse
|
7
|
Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer's disease. Proc Natl Acad Sci U S A 2021; 118:2013545118. [PMID: 33649184 DOI: 10.1073/pnas.2013545118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aβ) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aβ mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aβ burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.
Collapse
|
8
|
Wang J, Pan H, Lin Z, Xiong C, Wei C, Li H, Tong F, Dong X. Neuroprotective Effect of Fractalkine on Radiation-induced Brain Injury Through Promoting the M2 Polarization of Microglia. Mol Neurobiol 2021; 58:1074-1087. [PMID: 33089423 PMCID: PMC7878270 DOI: 10.1007/s12035-020-02138-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Radiation-induced brain injury (RIBI) is a serious complication in cancer patients receiving brain radiotherapy, and accumulating evidence suggests that microglial activation plays an important role in its pathogenesis. Fractalkine (FKN) is a crucial mediator responsible for the biological activity of microglia. In this study, the effect of FKN on activated microglial after irradiation and RIBI was explored and the underlying mechanisms were investigated. Our study demonstrated treatment with exogenous FKN diminished radiation-induced production of pro-inflammatory factors, such as IL1-β and TNFα, promoted transformation of microglial M1 phenotype to M2 phenotype after irradiation, and partially recovered the spatial memory of irradiated mice. Furthermore, upregulation of FKN/CX3CR1 via FKN lentivirus promoted radiation-induced microglial M2 transformation in the hippocampus and diminished the spatial memory injury of irradiated mice. Furthermore, while inhibiting the expression of CX3CR1, which exclusively expressed on microglia in the brain, the regulatory effect of FKN on microglia and cognitive ability of mice disappeared after radiation. In conclusion, the FKN could attenuate RIBI through the microglia polarization toward M2 phenotype by binding to CX3CR1 on microglia. Our study unveiled an important role of FKN/CX3CR1 in RIBI, indicating that promotion of FKN/CX3CR1 axis could be a promising strategy for the treatment of RIBI.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Huijiao Pan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Chunjin Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Chunhua Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Huanhuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022 People’s Republic of China
| |
Collapse
|
9
|
Paladini MS, Feng X, Krukowski K, Rosi S. Microglia depletion and cognitive functions after brain injury: From trauma to galactic cosmic ray. Neurosci Lett 2021; 741:135462. [PMID: 33259927 DOI: 10.1016/j.neulet.2020.135462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
|
10
|
Das D, Li J, Cheng L, Franco S, Mahairaki V. Human Forebrain Organoids from Induced Pluripotent Stem Cells: A Novel Approach to Model Repair of Ionizing Radiation-Induced DNA Damage in Human Neurons. Radiat Res 2020; 194:191-198. [PMID: 32845994 DOI: 10.1667/rr15567.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/30/2020] [Indexed: 11/03/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) can generate virtually any cell type and therefore are applied to studies of organ development, disease modeling, drug screening and cell replacement therapy. Under proper culture conditions in vitro induced pluripotent stem cells (iPSCs) can be differentiated to form organ-like tissues, also known as "organoids", which resemble organs more closely than cells, in vivo. We hypothesized that human brain organoids can be used as an experimental model to study mechanisms underlying DNA repair in human neurons and their progenitors after radiation-induced DNA double-strand breaks (DSBs), the most severe form of DNA damage. To this end, we customized a protocol for brain organoid generation that is time efficient. These organoids recapitulate key features of human cortical neuron development, including a subventricular zone containing neural progenitors that mature to postmitotic cortical neurons. Using immunofluorescence to measure DNA DSB markers, such as γ-H2AX and 53BP1, we quantified the kinetics of DSB repair in neural progenitors within the subventricular zone for up to 24 h after a single 2 Gy dose of ionizing radiation. Our data on DNA repair in progenitor versus mature neurons indicate a similar timeline: both repair DNA DSBs which is mostly resolved by 18 h postirradiation. However, repair kinetics are more acute in progenitors than mature neurons in the mature organoid. Overall, this study supports the use of 3D organoid culture technology as a novel platform to study DNA damage responses in developing or mature neurons, which has been previously difficult to study.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Radiation Oncology and Molecular Radiation Sciences, and the Sidney Kimmel Comprehensive Cancer Center.,Department of Neurology
