1
|
Sirko S, Della Vecchia P. Investigating the Pathology-Related Astroglial Plasticity in the Human Cerebral Cortex. Methods Mol Biol 2025; 2896:147-164. [PMID: 40111603 DOI: 10.1007/978-1-0716-4366-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Evaluation of astrocyte proliferation in human brain pathology plays a key role in the diagnostic and prognostic assessment of diseases, especially in cases of benign or malignant brain neoplasms. However, the proliferative potential of nonneoplastic astrocytes within the affected human brain parenchyma has not been well defined. Given the beneficial functions of proliferating reactive astrocytes for brain repair in experimental models of stroke and trauma, investigating the context-specific potential of human astrocytes to proliferate will be a major step forward in exploiting their roles in the genesis, progression, and outcome of neurological diseases in patients. Here, we describe a step-by-step protocol for immunofluorescent staining and neurosphere-forming assay tailored to uncover the astrocyte proliferation and neural stem cell properties in samples of human brain tissue obtained during neurosurgical resections or in a small brain biopsy. This protocol allows for reliable assessment and evaluation of adoptive astrocyte plasticity in the context with various neuropathological conditions in the human brain.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center, Faculty of Medicine, LMU, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany.
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center, Faculty of Medicine, LMU, Munich, Germany
| |
Collapse
|
2
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Cieri MB, Villarreal A, Gomez-Cuautle DD, Mailing I, Ramos AJ. Progression of reactive gliosis and astroglial phenotypic changes following stab wound-induced traumatic brain injury in mice. J Neurochem 2023; 167:183-203. [PMID: 37592830 DOI: 10.1111/jnc.15941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Astrocytes are the main homeostatic cells in the central nervous system (CNS) and they have an essential role in preserving neuronal physiology. After brain injury, astrocytes become reactive, and that involves a profound change in the astroglial gene expression program as well as intense cytoskeleton remodeling that has been classically shown by the up-regulation of glial fibrillary acidic protein (GFAP), a pan-reactive gene over-expressed in reactive astrocytes, independently of the type of injury. Using the stab wound rodent model of penetrating traumatic injury in the cortex, we here studied the reactive astroglial morphology and reactive microgliosis in detail at 1, 3, 7, 14, and 28 days post-injury (dpi). By combining immunohistochemistry, morphometrical parameters, and Sholl analysis, we segmented the astroglial cell population into clusters of reactive astrocytes that were localized in the core, penumbra, and distal regions of the stab wound. Specifically, highly reactive clusters with more complex morphology, increased C3, decreased aquaporin-4 (AQP4), and glutamine synthetase (GS) expression, were enriched at 7 dpi when behavioral alterations, microgliosis, and neuronal alterations in injured mice were most significant. While pro-inflammatory gain of function with peripheral lipopolysaccharide (LPS) administration immediately after a stab wound expanded these highly reactive astroglial clusters, the treatment with the NF-κB inhibitor sulfasalazine reduced the abundance of this highly reactive cluster. Increased neuronal loss and exacerbated reactive microgliosis at 7 dpi were associated with the expansion of the highly reactive astroglial cluster. We conclude that highly reactive astrocytes found in stab wound injury, but expanded in pro-inflammatory conditions, are a population of astrocytes that become engaged in pathological remodeling with a pro-inflammatory gain of function and loss of homeostatic capacity. Controlling this astroglial population may be a tempting strategy to reduce neuronal loss and neuroinflammation in the injured brain.
