1
|
Lewandowska J, Majewski J, Roszek K. Extracellular Vesicles and Purinergic Signaling in Alzheimer's Disease-Joining Forces for Novel Therapeutic Approach. Brain Sci 2025; 15:570. [PMID: 40563742 DOI: 10.3390/brainsci15060570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/21/2025] [Accepted: 05/24/2025] [Indexed: 06/28/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are a global problem affecting millions of people. Thanks to years of research and huge efforts, it has been possible to discover the pathophysiological changes accompanying Alzheimer's disease at the cellular level. It turns out that the formation of amyloid-beta plaques and hyperphosphorylation of tau protein in the brain play a key role in disease development. Purinergic signaling (PS) is implicated in the pathophysiology of several disorders in the central nervous system, and recent findings link some disturbances in PS with Alzheimer's disease. The primary objective of our review is to comprehensively explore and identify key purinergic signaling targets that hold therapeutic potential in the treatment of patients suffering from the disease. In particular, we focus on the dual role of purinergic compounds and extracellular vesicles (EVs), which have emerged as critical components in cellular communication and disease modulation. The extracellular vesicles that are naturally released by various cells fulfill the role of communication tools, also by harnessing the purinergic compounds. In this context, our review presents a thorough and integrative analysis of how extracellular vesicles can influence purinergic signaling and how this interaction might be leveraged to develop novel, targeted treatment strategies. Ultimately, this line of research may lead to innovative therapeutic approaches that are not only effective in slowing or halting disease progression but also demonstrate a high degree of biocompatibility and safety for the human organism.
Collapse
Affiliation(s)
- Julita Lewandowska
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Jakub Majewski
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
2
|
Khanra NK, Wang C, Delgado BD, Long SB. Structure of the human TWIK-2 potassium channel and its inhibition by pimozide. Proc Natl Acad Sci U S A 2025; 122:e2425709122. [PMID: 40343992 DOI: 10.1073/pnas.2425709122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
The potassium channel TWIK-2 is crucial for ATP-induced activation of the NLRP3 inflammasome in macrophages. The channel is a member of the two-pore domain potassium (K2P) channel superfamily and an emerging therapeutic target to mitigate severe inflammatory injury involving NLRP3 activation. We report the cryo-EM structure of human TWIK-2. In comparison to other K2P channels, the structure reveals an unusual "up" conformation of Tyr111 in the selectivity filter and a resulting SF1-P1 pocket behind the filter. Density for acyl chains is present in fenestrations within the transmembrane region that connects the central cavity of the pore to the lipid membrane. Despite its importance as a drug target, limited pharmacological tools are available for TWIK-2. A previous study suggested that the FDA-approved small molecule pimozide might inhibit TWIK-2. Using a reconstituted system, we show that pimozide directly inhibits the channel and we determine a cryo-EM structure of a complex with the drug. Pimozide displaces the acyl chains within the fenestrations and binds below the selectivity filter where it would impede ion permeation. The drug may access its binding site by lateral diffusion in the membrane, suggesting that other hydrophobic small molecules could have utility for inhibiting TWIK-2. The work defines the structure of TWIK-2 and provides a structural foundation for development of more specific inhibitors with potential utility as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Nandish K Khanra
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Bryce D Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065
| | - Stephen B Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
3
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Fang X, Jin H, Wang J, Zhang R, Li B. Gating mechanism of the two-pore-domain potassium channel THIK1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01542-4. [PMID: 40307591 DOI: 10.1038/s41594-025-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025]
Abstract
TWIK-related halothane-inhibited potassium channel (THIK1) maintains the resting membrane potential and regulates potassium efflux in microglia. It is a potential therapeutic target for neurodegenerative disorders, neuropathic pain and inflammation. However, the mechanism underlying its function remains unclear. Here we used cryo-electron microscopy to solve the structures of full-length human THIK1, revealing two inner gates and a C-type selectivity filter gate, distinct from other two-pore-domain potassium channels. One inner gate, formed by a short helix in the distal C terminus, introduces a unique gating mechanism involving the distal cytoplasmic domain. The other, beneath the selectivity filter, is constricted by Y273 in the M4 helix, dividing the cavity. In addition, the selectivity filter gate is modulated by polyunsaturated fatty acids. These structural insights into THIK1 gating, through the distal C-terminal helices, hydrophilic residues and selectivity filter, advance our understanding of THIK1's role in microglial homeostasis and neuropathologies.
