1
|
Liu S, Liu J, Li X, Du X, Yin C, Luo Y, Li C. Fluorescent Particles Based on Aggregation-Induced Emission for Optical Diagnostics of the Central Nervous System. RESEARCH (WASHINGTON, D.C.) 2025; 8:0564. [PMID: 39866911 PMCID: PMC11757665 DOI: 10.34133/research.0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
In 2001, Tang's team discovered a unique type of luminogens with substantial enhanced fluorescence upon aggregation and introduced the concept of "aggregation-induced emission (AIE)". Unlike conventional fluorescent materials, AIE luminogens (AIEgens) emit weak or no fluorescence in solution but become highly fluorescent in aggregated or solid states, due to a mechanism known as restriction of intramolecular motions (RIM). Initially considered a purely inorganic chemical phenomenon, AIE was later applied in biomedicine to improve the sensitivity of immunoassays. Subsequently, AIE has been extensively explored in various biomedical applications, especially in cell imaging. Early studies achieved nonspecific cell imaging using nontargeted AIEgens, and later, specific cellular imaging was realized through the design of targeted AIEgens. These advancements have enabled the visualization of various biomacromolecules and intracellular organelles, providing valuable insights into cellular microenvironments and statuses. Neurological disorders affect over 3 billion people worldwide, highlighting the urgent need for advanced diagnostic and therapeutic tools. AIEgens offer promising opportunities for imaging the central nervous system (CNS), including nerve cells, neural tissues, and blood vessels. This review focuses on the application of AIEgens in CNS imaging, exploring their roles in the diagnosis of various neurological diseases. We will discuss the evolution and conclude with an outlook on the future challenges and opportunities for AIEgens in clinical diagnostics and therapeutics of CNS disorders.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jinkuan Liu
- School of Medicine,
University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xue Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
| | - Xiaoxin Du
- Office of Scientific Research & Development,
University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yong Luo
- Department of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610031, China
| | - Chenzhong Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
- Biomedical Engineering, School of Medicine,
The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
2
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nat Commun 2024; 15:6979. [PMID: 39143079 PMCID: PMC11324877 DOI: 10.1038/s41467-024-51016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
3
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. Cell Rep 2024; 43:114385. [PMID: 38935500 PMCID: PMC11304498 DOI: 10.1016/j.celrep.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Oligodendrocyte death is common in aging and neurodegenerative disease. In these conditions, dying oligodendrocytes must be efficiently removed to allow remyelination and to prevent a feedforward degenerative cascade. Removal of this cellular debris is thought to primarily be carried out by resident microglia. To investigate the cellular dynamics underlying how microglia do this, we use a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice. Following phagocytosis, single microglia clear the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delays the microglial phagocytosis of the cell soma but has no effect on clearance of myelin sheaths. Unexpectedly, deletion of the phosphatidylserine receptor, MERTK, has no effect on oligodendrocyte or myelin sheath clearance. Thus, separate molecular signals are used to detect, engage, and clear distinct sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
Gronseth JR, Nelson HN, Johnson TL, Mallon TA, Martell MR, Pfaffenbach KA, Duxbury BB, Henke JT, Treichel AJ, Hines JH. Synaptic vesicle release regulates pre-myelinating oligodendrocyte-axon interactions in a neuron subtype-specific manner. Front Cell Neurosci 2024; 18:1386352. [PMID: 38841202 PMCID: PMC11150666 DOI: 10.3389/fncel.2024.1386352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Oligodendrocyte-lineage cells are central nervous system (CNS) glia that perform multiple functions including the selective myelination of some but not all axons. During myelination, synaptic vesicle release from axons promotes sheath stabilization and growth on a subset of neuron subtypes. In comparison, it is unknown if pre-myelinating oligodendrocyte process extensions selectively interact with specific neural circuits or axon subtypes, and whether the formation and stabilization of these neuron-glia interactions involves synaptic vesicle release. In this study, we used fluorescent reporters in the larval zebrafish model to track pre-myelinating oligodendrocyte process extensions interacting with spinal axons utilizing in vivo imaging. Monitoring motile oligodendrocyte processes and their interactions with individually labeled axons revealed that synaptic vesicle release regulates the behavior of subsets of process extensions. Specifically, blocking synaptic vesicle release decreased the longevity of oligodendrocyte process extensions interacting with reticulospinal axons. Furthermore, blocking synaptic vesicle release increased the frequency that new interactions formed and retracted. In contrast, tracking the movements of all process extensions of singly-labeled oligodendrocytes revealed that synaptic vesicle release does not regulate overall process motility or exploratory behavior. Blocking synaptic vesicle release influenced the density of oligodendrocyte process extensions interacting with reticulospinal and serotonergic axons, but not commissural interneuron or dopaminergic axons. Taken together, these data indicate that alterations to synaptic vesicle release cause changes to oligodendrocyte-axon interactions that are neuron subtype specific.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