Collapse
Affiliation(s)
- Maria Belen Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Daniel Gomez-Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ingrid Mailing
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Muñoz-Ballester C, Robel S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech Dis 2023; 15:e1622. [PMID: 37332001 PMCID: PMC10526985 DOI: 10.1002/wsbm.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
Astrocytes respond to traumatic brain injury (TBI) with changes to their molecular make-up and cell biology, which results in changes in astrocyte function. These changes can be adaptive, initiating repair processes in the brain, or detrimental, causing secondary damage including neuronal death or abnormal neuronal activity. The response of astrocytes to TBI is often-but not always-accompanied by the upregulation of intermediate filaments, including glial fibrillary acidic protein (GFAP) and vimentin. Because GFAP is often upregulated in the context of nervous system disturbance, reactive astrogliosis is sometimes treated as an "all-or-none" process. However, the extent of astrocytes' cellular, molecular, and physiological adjustments is not equal for each TBI type or even for each astrocyte within the same injured brain. Additionally, new research highlights that different neurological injuries and diseases result in entirely distinctive and sometimes divergent astrocyte changes. Thus, extrapolating findings on astrocyte biology from one pathological context to another is problematic. We summarize the current knowledge about astrocyte responses specific to TBI and point out open questions that the field should tackle to better understand how astrocytes shape TBI outcomes. We address the astrocyte response to focal versus diffuse TBI and heterogeneity of reactive astrocytes within the same brain, the role of intermediate filament upregulation, functional changes to astrocyte function including potassium and glutamate homeostasis, blood-brain barrier maintenance and repair, metabolism, and reactive oxygen species detoxification, sex differences, and factors influencing astrocyte proliferation after TBI. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stefanie Robel
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
8
|
Grade S, Thomas J, Zarb Y, Thorwirth M, Conzelmann KK, Hauck SM, Götz M. Brain injury environment critically influences the connectivity of transplanted neurons. SCIENCE ADVANCES 2022; 8:eabg9445. [PMID: 35687687 PMCID: PMC9187233 DOI: 10.1126/sciadv.abg9445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration, and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative monosynaptic rabies virus (RABV) tracing unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain versus exuberant after TBI. In the latter, the initial overshoot is followed by pruning, with only a few input neurons persisting at 3 months. Proteomic profiling identifies candidate molecules for regulation of the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.
Collapse
Affiliation(s)
- Sofia Grade
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- Corresponding author. (S.G.); (S.M.H.); (M.G.)
| | - Judith Thomas
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Yvette Zarb
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
| | - Manja Thorwirth
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute Virology, Medical Faculty and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Center for Environmental Health, 85764 Neuherberg, Germany
- Corresponding author. (S.G.); (S.M.H.); (M.G.)
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Corresponding author. (S.G.); (S.M.H.); (M.G.)
| |
Collapse
|
9
|
Zheng RZ, Lee KY, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not. Front Immunol 2022; 13:855701. [PMID: 35392083 PMCID: PMC8981520 DOI: 10.3389/fimmu.2022.855701] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with high mortality and disability, with a substantial socioeconomic burden. With the standardization of the treatment process, there is increasing interest in the role that the secondary insult of TBI plays in outcome heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute sense, among which the inflammatory response was a complex cascade of events and can thus be regarded as a double-edged sword. Therefore, clinicians should take the generation and balance of neuroinflammation following TBI seriously. In this review, we summarize the current human and animal model studies of neuroinflammation and provide a better understanding of the inflammatory response in the different stages of TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic techniques have enabled us to identify a functional specific delineation of the immune cell in TBI patients. Based on recent advances in our understanding of immune cell activation, we present the difference between diffuse axonal injury and focal brain injury. In addition, we give a figurative profiling of the general paradigm in the pre- and post-injury inflammatory settings employing a bow-tie framework.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kuin-Yu Lee
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Mira RG, Lira M, Cerpa W. Traumatic Brain Injury: Mechanisms of Glial Response. Front Physiol 2021; 12:740939. [PMID: 34744783 PMCID: PMC8569708 DOI: 10.3389/fphys.2021.740939] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain’s response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain’s ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
11
|
Sagmeister S, Merl-Pham J, Petrera A, Deeg CA, Hauck SM. High glucose treatment promotes extracellular matrix proteome remodeling in Mller glial cells. PeerJ 2021; 9:e11316. [PMID: 34046254 PMCID: PMC8139267 DOI: 10.7717/peerj.11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background The underlying pathomechanisms in diabetic retinopathy (DR) remain incompletely understood. The aim of this study was to add to the current knowledge about the particular role of retinal Mller glial cells (RMG) in the initial processes of DR. Methods Applying a quantitative proteomic workflow, we investigated changes of primary porcine RMG under short term high glucose treatment as well as glycolysis inhibition treatment. Results We revealed significant changes in RMG proteome primarily in proteins building the extracellular matrix (ECM) indicating fundamental remodeling processes of ECM as novel rapid response to high glucose treatment. Among others, Osteopontin (SPP1) as well as its interacting integrins were significantly downregulated and organotypic retinal explant culture confirmed the selective loss of SPP1 in RMG upon treatment. Since SPP1 in the retina has been described neuroprotective for photoreceptors and functions against experimentally induced cell swelling, its rapid loss under diabetic conditions may point to a direct involvement of RMG to the early neurodegenerative processes driving DR. Data are available via ProteomeXchange with identifier PXD015879.