Collapse
Affiliation(s)
- Xiangyun Fang
- Department of Anesthesiology, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haichao Jin
- School of Science, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin Wang
- School of Science, China Pharmaceutical University, Nanjing, China.
| | - Ran Zhang
- Department of Anesthesiology, Fudan University, Shanghai, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Baobin Li
- Department of Anesthesiology, Fudan University, Shanghai, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Riel EB, Bu W, Joseph TT, Khajoueinejad L, Eckenhoff RG, Riegelhaupt PM. The cryo-EM structure and physical basis for anesthetic inhibition of the THIK1 K2P channel. Proc Natl Acad Sci U S A 2025; 122:e2421654122. [PMID: 40178898 PMCID: PMC12002230 DOI: 10.1073/pnas.2421654122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
THIK1 tandem pore domain (K2P) potassium channels regulate microglial surveillance of the central nervous system and responsiveness to inflammatory insults. With microglia recognized as critical to the pathogenesis of neurodegenerative diseases, THIK1 channels are putative therapeutic targets to control microglia dysfunction. While THIK channels can principally be distinguished from other K2Ps by their distinctive inhibitory response to volatile anesthetics (VAs), molecular details governing THIK channel gating remain largely unexplored. Here, we report a 3.2 Å cryo-electron microscopy structure of the THIK1 channel in a closed conformation. A central pore gate located directly below the THIK1 selectivity filter is formed by inward-facing TM4 helix tyrosine residues that occlude the ion conduction pathway. VA inhibition of THIK requires closure of this central pore gate. Using a combination of anesthetic photolabeling, electrophysiology, and molecular dynamics simulation, we identify a functionally critical THIK1 VA binding site positioned between the central gate and a structured section of the THIK1 TM2/TM3 loop. Our results demonstrate the molecular architecture of the THIK1 channel and elucidate critical structural features involved in regulation of THIK1 channel gating and anesthetic inhibition.
Collapse
Affiliation(s)
- Elena B. Riel
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY10065
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Thomas T. Joseph
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Leila Khajoueinejad
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY10065
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Paul M. Riegelhaupt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY10065
| |
Collapse
|
6
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
7
|
Khanra NK, Wang C, Delgado BD, Long SB. Structure of the human TWIK-2 potassium channel and its inhibition by pimozide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639991. [PMID: 40060494 PMCID: PMC11888252 DOI: 10.1101/2025.02.24.639991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The potassium channel TWIK-2 is crucial for ATP-induced activation of the NLRP3 inflammasome in macrophages. The channel is a member of the two-pore domain potassium (K2P) channel superfamily and an emerging therapeutic target to mitigate severe inflammatory injury involving NLRP3 activation. We report the cryo-EM structure of human TWIK-2. In comparison to other K2P channels, the structure reveals a unique 'up' conformation of Tyr111 in the selectivity filter and a SF1-P1 pocket behind the filter that could serve as a binding site for channel modulators. Density for acyl chains is present in fenestrations within the transmembrane region that connect the central cavity of the pore to the lipid membrane. Limited pharmacological tools are available for TWIK-2 despite its importance as a drug target. We show that the small molecule pimozide inhibits TWIK-2 and determine a structure of the channel with pimozide. Pimozide displaces the acyl chains and binds below the selectivity filter to block ion conduction. The drug may access its binding site via the membrane, suggesting that other hydrophobic small molecules could have utility for inhibiting TWIK-2. The work defines the structure of TWIK-2 and provides a structural foundation for development of specific inhibitors with potential utility as anti-inflammatory drugs. Significance Statement The TWIK-2 potassium channel is a member of the two-pore domain potassium (K2P) channel superfamily and a potential therapeutic target to control severe inflammatory injury involving the NLRP3 inflammasome. We report the cryo-EM structure of the human TWIK-2 channel at 2.85 Å resolution, revealing differences in comparison to other K2P channels. We identify that pimozide, an FDA-approved drug for Tourette syndrome, inhibits TWIK-2. A cryo-EM structure of TWIK-2 in complex with pimozide identifies its binding location and mechanism of inhibition. The work provides a structural foundation for development of specific TWIK-2 inhibitors that have potential therapeutic utility for inflammatory diseases involving NLRP3 activation.
Collapse
|
8
|
Roy-Chowdhury S, Jang S, Abderemane-Ali F, Naughton F, Grabe M, Minor DL. Structure of the human K 2P13.1 channel reveals a hydrophilic pore restriction and lipid cofactor site. Nat Struct Mol Biol 2025:10.1038/s41594-024-01476-3. [PMID: 40011746 DOI: 10.1038/s41594-024-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025]
Abstract
Polyunsaturated fatty acid (PUFA) lipids modulate the neuronal and microglial leak potassium channel K2P13.1 (THIK1) and other voltage-gated ion channel (VGIC) superfamily members through poorly understood mechanisms. Here we present cryo-electron microscopy structures of human THIK1 and mutants, revealing a unique two-chamber aqueous inner cavity obstructed by a hydrophilic barrier important for gating, the flow restrictor, and a P1-M4 intersubunit interface lipid at a site, the PUFA site, corresponding to the K2P small-molecule modulator pocket. This overlap, together with functional studies, indicates that PUFA site lipids are THIK1 cofactors. Comparison with a PUFA-responsive VGIC, Kv7.1, reveals a shared modulatory role for the pore domain intersubunit interface, providing a framework for understanding PUFA action on the VGIC superfamily. Our findings reveal the distinct THIK1 architecture, highlight the importance of the P1-M4 interface for K2P control by natural and synthetic ligands and should aid in the development of THIK subfamily modulators for neuroinflammation and autism.