5
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.570620. [PMID: 38168326 PMCID: PMC10760041 DOI: 10.1101/2023.12.11.570620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Oligodendrocyte death is common in aging and neurodegenerative diseases. In these conditions, single dying oligodendrocytes must be efficiently removed to allow remyelination and prevent a feed-forward degenerative cascade. Here we used a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice to investigate the cellular dynamics underlying how brain resident microglia remove these cellular debris. Following phagocytic engagement, single microglia cleared the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delayed microglia engagement with the cell soma but unexpectedly did not affect the clearance of myelin sheaths. Furthermore, and in contrast to previous reports in other demyelination models, deletion of the phosphatidylserine receptor, MERTK, did not affect oligodendrocyte or myelin sheath clearance. Thus, distinct molecular signals are used to detect, engage, and clear sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E. Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N. Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570104. [PMID: 38106204 PMCID: PMC10723275 DOI: 10.1101/2023.12.05.570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the central nervous system. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expanded concurrently with a change in subcellular partitioning towards the distal processes. These changes were followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion took 3 days. Oligodendrocyte mitochondria were stationary over days while OPC mitochondrial motility was modulated by animal arousal state within minutes. Aged OPCs also displayed decreased mitochondrial size, content, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
7
|
Chang SR, Liu JG, Li H, Liu MX, Shi DD, Zhou LJ. Pharmaceutical and pharmacological studies of Shen Ma Yi Zhi granule for prevention of vascular dementia: A review. Front Neurosci 2022; 16:1044572. [PMID: 36507350 PMCID: PMC9731835 DOI: 10.3389/fnins.2022.1044572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background: With dementia significantly increasing hospitalization and disability rates, worldwide aging of the population presents major challenges to public health. The majority of cases of cognitive dysfunction among the elderly, however, are characterized by an identifiable, preventable and treatable vascular component. As such, increased study of preventative methods in the context of dementia is warranted. Traditional Chinese medicine compounds have been reported to be neuroprotective and improve cognitive function via a variety of mechanisms. Shen Ma Yi Zhi granule (SMYZG) is one such collection of compounds that has been proven clinically effective. Pharmacological mechanisms of action, pharmacokinetics and clinical applications of SMYZG have been previously studied using a variety of vascular dementia animal models. SMYZG activates and regulates four main signaling pathways relevant to vascular dementia including the AMPK/PPARα/PGC-1α/UCP2, Nrf2/HO-1, HIF-1/VEGF/Notch, and VEGF/Flk-1/p8 MAPK pathways. Furthermore, SMYZG influences anti-inflammatory and anti-oxidant stress responses, reverses demyelination of brain white matter and vascular endothelium, regulates pericyte function and normalizes mitochondrial metabolism. Neuroprotective effects of SMYZG, as well as those promoting regeneration of vascular endothelium, have also been reported in studies of rat models of vascular dementia. Future research concerning SMYG is warranted for development of vascular dementia preventative management strategies.
Collapse
Affiliation(s)
- Su-rui Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-gang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China,*Correspondence: Jian-gang Liu,
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China,Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| | - Mei-xia Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan-dan Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-juan Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
H-ABC tubulinopathy revealed by label-free second harmonic generation microscopy. Sci Rep 2022; 12:14417. [PMID: 36002546 PMCID: PMC9402540 DOI: 10.1038/s41598-022-18370-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum is a recently described tubulinopathy caused by a mutation in the tubulin beta 4a isoform, expressed in oligodendrocytes. The taiep rat is the only spontaneous tubulin beta 4a mutant available for the study of this pathology. We aimed to identify the effects of the tubulin mutation on freshly collected, unstained samples of the central white matter of taiep rats using second harmonic generation microscopy. Cytoskeletal differences between the central white matter of taiep rats and control animals were found. Nonlinear emissions from the processes and somata of oligodendrocytes in tubulin beta 4a mutant rats were consistently detected, in the shape of elongated structures and cell-like bodies, which were never detected in the controls. This signal represents the second harmonic trademark of the disease. The tissue was also fluorescently labeled and analyzed to corroborate the origin of the nonlinear signal. Besides enabling the description of structural and molecular aspects of H-ABC, our data open the door to the diagnostic use of nonlinear optics in the study of neurodegenerative diseases, with the additional advantage of a label-free approach that preserves tissue morphology and vitality.