Collapse
Affiliation(s)
- Sandra Sagmeister
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany.,Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| |
Collapse
|
12
|
Ved R, Sharouf F, Harari B, Muzaffar M, Manivannan S, Ormonde C, Gray WP, Zaben M. Disulfide HMGB1 acts via TLR2/4 receptors to reduce the numbers of oligodendrocyte progenitor cells after traumatic injury in vitro. Sci Rep 2021; 11:6181. [PMID: 33731757 PMCID: PMC7971069 DOI: 10.1038/s41598-021-84932-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with poor clinical outcomes; autopsy studies of TBI victims demonstrate significant oligodendrocyte progenitor cell (OPC) death post TBI; an observation, which may explain the lack of meaningful repair of injured axons. Whilst high-mobility group box-1 (HMGB1) and its key receptors TLR2/4 are identified as key initiators of neuroinflammation post-TBI, they have been identified as attractive targets for development of novel therapeutic approaches to improve post-TBI clinical outcomes. In this report we establish unequivocal evidence that HMGB1 released in vitro impairs OPC response to mechanical injury; an effect that is pharmacologically reversible. We show that needle scratch injury hyper-acutely induced microglial HMGB1 nucleus-to-cytoplasm translocation and subsequent release into culture medium. Application of injury-conditioned media resulted in significant decreases in OPC number through anti-proliferative effects. This effect was reversed by co-treatment with the TLR2/4 receptor antagonist BoxA. Furthermore, whilst injury conditioned medium drove OPCs towards an activated reactive morphology, this was also abolished after BoxA co-treatment. We conclude that HMGB1, through TLR2/4 dependant mechanisms, may be detrimental to OPC proliferation following injury in vitro, negatively affecting the potential for restoring a mature oligodendrocyte population, and subsequent axonal remyelination. Further study is required to assess how HMGB1-TLR signalling influences OPC maturation and myelination capacity.
Collapse
Affiliation(s)
- R Ved
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - F Sharouf
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - B Harari
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - M Muzaffar
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - S Manivannan
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - C Ormonde
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - W P Gray
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - M Zaben
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
13
|
Zhang Z, Zhou H, Zhou J. Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States. Curr Med Chem 2021; 27:6384-6406. [PMID: 31333083 DOI: 10.2174/0929867326666190717112944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
14
|
Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathol Commun 2020; 8:146. [PMID: 32843103 PMCID: PMC7449013 DOI: 10.1186/s40478-020-01016-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 01/07/2023] Open
Abstract
NG2 is a type I transmembrane glycoprotein known as chondroitin sulfate proteoglycan 4 (CSPG4). In the healthy central nervous system, NG2 is exclusively expressed by oligodendrocyte progenitor cells and by vasculature pericytes. A large body of immunohistochemical studies showed that under pathological conditions such as acute brain injuries and experimental autoimmune encephalomyelitis (EAE), a number of activated microglia were NG2 immuno-positive, suggesting NG2 expression in these cells. Alternative explanations for the microglial NG2 labeling consider the biochemical properties of NG2 or the phagocytic activity of activated microglia. Reportedly, the transmembrane NG2 proteoglycan can be cleaved by a variety of proteases to deposit the NG2 ectodomain into the extracellular matrix. The ectodomain, however, could also stick to the microglial surface. Since microglia are phagocytic cells engulfing debris of dying cells, it is difficult to identify a genuine expression of NG2. Recent studies showing (1) pericytes giving rise to microglial after stroke, and (2) immune cells of NG2-EYFP knock-in mice lacking NG2 expression in an EAE model generated doubts for the de novo expression of NG2 in microglia after acute brain injuries. In the current study, we took advantage of three knock-in mouse lines (NG2-CreERT2, CX3CR1-EGFP and NG2-EYFP) to study NG2 expression indicated by transgenic fluorescent proteins in microglia after tMCAO (transient middle cerebral artery occlusion) or cortical stab wound injury (SWI). We provide strong evidence that NG2-expressing cells, including OPCs and pericytes, did not differentiate into microglia after acute brain injuries, whereas activated microglia did express NG2 in a disease-dependent manner. A subset of microglia continuously activated the NG2 gene at least within the first week after tMCAO, whereas within 3 days after SWI a limited number of microglia at the lesion site transiently expressed NG2. Immunohistochemical studies demonstrated that these microglia with NG2 gene activity also synthesized the NG2 protein, suggesting activated microglia as an additional source of the NG2 proteoglycan after acute brain injuries.