Collapse
Affiliation(s)
| | - Seil Jang
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fiona Naughton
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
| | - Michael Grabe
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA.
- Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Silva RL, Lopes AH, Becerra A, Fonseca MM, Maganin A, Saraiva ALL, Cunha FQ, Alves-Filho JC, Zamboni DS, Cunha TM. Molecular mechanisms of zymosan-induced inflammasome activation in macrophages. Cell Signal 2024; 124:111418. [PMID: 39304096 DOI: 10.1016/j.cellsig.2024.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Zymosan is a β-glucan-rich component derived from the cell walls of Saccharomyces cerevisiae extensively used in research for its potent immunomodulatory properties. It can prompt inflammatory responses such as peritonitis and arthritis, and is particularly used to study the immune response to fungal particles. Although the zymosan induced-release of the proinflammatory cytokine IL-1β by macrophages is an essential mechanism for combating fungal infection and inducing inflammation, the exact processes leading to its release remain not well understood. In this study, we uncover the intracellular mechanisms involved in zymosan induced-release of active IL-1β by peritoneal macrophages. Zymosan initiates pro-IL-1β formation through TLR2/MyD88 activation; however, Dectin-1 activation only amplify the conversion of pro-IL-1β into its active form. The conversion of inactive to active IL-1β upon zymosan stimulation depends on the NLRP3, ASC, and caspase-1 driven by the decrease in intracellular potassium ions. Notably, zymosan-induced activation of caspase-1 does not require phagocytosis. Instead, zymosan induces a rapid drop in the intracellular ATP concentration, which occurs concomitant with caspase-1 and IL-1β activation. Accordingly, disruption of glycolytic flux during zymosan stimulation promotes an additional reduction of intracellular ATP and concurrently amplifies the activation of caspase-1 and IL-1β. These results reveal that fungal recognition by macrophages results in a metabolic dysfunction, leading to a decrease of intracellular ATP associated with inflammasome activation.
Collapse
Affiliation(s)
- Rangel L Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil.
| | - Alexandre H Lopes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Amanda Becerra
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Brazil
| | - Miriam M Fonseca
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Alexandre Maganin
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Andre L L Saraiva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Jose C Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Dario S Zamboni
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil.
| |
Collapse
|
10
|
HANG W, WANG L, BO Y, ZUO S, WANG S, LI H, BU C, ZHAO J, ZHOU X. Bufei Huoxue capsule alleviates silicosis by inhibiting the activation of nucleotide-like receptor containing pyrin domain 3 inflammasome and macrophages polarization based on network pharmacology. J TRADIT CHIN MED 2024; 44:1236-1246. [PMID: 39617709 PMCID: PMC11589560 DOI: 10.19852/j.cnki.jtcm.20240626.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/08/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To predict the targets of Bufei Huoxue capsule (, BFHX) using network pharmacology analysis and to explore its effects and functional targets in a silicotic rat model. METHODS The drug and disease targets were correlated through network pharmacology analysis to explore the targets and signaling pathways of BFHX affecting silicosis. NR8383 cells were cultured to verify the core genes and pathways. A rat model of silicosis was established to verify whether the mechanism behind SiO2-caused pulmonary fibrosis was alleviated by BFHX (0.82 g/kg) and how it affected key targets and pathways. RESULTS Overlapping BFHX and silicotic gene targets produced 159 interactive targets, and 55 were screened by network topology analysis. The results of gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses suggested that BFHX could affect silicosis through the nucleotide-like receptor containing pyrin domain 3 (NLRP3) inflammasome. In NR8383 cells, the expression of core genes related to the NLRP3 inflammasome could be inhibited by BFHX treatment. BFHX reduced the degree of alveolitis and collagen deposition, attenuating pulmonary fibrosis in SiO2-induced rat model. Pulmonary macrophage pyroptosis after SiO2 exposure was observed under transmission electron microscopy. BFHX alleviated the morphological characteristics of pyroptosis. BFHX also reduced the expression of NLRP3, caspase-1, interleukin-1 beta (IL-1β), IL-18, IL-6, and tumor necrosis factor-alpha in lung tissues of silicotic rat model. BFHX affected the K ion content in bronchoalveolar lavage fluid when assessed by energy dispersive spectrometer testing. The expression of CD68+ and CD206+ were also reduced after BFHX intervention. CONCLUSION NOD-like receptor signaling is vital for BFHX's effects on silicosis. It exerts anti-pulmonary fibrosis effects by inhibiting pulmonary macrophage pyroptosis and polarization through NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wenlu HANG
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Lin WANG
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yun BO
- 2 Medical College of Anhui University of Science and Technology, Anhui 232001, China
| | - Shurun ZUO
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Songquan WANG
- 3 School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221000, China
| | - Haiquan LI