| | | | - Linzhao Cheng
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sonia Franco
- Department of Radiation Oncology and Molecular Radiation Sciences, and the Sidney Kimmel Comprehensive Cancer Center
| | | |
Collapse
|
11
|
Hohsfield LA, Najafi AR, Ghorbanian Y, Soni N, Hingco EE, Kim SJ, Jue AD, Swarup V, Inlay MA, Green KN. Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. J Neuroinflammation 2020; 17:279. [PMID: 32951604 PMCID: PMC7504855 DOI: 10.1186/s12974-020-01931-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microglia, the primary resident myeloid cells of the brain, play critical roles in immune defense by maintaining tissue homeostasis and responding to injury or disease. However, microglial activation and dysfunction has been implicated in a number of central nervous system (CNS) disorders, thus developing tools to manipulate and replace these myeloid cells in the CNS is of therapeutic interest. METHODS Using whole body irradiation, bone marrow transplant, and colony-stimulating factor 1 receptor inhibition, we achieve long-term and brain-wide (~ 80%) engraftment and colonization of peripheral bone marrow-derived myeloid cells (i.e., monocytes) in the brain parenchyma and evaluated the long-term effects of their colonization in the CNS. RESULTS Here, we identify a monocyte signature that includes an upregulation in Ccr1, Ms4a6b, Ms4a6c, Ms4a7, Apobec1, Lyz2, Mrc1, Tmem221, Tlr8, Lilrb4a, Msr1, Nnt, and Wdfy1 and a downregulation of Siglech, Slc2a5, and Ccl21a/b. We demonstrate that irradiation and long-term (~ 6 months) engraftment of the CNS by monocytes induces brain region-dependent alterations in transcription profiles, astrocytes, neuronal structures, including synaptic components, and cognition. Although our results show that microglial replacement with peripherally derived myeloid cells is feasible and that irradiation-induced changes can be reversed by the replacement of microglia with monocytes in the hippocampus, we also observe that brain-wide engraftment of peripheral myeloid cells (relying on irradiation) can result in cognitive and synaptic deficits. CONCLUSIONS These findings provide insight into better understanding the role and complexity of myeloid cells in the brain, including their regulation of other CNS cells and functional outcomes.
Collapse
Affiliation(s)
- Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Allison R Najafi
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Yasamine Ghorbanian
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Edna E Hingco
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Sung Jin Kim
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Ayer Darling Jue
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Mathew A Inlay
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697-4545, USA.
| |
Collapse
|
12
|
Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain Behav Immun Health 2020; 4:100057. [PMID: 34589843 PMCID: PMC8474291 DOI: 10.1016/j.bbih.2020.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 Gy dose. Similarly, in a metastatic tumor model, prior CI (20 Gy) reduced microglial proliferation in response to tumor growth. The effect of irradiation was long-lasting; 20 Gy CI 6 months prior to stab injury significantly impaired microglial proliferation. We also investigated how stab and/or irradiation impacted levels of P2Y12R, CD68, CSF1, IL-34 and CSF1R, factors involved in the brain’s normal response to injury. P2Y12R, CD68, CSF1, and IL-34 expression were altered by stab similarly in irradiated mice and controls; however, CSF1R was differentially affected. qRT-PCR and flow cytometry analyses demonstrated that CI reduced overall Csf1r mRNA levels and microglial specific CSF1R protein expression, respectively. Interestingly, Csf1r mRNA levels increased after injury in unirradiated controls; however, Csf1r levels were persistently decreased in irradiated mice, and did not increase in response to stab. Together, our data demonstrate that CI leads to a significant and lasting impairment of microglial proliferation, possibly through a CSF1R-mediated mechanism. Irradiation leads to a long-term deficit in injury-induced microglial proliferation. Irradiation reduces microglial proliferation associated with tumor growth. Irradiation decreases microglial CSF1R and prevents its upregulation after injury.