Collapse
|
15
|
Goulding DS, Vogel RC, Pandya CD, Shula C, Gensel JC, Mangano FT, Goto J, Miller BA. Neonatal hydrocephalus leads to white matter neuroinflammation and injury in the corpus callosum of Ccdc39 hydrocephalic mice. J Neurosurg Pediatr 2020; 25:476-483. [PMID: 32032950 PMCID: PMC7415550 DOI: 10.3171/2019.12.peds19625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to determine if hydrocephalus caused a proinflammatory state within white matter as is seen in many other forms of neonatal brain injury. Common causes of hydrocephalus (such as trauma, infection, and hemorrhage) are inflammatory insults themselves and therefore confound understanding of how hydrocephalus itself affects neuroinflammation. Recently, a novel animal model of hydrocephalus due to a genetic mutation in the Ccdc39 gene has been developed in mice. In this model, ciliary dysfunction leads to early-onset ventriculomegaly, astrogliosis, and reduced myelination. Because this model of hydrocephalus is not caused by an antecedent proinflammatory insult, it was utilized to study the effect of hydrocephalus on inflammation within the white matter of the corpus callosum. METHODS A Meso Scale Discovery assay was used to measure levels of proinflammatory cytokines in whole brain from animals with and without hydrocephalus. Immunohistochemistry was used to measure macrophage activation and NG2 expression within the white matter of the corpus callosum in animals with and without hydrocephalus. RESULTS In this model of hydrocephalus, levels of cytokines throughout the brain revealed a more robust increase in classic proinflammatory cytokines (interleukin [IL]-1β, CXCL1) than in immunomodulatory cytokines (IL-10). Increased numbers of macrophages were found within the corpus callosum. These macrophages were polarized toward a proinflammatory phenotype as assessed by higher levels of CD86, a marker of proinflammatory macrophages, compared to CD206, a marker for antiinflammatory macrophages. There was extensive structural damage to the corpus callosum of animals with hydrocephalus, and an increase in NG2-positive cells. CONCLUSIONS Hydrocephalus without an antecedent proinflammatory insult induces inflammation and tissue injury in white matter. Future studies with this model will be useful to better understand the effects of hydrocephalus on neuroinflammation and progenitor cell development. Antiinflammatory therapy for diseases that cause hydrocephalus may be a powerful strategy to reduce tissue damage.
Collapse
Affiliation(s)
- Danielle S. Goulding
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| | - R. Caleb Vogel
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| | - Chirayu D. Pandya
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
- Department of Physiology, University of Kentucky,
Lexington, Kentucky
| | - Francesco T. Mangano
- Division of Pediatric Neurosurgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Brandon A. Miller
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| |
Collapse
|
16
|
Kjell J, Götz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci 2020; 14:32. [PMID: 32153367 PMCID: PMC7050652 DOI: 10.3389/fncel.2020.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/09/2023] Open
Abstract
Central nervous system (CNS) injury results in chronic scar formation that interferes with function and inhibits repair. Extracellular matrix (ECM) is prominent in the scar and potently regulates cell behavior. However, comprehensive information about the ECM proteome is largely lacking, and region- as well as injury-specific differences are often not taken into account. These aspects are the focus of our perspective on injury and scar formation. To highlight the importance of such comprehensive proteome analysis we include data obtained with novel analysis tools of the ECM composition in the scar and show the contribution of monocytes to the ECM composition after traumatic brain injury (TBI). Monocyte invasion was reduced using the CCR2-/- mouse line and step-wise de-cellularization and proteomics allowed determining monocyte-dependent ECM composition and architecture of the glial scar. We find significant reduction in the ECM proteins Tgm1, Itih (1,2, and 3), and Ftl in the absence of monocyte invasion. We also describe the scar ECM comprising zones with distinctive composition and show a subacute signature upon comparison to proteome obtained at earlier times after TBI. These results are discussed in light of injury-, region- and time-specific regulation of scar formation highlighting the urgent need to differentiate injury conditions and CNS-regions using comprehensive ECM analysis.