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chunlu BU
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Jie ZHAO
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xianmei ZHOU
- 4 Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
11
|
Feske S, Colucci F, Coetzee WA. Do K ATP channels have a role in immunity? Front Immunol 2024; 15:1484971. [PMID: 39669557 PMCID: PMC11634800 DOI: 10.3389/fimmu.2024.1484971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024] Open
Abstract
Ion channels, exchangers and pumps are expressed ubiquitously in cells from all phyla of life. In mammals, their role is best described in excitable cells, where they regulate the initiation and propagation of action potentials. There are over 70 different types of K+ channels subunits that contribute to these processes. In non-excitable cells, K+ channels set the resting membrane potential, which in turn drives the activity of other translocators. K+ channels also help maintain cell volume, influence cell proliferation and apoptosis and regulate Ca2+ signaling, which in turn is crucial for many cellular processes, including metabolism, secretion, and gene expression. K+ channels play crucial roles in the activation, proliferation and a variety of other functions in cells of the innate and adaptive immune system. The ATP-sensitive K+ (KATP) channel has an established role in diverse cells, but its presence and function in immunity is scantly described. Public gene expression databases show that KATP channel subunits are highly expressed in NKT and NK cells, and that they are significantly upregulated after infection in CD8+ T cells and macrophages. We discuss these findings in the light of the available literature and propose a role for KATP channels in cytotoxicity of cells that are primed for a rapid immune response. Possible underlying molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge, Cambridge, United Kingdom
| | - William A. Coetzee
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Physiology & Neuroscience, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Wang H, Zhang S, Wang M, Wang C, Xu J, Jiang M, Han X, Yang X, Zhang L, Chen B, Liu A. Joint Analysis of CCAAT/Enhancer-Binding Protein Beta and Interleukin 1 Beta in the Treatment and Prognosis of Diffuse Large B-Cell Lymphoma. FRONT BIOSCI-LANDMRK 2024; 29:372. [PMID: 39614427 DOI: 10.31083/j.fbl2911372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The purpose of this study is to investigate the correlation between elevated levels of CCAAT/enhancer-binding protein beta (CEBPB) gene expression and unfavorable outcomes in diffuse large B-cell lymphoma (DLBCL). The goal is to elucidate potential therapeutic targets associated with this relationship. METHODS Differential expression and survival analyses were conducted using data from the Gene Expression Omnibus (GEO) database. The functions of CEBPB in DLBCL cells were investigated through cell culture, RNA extraction, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. In addition, a weighted gene co-expression network analysis (WGCNA) was performed to pinpoint gene modules associated with CEBPB. Furthermore, experimental validation was carried out to explore the interaction between CEBPB and interleukin 1 beta (IL1B). RESULTS High levels of CEBPB expression are prominently observed in DLBCL, with its overabundance significantly linked to the diagnosis of DLBCL. Survival analysis reveals that patients exhibiting elevated CEBPB expression tend to experience a poorer prognosis. Further validation confirmed CEBPB's role in promoting DLBCL cell proliferation and cell cycle progression. WGCNA identified CEBPB-related gene modules, with IL1B identified as a potential regulatory gene of CEBPB. The presence of high levels of IL1B has been correlated with an unfavorable prognosis in individuals diagnosed with DLBCL. Experiments demonstrate that IL1B promotes DLBCL cell proliferation through CEBPB. CONCLUSIONS This study reveals the significant roles of CEBPB and IL1B in DLBCL, providing new theoretical foundations and potential molecular targets for the treatment and prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Proliferation/genetics
- Survival Analysis
- Gene Expression Profiling/methods
- Gene Regulatory Networks
Collapse
Affiliation(s)
- Hongmin Wang
- Department of Haemolymph, Harbin Medical University Cancer Hospital, 150001 Harbin, Heilongjiang, China
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Shuo Zhang
- Shenshan Medical Center, SunYat-sen Memorial Hospital, Sun Yat-sen University, 516621 Shanwei, Guangdong, China
| | - Mengmeng Wang
- Department of Integrated TCM and Western Medicine, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Chaozhong Wang
- Qiqihar Center for Drug Control, 161006 Qiqihar, Heilongjiang, China
| | - Jihong Xu
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Ming Jiang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Xue Han
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Xiaotong Yang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Liping Zhang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Baotong Chen
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Aichun Liu
- Department of Haemolymph, Harbin Medical University Cancer Hospital, 150001 Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
14
|
Kang H, Choi SW, Kim JY, Oh SJ, Kim SJ, Lee MS. ER-to-lysosome Ca 2+ refilling followed by K + efflux-coupled store-operated Ca 2+ entry in inflammasome activation and metabolic inflammation. eLife 2024; 12:RP87561. [PMID: 38953285 PMCID: PMC11219040 DOI: 10.7554/elife.87561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.