Collapse
|
9
|
Meschkat M, Steyer AM, Weil MT, Kusch K, Jahn O, Piepkorn L, Agüi-Gonzalez P, Phan NTN, Ruhwedel T, Sadowski B, Rizzoli SO, Werner HB, Ehrenreich H, Nave KA, Möbius W. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun 2022; 13:1163. [PMID: 35246535 PMCID: PMC8897471 DOI: 10.1038/s41467-022-28720-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes. Myelin is formed of proteins of long half-lives. The mechanisms of renewal of such a stable structure are unclear. Here, the authors show that myelin integrity requires continuous myelin synthesis at the inner tongue, contributing to the maintenance of a functional axon-myelin unit.
Collapse
Affiliation(s)
- Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Abberior Instruments GmbH, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Imaging Centre, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marie-Theres Weil
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nhu Thi Ngoc Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Silvio O Rizzoli
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Garcia-Martin G, Sanz-Rodriguez M, Alcover-Sanchez B, Pereira MP, Wandosell F, Cubelos B. R-Ras1 and R-Ras2 Expression in Anatomical Regions and Cell Types of the Central Nervous System. Int J Mol Sci 2022; 23:978. [PMID: 35055164 PMCID: PMC8781598 DOI: 10.3390/ijms23020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Since the optic nerve is one of the most myelinated tracts in the central nervous system (CNS), many myelin diseases affect the visual system. In this sense, our laboratory has recently reported that the GTPases R-Ras1 and R-Ras2 are essential for oligodendrocyte survival and maturation. Hypomyelination produced by the absence of one or both proteins triggers axonal degeneration and loss of visual and motor function. However, little is known about R-Ras specificity and other possible roles that they could play in the CNS. In this work, we describe how a lack of R-Ras1 and/or R-Ras2 could not be compensated by increased expression of the closely related R-Ras3 or classical Ras. We further studied R-Ras1 and R-Ras2 expression within different CNS anatomical regions, finding that both were more abundant in less-myelinated regions, suggesting their expression in non-oligodendroglial cells. Finally, using confocal immunostaining colocalization, we report for the first time that R-Ras2 is specifically expressed in neurons. Neither microglia nor astrocytes expressed R-Ras1 or R-Ras2. These results open a new avenue for the study of neuronal R-Ras2's contribution to the process of myelination.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Miriam Sanz-Rodriguez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Marta P. Pereira
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
11
|
A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D. Proc Natl Acad Sci U S A 2021; 118:2106143118. [PMID: 34740969 PMCID: PMC8609329 DOI: 10.1073/pnas.2106143118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
The high spatial resolution of three-dimensional (3D) fluorescence imaging of myelinated fibers will greatly facilitate the understanding of 3D neural networks and the pathophysiology of demyelinating diseases. However, existing myelin probes are far from satisfactory because of their low–signal-to-background ratio and poor tissue permeability. We herein developed a near-infrared aggregation-induced emission-active probe, PM-ML, for high-performance myelin imaging. PM-ML could specifically image myelinated fibers in teased sciatic nerves and mouse brain tissues with high contrast, good photostability, and deep penetration depth. PM-ML staining is compatible with several tissue-clearing methods. Its application in assessing myelination for neuropathological studies was also demonstrated using a multiple sclerosis mouse model. Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high–signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue–clearing methods, such as ClearT and ClearT2. The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.