Collapse
Affiliation(s)
- Jacob Kjell
- Division of Physiological Genomics, Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.,Departments of Neurology and Neurosurgery, Karolinska University Hospital, Solna, Sweden
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| |
Collapse
|
17
|
Mattugini N, Bocchi R, Scheuss V, Russo GL, Torper O, Lao CL, Götz M. Inducing Different Neuronal Subtypes from Astrocytes in the Injured Mouse Cerebral Cortex. Neuron 2019; 103:1086-1095.e5. [PMID: 31488328 PMCID: PMC6859713 DOI: 10.1016/j.neuron.2019.08.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/24/2019] [Accepted: 08/03/2019] [Indexed: 01/14/2023]
Abstract
Astrocytes are particularly promising candidates for reprogramming into neurons, as they maintain some of the original patterning information from their radial glial ancestors. However, to which extent the position of astrocytes influences the fate of reprogrammed neurons remains unknown. To elucidate this, we performed stab wound injury covering an entire neocortical column, including the gray matter (GM) and white matter (WM), and targeted local reactive astrocytes via injecting FLEx switch (Cre-On) adeno-associated viral (AAV) vectors into mGFAP-Cre mice. Single proneural factors were not sufficient for adequate reprogramming, although their combination with the nuclear receptor-related 1 protein (Nurr1) improved reprogramming efficiency. Nurr1 and Neurogenin 2 (Ngn2) resulted in high-efficiency reprogramming of targeted astrocytes into neurons that develop lamina-specific hallmarks, including the appropriate long-distance axonal projections. Surprisingly, in the WM, we did not observe any reprogrammed neurons, thereby unveiling a crucial role of region- and layer-specific differences in astrocyte reprogramming.
Collapse
Affiliation(s)
- Nicola Mattugini
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 2, 82152 Planegg/Martinsried, Germany
| | - Riccardo Bocchi
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany
| | - Volker Scheuss
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany
| | - Gianluca Luigi Russo
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 2, 82152 Planegg/Martinsried, Germany
| | - Olof Torper
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany
| | - Chu Lan Lao
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; SyNergy Excellence Cluster, Munich, Germany.
| |
Collapse
|
18
|
Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67:2221-2247. [PMID: 31429127 DOI: 10.1002/glia.23687] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are key cellular partners for neurons in the central nervous system. Astrocytes react to virtually all types of pathological alterations in brain homeostasis by significant morphological and molecular changes. This response was classically viewed as stereotypical and is called astrogliosis or astrocyte reactivity. It was long considered as a nonspecific, secondary reaction to pathological conditions, offering no clues on disease-causing mechanisms and with little therapeutic value. However, many studies over the last 30 years have underlined the crucial and active roles played by astrocytes in physiology, ranging from metabolic support, synapse maturation, and pruning to fine regulation of synaptic transmission. This prompted researchers to explore how these new astrocyte functions were changed in disease, and they reported alterations in many of them (sometimes beneficial, mostly deleterious). More recently, cell-specific transcriptomics revealed that astrocytes undergo massive changes in gene expression when they become reactive. This observation further stressed that reactive astrocytes may be very different from normal, nonreactive astrocytes and could influence disease outcomes. To make the picture even more complex, both normal and reactive astrocytes were shown to be molecularly and functionally heterogeneous. Very little is known about the specific roles that each subtype of reactive astrocytes may play in different disease contexts. In this review, we have interrogated researchers in the field to identify and discuss points of consensus and controversies about reactive astrocytes, starting with their very name. We then present the emerging knowledge on these cells and future challenges in this field.
Collapse
Affiliation(s)
- Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Océane Guillemaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The underlying mechanisms responsible for chronic and progressive neurological damage after traumatic brain injury (TBI) are poorly understood, and therefore, current treatment options are limited. Proteomics is an emerging methodology to study changes to the TBI proteome in both patients and experimental models. RECENT FINDINGS Although experimentally complex, mass spectrometry-based proteomics approaches are converging on a set of common methods. However, these methods are being applied to an increasingly diverse range of experimental models and types of injury. SUMMARY In this review, our aim is to briefly describe experimental TBI models and the underlying methods common to most proteomic approaches. We will then review a series of articles that have recently appeared in which these approaches have been applied to important TBI questions. We will summarize several recent experimental studies, and suggest how the results of these emerging studies might impact future research as well as patient treatment.