Collapse
Affiliation(s)
- Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of MedicineGyeongjuRepublic of Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| |
Collapse
|
15
|
Yu J, Fu Y, Zhang N, Gao J, Zhang Z, Jiang X, Chen C, Wen Z. Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury. Inflamm Res 2024; 73:1137-1155. [PMID: 38733398 DOI: 10.1007/s00011-024-01888-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIM Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition lacking specific and efficient clinical treatments. Extracellular histones, identified as a novel type of damage-associated molecular patterns, have been implicated in the inflammatory process of ALI. However, further elucidation is needed regarding the precise mechanism through which extracellular histones induce inflammation. The aim of this study was to investigate whether extracellular histones can activate NLRP3 inflammasome-mediated inflammation in alveolar macrophages (AMs) by affecting TWIK2-dependent potassium efflux. METHODS AND RESULTS We conducted experiments using cecal ligation and puncture (CLP) C57BL/6 mice and extracellular histone-stimulated LPS-primed MH-S cells. The results demonstrated a significant increase in the levels of extracellular histones in the plasma and bronchoalveolar lavage fluid (BALF) of CLP mice. Furthermore, neutralizing extracellular histone mitigated lung injury and inflammation in CLP-induced ALI mice. In vitro studies confirmed that extracellular histones upregulated the expression of NLRP3 inflammasome activation-related proteins in MH-S cells, and this effect was dependent on increased potassium efflux mediated by the TWIK2 channel on the plasma membrane. Moreover, extracellular histones directly triggered a substantial influx of calcium, leading to increased Rab11 activity and facilitating the trafficking and location of TWIK2 to the plasma membrane. CONCLUSION These findings underscore the critical role of extracellular histone-induced upregulation of TWIK2 expression on the plasma membrane of alveolar macrophages (AMs). This upregulation leads to potassium efflux and subsequent activation of the NLRP3 inflammasome, ultimately exacerbating lung inflammation and injury during sepsis.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
16
|
Hanin A, Zhang L, Huttner AJ, Plu I, Mathon B, Bielle F, Navarro V, Hirsch LJ, Hafler DA. Single-Cell Transcriptomic Analyses of Brain Parenchyma in Patients With New-Onset Refractory Status Epilepticus (NORSE). NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200259. [PMID: 38810181 PMCID: PMC11139018 DOI: 10.1212/nxi.0000000000200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND OBJECTIVES New-onset refractory status epilepticus (NORSE) occurs in previously healthy children or adults, often followed by refractory epilepsy and poor outcomes. The mechanisms that transform a normal brain into an epileptic one capable of seizing for prolonged periods despite treatment remain unclear. Nonetheless, several pieces of evidence suggest that immune dysregulation could contribute to hyperexcitability and modulate NORSE sequelae. METHODS We used single-nucleus RNA sequencing to delineate the composition and phenotypic states of the CNS of 4 patients with NORSE, to better understand the relationship between hyperexcitability and immune disturbances. We compared them with 4 patients with chronic temporal lobe epilepsy (TLE) and 2 controls with no known neurologic disorder. RESULTS Patients with NORSE and TLE exhibited a significantly higher proportion of excitatory neurons compared with controls, with no discernible difference in inhibitory GABAergic neurons. When examining the ratio between excitatory neurons and GABAergic neurons for each patient individually, we observed a higher ratio in patients with acute NORSE or TLE compared with controls. Furthermore, a negative correlation was found between the ratio of excitatory to GABAergic neurons and the proportion of GABAergic neurons. The ratio between excitatory neurons and GABAergic neurons correlated with the proportion of resident or infiltrating macrophages, suggesting the influence of microglial reactivity on neuronal excitability. Both patients with NORSE and TLE exhibited increased expression of genes associated with microglia activation, phagocytic activity, and NLRP3 inflammasome activation. However, patients with NORSE had decreased expression of genes related to the downregulation of the inflammatory response, potentially explaining the severity of their presentation. Microglial activation in patients with NORSE also correlated with astrocyte reactivity, possibly leading to higher degrees of demyelination. DISCUSSION Our study sheds light on the complex cellular dynamics in NORSE, revealing the potential roles of microglia, infiltrating macrophages, and astrocytes in hyperexcitability and demyelination, offering potential avenues for future research targeting the identified pathways.