Collapse
|
12
|
Han D, Zhang B, Dong J, Yang B, Peng Y, Wang J, Wang L. 1,2-Dimyristoyl- sn-glycero-3-phosphocholine promotes the adhesion of nanoparticles to bio-membranes and transport in rat brain. RSC Adv 2021; 11:35455-35462. [PMID: 35493146 PMCID: PMC9043267 DOI: 10.1039/d1ra01737c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/17/2021] [Indexed: 12/16/2022] Open
Abstract
1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) coated on the surface of superparamagnetic iron oxide nanoparticles (SPIONs) has advantages in neurotherapy and drug delivery. In this study, the surface of polyvinylpyrrolidone (PVP)-SPIONs was modified with DMPC, then PVP-SPIONs and DMPC/PVP-SPIONs were co-incubated with rat adrenal pheochromocytoma (PC-12) cells to observe the effect of DMPC on the distribution of SPIONs in cells, and further PVP-SPIONs and DMPC/PVP-SPIONs were implanted into the substantia nigra of Sprague-Dawley (SD) rats by stereotaxic injection, and the brain tissues were removed at both twenty-four hours and seven days after injection. The distribution and transport of nanoparticles in the substantia nigra in vivo were explored in these different time periods. The results show that DMPC/PVP-SPIONs were effectively distributed on the membranes of axons, as well as dendritic and myelin sheaths. The attachment of nanoparticles to bio-membranes in the brain could result from similar phospholipid structures of DMPC and the membranes. In addition, DMPC/PVP-SPIONs were transported in the brain faster than those without DMPC. In vitro experiments found that DMPC/PVP-SPIONs enter cells more easily. These characteristics of iron oxide nanoparticles that are modified by phospholipids lead to potential applications in drug delivery or activating neuron membrane channels. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) coated on the surface of superparamagnetic iron oxide nanoparticles (SPIONs) has advantages in neurotherapy and drug delivery.![]()
Collapse
Affiliation(s)
- Dong Han
- College of Materials Science and Engineering, Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology Guilin 541004 Guangxi China .,Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Affiliated Hospital of Guilin Medical University, Guilin Medical University Guilin Guangxi 541004 China
| | - Baolin Zhang
- College of Materials Science and Engineering, Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology Guilin 541004 Guangxi China
| | - Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Affiliated Hospital of Guilin Medical University, Guilin Medical University Guilin Guangxi 541004 China
| | - Boning Yang
- Guangxi Collaborative Innovation Center for Biomedicine, Department of Human Anatomy, Guangxi Medical University Nanning 530021 Guangxi China
| | - Yuntao Peng
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Affiliated Hospital of Guilin Medical University, Guilin Medical University Guilin Guangxi 541004 China
| | - Junfeng Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Affiliated Hospital of Guilin Medical University, Guilin Medical University Guilin Guangxi 541004 China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Affiliated Hospital of Guilin Medical University, Guilin Medical University Guilin Guangxi 541004 China
| |
Collapse
|
13
|
Fletcher JL, Dill LK, Wood RJ, Wang S, Robertson K, Murray SS, Zamani A, Semple BD. Acute treatment with TrkB agonist LM22A-4 confers neuroprotection and preserves myelin integrity in a mouse model of pediatric traumatic brain injury. Exp Neurol 2021; 339:113652. [PMID: 33609501 DOI: 10.1016/j.expneurol.2021.113652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Young children have a high risk of sustaining a traumatic brain injury (TBI), which can have debilitating life-long consequences. Importantly, the young brain shows particular vulnerability to injury, likely attributed to ongoing maturation of the myelinating nervous system at the time of insult. Here, we examined the effect of acute treatment with the partial tropomyosin receptor kinase B (TrkB) agonist, LM22A-4, on pathological and neurobehavioral outcomes after pediatric TBI, with the hypothesis that targeting TrkB would minimize tissue damage and support functional recovery. We focused on myelinated tracts-the corpus callosum and external capsules-based on recent evidence that TrkB activation potentiates oligodendrocyte remyelination. Male mice at postnatal day 21 received an experimental TBI or sham surgery. Acutely post-injury, extensive cell death, a robust glial response and disruption of compact myelin were evident in the injured brain. TBI or sham mice then received intranasal saline vehicle or LM22A-4 for 14 days. Behavior testing was performed from 4 weeks post-injury, and brains were collected at 5 weeks for histology. TBI mice showed hyperactivity, reduced anxiety-like behavior, and social memory impairments. LM22A-4 ameliorated the abnormal anxiolytic phenotype but had no effect on social memory deficits. Use of spectral confocal reflectance microscopy detected persistent myelin fragmentation in the external capsule of TBI mice at 5 weeks post-injury, which was accompanied by regionally distinct deficits in oligodendrocyte progenitor cells and post-mitotic oligodendrocytes, as well as chronic reactive gliosis and atrophy of the corpus callosum and injured external capsule. LM22A-4 treatment ameliorated myelin deficits in the perilesional external capsule, as well as tissue volume loss and the extent of reactive gliosis. However, there was no effect of this TrkB agonist on oligodendroglial populations detected at 5 weeks post-injury. Collectively, our results demonstrate that targeting TrkB immediately after TBI during early life confers neuroprotection and preserves myelin integrity, and this was associated with some improved neurobehavioral outcomes as the pediatric injured brain matures.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhiannon J Wood