Collapse
|
20
|
Dukhinova M, Kuznetsova I, Kopeikina E, Veniaminova E, Yung AWY, Veremeyko T, Levchuk K, Barteneva NS, Wing-Ho KK, Yung WH, Liu JYH, Rudd J, Yau SSY, Anthony DC, Strekalova T, Ponomarev ED. Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain Behav Immun 2018; 74:7-27. [PMID: 30217533 DOI: 10.1016/j.bbi.2018.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
It is generally accepted that inflammation within the CNS contributes to neurodegeneration after traumatic brain injury (TBI), but it is not clear how inflammation is initiated in the absence of infection and whether this neuroinflammation is predominantly beneficial or detrimental. We have previously found that brain-enriched glycosphingolipids within neuronal lipid rafts (NLR) induced platelet degranulation and secretion of neurotransmitters and pro-inflammatory factors. In the present study, we compared TBI-induced inflammation and neurodegeneration in wild-type vs. St3gal5 deficient (ST3-/-) mice that lack major CNS-specific glycosphingolipids. After TBI, microglial activation and CNS macrophage infiltration were substantially reduced in ST3-/- animals. However, ST3-/- mice had a larger area of CNS damage with marked neuronal/axonal loss. The interaction of platelets with NLR stimulated neurite growth, increased the number of PSD95-positive dendritic spines, and intensified neuronal activity. Adoptive transfer and blocking experiments provide further that platelet-derived serotonin and platelet activating factor plays a key role in the regulation of sterile neuroinflammation, hemorrhage and neuronal plasticity after TBI.
Collapse
Affiliation(s)
- Marina Dukhinova
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Inna Kuznetsova
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Ekaterina Kopeikina
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Ekaterina Veniaminova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow, 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology, Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Amanda W Y Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Tatyana Veremeyko
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Kseniia Levchuk
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kenny Kam Wing-Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Julia Y H Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - John Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow, 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology, Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong; Kunming Institute of Zoology and Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunmin-Hong Kong, China.
| |
Collapse
|
21
|
Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK, Kokiko-Cochran ON, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia 2018; 66:2719-2736. [PMID: 30378170 DOI: 10.1002/glia.23523] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Microglia undergo dynamic structural and transcriptional changes during the immune response to traumatic brain injury (TBI). For example, TBI causes microglia to form rod-shaped trains in the cerebral cortex, but their contribution to inflammation and pathophysiology is unclear. The purpose of this study was to determine the origin and alignment of rod microglia and to determine the role of microglia in propagating persistent cortical inflammation. Here, diffuse TBI in mice was modeled by midline fluid percussion injury (FPI). Bone marrow chimerism and BrdU pulse-chase experiments revealed that rod microglia derived from resident microglia with limited proliferation. Novel data also show that TBI-induced rod microglia were proximal to axotomized neurons, spatially overlapped with dense astrogliosis, and aligned with apical pyramidal dendrites. Furthermore, rod microglia formed adjacent to hypertrophied microglia, which clustered among layer V pyramidal neurons. To better understand the contribution of microglia to cortical inflammation and injury, microglia were eliminated prior to TBI by CSF1R antagonism (PLX5622). Microglial elimination did not affect cortical neuron axotomy induced by TBI, but attenuated rod microglial formation and astrogliosis. Analysis of 262 immune genes revealed that TBI caused profound cortical inflammation acutely (8 hr) that progressed in nature and complexity by 7 dpi. For instance, gene expression related to complement, phagocytosis, toll-like receptor signaling, and interferon response were increased 7 dpi. Critically, these acute and chronic inflammatory responses were prevented by microglial elimination. Taken together, TBI-induced neuronal injury causes microglia to structurally associate with neurons, augment astrogliosis, and propagate diverse and persistent inflammatory/immune signaling pathways.
Collapse
Affiliation(s)
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Julia E Dziabis
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Brooke N Benner
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | | | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| |
Collapse
|