Collapse
Affiliation(s)
- Aurélie Hanin
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Le Zhang
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anita J Huttner
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Isabelle Plu
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Bertrand Mathon
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Franck Bielle
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Vincent Navarro
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lawrence J Hirsch
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - David A Hafler
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
17
|
Roy-Chowdhury S, Jang S, Abderemane-Ali F, Naughton F, Grabe M, Minor DL. Structure of the human K 2P13.1(THIK-1) channel reveals a novel hydrophilic pore restriction and lipid cofactor site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600491. [PMID: 38979306 PMCID: PMC11230452 DOI: 10.1101/2024.06.26.600491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The halothane-inhibited K2P leak potassium channel K2P13.1 (THIK-1)1-3 is found in diverse cells1,4 including neurons1,5 and microglia6-8 where it affects surveillance6, synaptic pruning7, phagocytosis7, and inflammasome-mediated interleukin-1β release6,8,9. As with many K2Ps1,5,10-14 and other voltage-gated ion channel (VGIC) superfamily members3,15,16, polyunsaturated fatty acid (PUFA) lipids modulate K2P13.1 (THIK-1)1,5,14,17 via a poorly understood mechanism. Here, we present cryo-electronmicroscopy (cryo-EM) structures of human K2P13.1 (THIK-1) and mutants in lipid nanodiscs and detergent. These reveal that, unlike other K2Ps13,18-24, K2P13.1 (THIK-1) has a two-chamber aqueous inner cavity obstructed by a M4 transmembrane helix tyrosine (Tyr273, the flow restrictor). This hydrophilic barrier can be opened by an activatory mutation, S136P25, at natural break in the M2 transmembrane helix and by intrinsic channel dynamics. The structures also reveal a buried lipid in the P1/M4 intersubunit interface at a location, the PUFA site, that coincides with the TREK subfamily K2P modulator pocket for small molecule agonists18,26,27. This overlap, together with the effects of mutation on K2P13.1 (THIK-1) PUFA responses, indicates that the PUFA site lipids are K2P13.1 (THIK-1) cofactors. Comparison with the PUFA-responsive VGIC Kv7.1 (KCNQ1)28-31 reveals a shared role for the equivalent pore domain intersubunit interface in lipid modulation, providing a framework for dissecting the effects of PUFAs on the VGIC superfamily. Our findings reveal the unique architecture underlying K2P13.1 (THIK-1) function, highlight the importance of the P1/M4 interface in control of K2Ps by both natural and synthetic agents, and should aid development of THIK subfamily modulators for diseases such as neuroinflammation6,32 and autism6.
Collapse
Affiliation(s)
- Shatabdi Roy-Chowdhury
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Fiona Naughton
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 93858-2330 USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
18
|
Bürli R, Doyle KJ, Dickson L, Rowland A, Matthews K, Stott AJ, Teall M, Ossola B, Russell SG, Harvey JRM, Wu Y, Narayana L, Brice NL, Carlton M, Dawson LA. Discovery of CVN293, a Brain Permeable KCNK13 (THIK-1) Inhibitor Suitable for Clinical Assessment. ACS Med Chem Lett 2024; 15:646-652. [PMID: 38746889 PMCID: PMC11089555 DOI: 10.1021/acsmedchemlett.4c00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/11/2025] Open
Abstract
The potassium (K+) ion channel KCNK13 is specifically expressed in human microglia with elevated expression observed in post-mortem human brain tissue from patients with Alzheimer's disease. Modulation of KCNK13 activity by a small-molecule inhibitor is proposed as a potential treatment for neurodegenerative diseases. Herein, we describe the evolution of a series of KCNK13 inhibitors derived from a high-throughput screening campaign, resulting in CVN293, a potent, selective, and brain permeable clinical candidate molecule. CVN293 demonstrated a concentration-dependent inhibition of the NLRP3-inflammasome mediated production of IL-1β from LPS-primed murine microglia. Cross-species pharmacokinetic data of CVN293 are also disclosed. These findings support the advancement of CVN293 in clinical trials.
Collapse
Affiliation(s)
- Roland
W. Bürli
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Kevin J. Doyle
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Louise Dickson
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Anna Rowland
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Kim Matthews
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Andrew J. Stott
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Martin Teall
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Bernardino Ossola
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Samuel G. Russell
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Jenna R. M. Harvey
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Yiming Wu
- Wuxi
Apptec Co., Ltd., 288 Fute Zhong Rd., Waigaoqiao, Shanghai 200131, People’s Republic of China
| | - Lakshminarayana Narayana
- Aragen
Life Sciences Ltd, Plot #284A (part), Bommasandra-Jigani Link Road Industrial Area, Bengaluru 562106, India
| | - Nicola L. Brice
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Mark Carlton
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| | - Lee A. Dawson
- Cerevance
Limited, 418 Cambridge Science Park, Cambridge, CB4 0PZ, United
Kingdom
| |
Collapse
|
19
|
Ma Y, Gu T, He S, He S, Jiang Z. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem 2024; 479:779-791. [PMID: 37178375 DOI: 10.1007/s11010-023-04762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siqi He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhisheng Jiang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
20
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
Affiliation(s)
- Ali Rifat
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Pawel Fidzinski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Onken
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank L Heppner
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
21
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
22
|
Zhi Y, Wu X, Chen Y, Chen X, Chen X, Luo H, Yi X, Lin X, Ma L, Chen Y, Cao Y, Li F, Zhou P. A novel TWIK2 channel inhibitor binds at the bottom of the selectivity filter and protects against LPS-induced experimental endotoxemia in vivo. Biochem Pharmacol 2023; 218:115894. [PMID: 37898389 DOI: 10.1016/j.bcp.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
TWIK2 channel plays a critical role in NLRP3 inflammasome activation and mice deficient in TWIK2 channel are protected from sepsis and inflammatory lung injury. However, inhibitors of TWIK2 channel are currently in an early stage of development, and the molecular determinants underlying the chemical modulation of TWIK2 channel remain unexplored. In this study, we identified NPBA and the synthesized derivative NPBA-4 potently and selectively inhibited TWIK2 channel by using whole-cell patch clamp techniques. Furthermore, the mutation of the last residues of the selectivity filter in both P1 and P2 (i.e., T106A, T214A) of TWIK2 channel substantially abolished the effect of NPBA on TWIK2 channel. Our data suggest that NPBA blocked TWIK2 channel through binding at the bottom of the selectivity filter, which was also supported by molecular docking prediction. Moreover, we found that NPBA significantly suppressed NLRP3 inflammasome activation in macrophages and alleviated LPS-induced endotoxemia and organ injury in vivo. Notably, the protective effects of NPBA against LPS-induced endotoxemia were abolished in Kcnk6-/- mice. In summary, our study has uncovered a series of novel inhibitors of TWIK2 channel and revealed their distinct molecular determinants interacting TWIK2 channel. These findings provide new insights into the mechanisms of pharmacological action on TWIK2 channel and opportunities for the development of selective TWIK2 channel modulators to treat related inflammatory diseases.