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Sharon Wang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kate Robertson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Alcover-Sanchez B, Garcia-Martin G, Escudero-Ramirez J, Gonzalez-Riano C, Lorenzo P, Gimenez-Cassina A, Formentini L, de la Villa-Polo P, Pereira MP, Wandosell F, Cubelos B. Absence of R-Ras1 and R-Ras2 causes mitochondrial alterations that trigger axonal degeneration in a hypomyelinating disease model. Glia 2020; 69:619-637. [PMID: 33010069 DOI: 10.1002/glia.23917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Fast synaptic transmission in vertebrates is critically dependent on myelin for insulation and metabolic support. Myelin is produced by oligodendrocytes (OLs) that maintain multilayered membrane compartments that wrap around axonal fibers. Alterations in myelination can therefore lead to severe pathologies such as multiple sclerosis. Given that hypomyelination disorders have complex etiologies, reproducing clinical symptoms of myelin diseases from a neurological perspective in animal models has been difficult. We recently reported that R-Ras1-/- and/or R-Ras2-/- mice, which lack GTPases essential for OL survival and differentiation processes, present different degrees of hypomyelination in the central nervous system with a compounded hypomyelination in double knockout (DKO) mice. Here, we discovered that the loss of R-Ras1 and/or R-Ras2 function is associated with aberrant myelinated axons with increased numbers of mitochondria, and a disrupted mitochondrial respiration that leads to increased reactive oxygen species levels. Consequently, aberrant myelinated axons are thinner with cytoskeletal phosphorylation patterns typical of axonal degeneration processes, characteristic of myelin diseases. Although we observed different levels of hypomyelination in a single mutant mouse, the combined loss of function in DKO mice lead to a compromised axonal integrity, triggering the loss of visual function. Our findings demonstrate that the loss of R-Ras function reproduces several characteristics of hypomyelinating diseases, and we therefore propose that R-Ras1-/- and R-Ras2-/- neurological models are valuable approaches for the study of these myelin pathologies.
Collapse
Affiliation(s)
- Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Escudero-Ramirez
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carolina Gonzalez-Riano
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Paz Lorenzo
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alfredo Gimenez-Cassina
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro de la Villa-Polo
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain.,Grupo de Neurofisiología Visual, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta P Pereira
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
15
|
Chausse B, Kakimoto PA, Kann O. Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol 2020; 112:137-144. [PMID: 32807643 DOI: 10.1016/j.semcdb.2020.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
Abstract
Microglia are universal sensors of alterations in CNS physiology. These cells integrate complex molecular signals and undergo comprehensive phenotypical remodeling to adapt inflammatory responses. In the last years, single-cell analyses have revealed that microglia exhibit diverse phenotypes during development, growth and disease. Emerging evidence suggests that such phenotype transitions are mediated by reprogramming of cell metabolism. Indeed, metabolic pathways are distinctively altered in activated microglia and are central nodes controlling microglial responses. Microglial lipid metabolism has been specifically involved in the control of microglial activation and effector functions, such as migration, phagocytosis and inflammatory signaling, and minor disturbances in microglial lipid handling associates with altered brain function in disorders featuring neuroinflammation. In this review, we explore new and relevant aspects of microglial metabolism in health and disease. We give special focus on how different branches of lipid metabolism, such as lipid sensing, synthesis and oxidation, integrate and control essential aspects of microglial biology, and how disturbances in these processes associate with aging and the pathogenesis of, for instance, multiple sclerosis and Alzheimer's disease. Finally, challenges and advances in microglial lipid research are discussed.
Collapse
Affiliation(s)
- Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | - Pamela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brazil
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Chapman TW, Hill RA. Myelin plasticity in adulthood and aging. Neurosci Lett 2019; 715:134645. [PMID: 31765728 DOI: 10.1016/j.neulet.2019.134645] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022]
Abstract
The central nervous system maintains the potential for molecular and cellular plasticity throughout life. This flexibility underlies fundamental features of neural circuitry including the brain's ability to sense, store, and properly adapt to everchanging external stimuli on time scales from seconds to years. Evidence for most forms of plasticity are centered around changes in neuronal structure and synaptic strength, however recent data suggests that myelinating oligodendrocytes exhibit certain forms of plasticity in the adult. This plasticity ranges from the generation of entirely new myelinating cells to more subtle changes in myelin sheath length, thickness, and distribution along axons. The extent to which these changes dynamically modify axonal function and neural circuitry and whether they are directly related to mechanisms of learning and memory remains an open question. Here we describe different forms of myelin plasticity, highlight some recent evidence for changes in myelination throughout life, and discuss how defects in these forms of plasticity could be associated with cognitive decline in aging.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|