Collapse
|
13
|
Frosina G, Marubbi D, Marcello D, Vecchio D, Daga A. The efficacy and toxicity of ATM inhibition in glioblastoma initiating cells-driven tumor models. Crit Rev Oncol Hematol 2019; 138:214-222. [PMID: 31092378 DOI: 10.1016/j.critrevonc.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/08/2023] Open
Abstract
The Ataxia Telangiectasia Mutated (ATM)-mediated DNA damage response (DDR) is a major mechanism of resistance of glioblastoma (GB) - initiating cells (GICs) to radiotherapy. The closely related Ataxia Telangiectasia and Rad3-related protein (ATR) is also involved in tumor resistance to radio- and chemotherapy. It has been shown that pharmacological inhibition of ATM protein may overcome the DDR-mediated resistance in GICs and significantly radiosensitize GIC-driven GB. Albeit not essential for life as shown by the decade-long lifespan of AT patients, the ATM protein may be involved in a number of important functions other than the response to DNA damage. We discuss our current knowledge about the toxicity of pharmacologic inhibition of ATM and ATR proteins.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Daniela Marubbi
- Regenerative Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.
| | - Diana Marcello
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Donatella Vecchio
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Antonio Daga
- Regenerative Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
14
|
Han J, Zhu K, Zhang X, Harris RA. Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia 2019; 67:217-231. [PMID: 30378163 PMCID: PMC6635749 DOI: 10.1002/glia.23529] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Microglia are prominent immune cells in the central nervous system (CNS) and are critical players in both neurological development and homeostasis, and in neurological diseases when dysfunctional. Our previous understanding of the phenotypes and functions of microglia has been greatly extended by a dearth of recent investigations. Distinct genetically defined subsets of microglia are now recognized to perform their own independent functions in specific conditions. The molecular profiling of single microglial cells indicates extensively heterogeneous reactions in different neurological disorders, resulting in multiple potentials for crosstalk with other kinds of CNS cells such as astrocytes and neurons. In settings of neurological diseases it could thus be prudent to establish effective cell-based therapies by targeting entire microglial networks. Notably, activated microglial depletion through genetic targeting or pharmacological therapies within a suitable time window can stimulate replenishment of the CNS niche with new microglia. Additionally, enforced repopulation through provision of replacement cells also represents a potential means of exchanging dysfunctional with functional microglia. In each setting the newly repopulated microglia might have the potential to resolve ongoing neuroinflammation. In this review, we aim to summarize the most recent knowledge of microglia and to highlight microglial depletion and subsequent repopulation as a promising cell replacement therapy. Although glial cell replacement therapy is still in its infancy and future translational studies are still required, the approach is scientifically sound and provides new optimism for managing the neurotoxicity and neuroinflammation induced by activated microglia.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Xing‐Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| |
Collapse
|
15
|
Shukla AK, McIntyre LL, Marsh SE, Schneider CA, Hoover EM, Walsh CM, Lodoen MB, Blurton-Jones M, Inlay MA. CD11a expression distinguishes infiltrating myeloid cells from plaque-associated microglia in Alzheimer's disease. Glia 2018; 67:844-856. [PMID: 30588668 DOI: 10.1002/glia.23575] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of age-related neurodegeneration and is characterized neuropathologically by the accumulation of insoluble beta-amyloid (Aβ) peptides. In AD brains, plaque-associated myeloid (PAM) cells cluster around Aβ plaques but fail to effectively clear Aβ by phagocytosis. PAM cells were originally thought to be brain-resident microglia. However, several studies have also suggested that Aβ-induced inflammation causes peripheral monocytes to enter the otherwise immune-privileged brain. The relationship between AD progression and inflammation in the brain remains ambiguous because microglia and monocyte-derived macrophages are extremely difficult to distinguish from one another in an inflamed brain. Whether PAM cells are microglia, peripheral macrophages, or a mixture of both remains unclear. CD11a is a component of the β2 integrin LFA1. We have determined that CD11a is highly expressed on peripheral immune cells, including macrophages, but is not expressed by mouse microglia. These expression patterns remain consistent in LPS-treated inflamed mice, as well as in two mouse models of AD. Thus, CD11a can be used as a marker to distinguish murine microglia from infiltrating peripheral immune cells. Using CD11a, we show that PAM cells in AD transgenic brains are comprised entirely of microglia. We also demonstrate a novel fluorescence-assisted quantification technique (FAQT), which reveals a significant increase in T lymphocytes, especially in the brains of female AD mice. Our findings support the notion that microglia are the lead myeloid players in AD and that rejuvenating their phagocytic potential may be an important therapeutic strategy.
Collapse
Affiliation(s)
- Ankita K Shukla
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Laura L McIntyre
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Samuel E Marsh
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, California
| | - Christine A Schneider
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Evelyn M Hoover
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Craig M Walsh
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Mathew Blurton-Jones
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, California
| | - Matthew A Inlay
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| |
Collapse
|