Collapse
Affiliation(s)
- Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanshan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingyuan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiuling Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Chen
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
23
|
Song D, Tao W, Liu F, Wu X, Bi H, Shu J, Wang D, Li X. Lipopolysaccharide promotes NLRP3 inflammasome activation by inhibiting TFEB-mediated autophagy in NRK-52E cells. Mol Immunol 2023; 163:127-135. [PMID: 37774455 DOI: 10.1016/j.molimm.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
The NLRP3 inflammasome is involved in many inflammatory diseases. Its activity must be strictly controlled to alleviate the inflammatory process. Autophagy plays a protective role in the negative regulation of NLRP3 inflammasome activation. However, the regulatory mechanism of autophagy controlling NLRP3 inflammasome activation remains to be further investigated. Here, we showed that in NRK-52E cells, lipopolysaccharide (LPS) and ATP stimulation significantly decreased mitochondrial membrane potential, increased ROS production and mtDNA copy number in cytosol. Moreover, autophagic flux was blocked when challenged with LPS and ATP as evidenced by increased LC3 II and p62 expression, reduced TFEB and CTSD expression, and impaired lysosomal acid environment. Furthermore, TFEB deficiency increased cytosolic mtDNA and enhanced LPS and ATP induced NLRP3 inflammasome activation and proinflammatory cytokine expression. Taken together, these findings reveal that LPS and ATP stimulation promoted NLRP3 inflammasome activation through inhibiting TFEB-mediated autophagy in NRK-52E cells, and TFEB could be a potential therapeutic target for the treatment of NLRP3 inflammasome-related kidney diseases.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, Hangzhou 311300, China.
| | - Wenjing Tao
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, Hangzhou 311300, China
| | - Feng Liu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, Hangzhou 311300, China
| | - Xian Wu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, Hangzhou 311300, China
| | - Haiyang Bi
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, Hangzhou 311300, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Biomedical Research Institute, Zhejiang Sci-Tech University, Shaoxing 312000, China
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangchen Li
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, Hangzhou 311300, China.
| |
Collapse
|
24
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
25
|
Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, Acuña-Castroviejo D, Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett 2023; 28:51. [PMID: 37370025 DOI: 10.1186/s11658-023-00462-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines interleukin (IL)-1β and IL-18. Multiple studies have demonstrated the importance of the NLRP3 inflammasome in the development of immune and inflammation-related diseases, including arthritis, Alzheimer's disease, inflammatory bowel disease, and other autoimmune and autoinflammatory diseases. This review first explains the activation and regulatory mechanism of the NLRP3 inflammasome. Secondly, we focus on the role of the NLRP3 inflammasome in various inflammation-related diseases. Finally, we look forward to new methods for targeting the NLRP3 inflammasome to treat inflammation-related diseases, and provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyan Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain
- Ibs. Granada and CIBERfes, Granada, Spain
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Xin Zhang
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Meng Li
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Tong Jing
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain.
- Ibs. Granada and CIBERfes, Granada, Spain.
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China.
| |
Collapse
|
26
|
Ossola B, Rifat A, Rowland A, Hunter H, Drinkall S, Bender C, Hamlischer M, Teall M, Burley R, Barker DF, Cadwalladr D, Dickson L, Lawrence JMK, Harvey JRM, Lizio M, Xu X, Kavanagh E, Cheung T, Sheardown S, Lawrence CB, Harte M, Brough D, Madry C, Matthews K, Doyle K, Page K, Powell J, Brice NL, Bürli RW, Carlton MB, Dawson LA. Characterisation of C101248: A novel selective THIK-1 channel inhibitor for the modulation of microglial NLRP3-inflammasome. Neuropharmacology 2023; 224:109330. [PMID: 36375694 PMCID: PMC9841576 DOI: 10.1016/j.neuropharm.2022.109330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1β, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1β from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.
Collapse
Affiliation(s)
- Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK.
| | - Ali Rifat
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Helen Hunter
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Samuel Drinkall
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Clare Bender
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Mayida Hamlischer
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Martin Teall
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Russell Burley
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Daneil F Barker
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - David Cadwalladr
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Louise Dickson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Jason M K Lawrence
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Jenna R M Harvey
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Edel Kavanagh
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Toni Cheung
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Steve Sheardown
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Michael Harte
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christian Madry
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kim Matthews
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Kevin Doyle
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Justin Powell
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Mark B Carlton
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| |
Collapse
|
27
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
28
|
Tang H, Sun Y, Fachim HA, Cheung TKD, Reynolds GP, Harte MK. Elevated Expression of Two Pore Potassium Channel THIK-1 in Alzheimer's Disease: An Inflammatory Mechanism. J Alzheimers Dis 2023; 95:1757-1769. [PMID: 37718820 DOI: 10.3233/jad-230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Tandem pore domain halothane-inhibited K+ channel 1 (THIK-1, coded by KCNK13) provides an upstream regulation of the activation of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which has been suggested as one of the key mechanisms of the pathological process in neurodegeneration mainly from in vitro and in vivo model systems studies. However, unequivocal evidence from neurodegenerative disorders has been lacking. OBJECTIVE To investigate the involvement of the THIK-1/NLRP3 pathway in the pathological process of Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS This study investigated gene expression of markers in the THIK-1/NLRP3 pathway in an animal model representing AD as well as in human postmortem brains of AD and PD by quantitative real-time PCR. THIK-1 protein expression was determined using automated capillary electrophoresis immunoblotting. Furthermore, DNA methylation of KCNK13 was analysed in AD cohort by pyrosequencing. RESULTS A substantial upregulation of KCNK13, glial activation markers, NLRP3 inflammasome components, and IL1B was observed in the animal study. Increased expression of KCNK13 support an inflammatory glial cell activation in both advanced AD and PD. The increase in KCNK13 expression was also supported by downregulation in DNA methylation of KCNK13 in AD. CONCLUSIONS The association between THIK-1 K+ channels expression and pathology changes indicates a THIK-1-induced activation of this glial subtype in AD and PD. Therefore, specific blocks of the microglial THIK-1 K+ channels at the early stage of AD and PD may be beneficial for the patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, China
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yuhong Sun
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Helene A Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Identification of potential M2 macrophage-associated diagnostic biomarkers in coronary artery disease. Biosci Rep 2022; 42:231928. [PMID: 36222281 DOI: 10.1042/bsr20221394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND M2 macrophages have been reported to be important in the progression of coronary artery disease (CAD). Thus, the present study aims at exploring the diagnostic value of M2 macrophage-associated genes in CAD. METHODS Transcriptome profile of CAD and control samples were downloaded from Gene Expression Omnibus database. The proportion of immune cells was analyzed using cell type identification by estimating relative subsets of RNA transcripts. Weighted Gene Co-expression Network Analysis (WGCNA) was carried out to screen the relevant module associated with M2 macrophages. Differential CAD and control samples of expressed genes (DEGs) were identified by the limma R package. Functional enrichment analysis by means of the clusterProfiler R package. Least absolute shrinkage and selection operator (LASSO) and random forest (RF) algorithms were carried out to select signature genes. Receiver operating curves (ROC) were plotted to evaluate the diagnostic value of selected signature genes. The expressions of potential diagnostic markers were validated by RT-qPCR. The ceRNA network of diagnostic biomarkers was constructed via miRwalk and Starbase database. CMap database was used to screen candidate drugs in the treatment of CAD by targeting diagnostic biomarkers. RESULTS A total of 166 M2 macrophage-associated genes were identified by WGCNA. By intersecting those genes with 879 DEGs, 53 M2 macrophage-associated DEGs were obtained in the present study. By LASSO, RF, and ROC analyses, C1orf105, CCL22, CRYGB, FRK, GAP43, REG1P, CALB1, and PTPN21 were identified as potential diagnostic biomarkers. RT-qPCR showed the consistent expression patterns of diagnostic biomarkers between GEO dataset and clinical samples. Perhexiline, alimemazine and mecamylamine were found to be potential drugs in the treatment of CAD. CONCLUSION We identified eight M2 macrophage-associated diagnostic biomarkers and candidate drugs for the CAD treatment.
Collapse
|
30
|
The role of Nod-like receptor protein 3 inflammasome activated by ion channels in multiple diseases. Mol Cell Biochem 2022; 478:1397-1410. [PMID: 36378463 PMCID: PMC10164009 DOI: 10.1007/s11010-022-04602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
AbstractThe inflammasome is a multimeric protein complex located in the cytoplasm that is activated by many factors and subsequently promotes the release of proinflammatory factors such as interleukin (IL)-1β and IL-18, resulting in a series of inflammatory responses that ultimately lead to the occurrence of various diseases. The Nod-like receptor protein 3 (NLRP3) inflammasome is the most characteristic type and the most widely studied among many inflammasomes. Activation of the NLRP3 inflammasome is closely related to the occurrence of many diseases, such as Alzheimer's disease. At present, a large number of studies have focused on the mechanisms underlying the activation of the NLRP3 inflammasome. Plenty of articles have reported the activation of the NLRP3 inflammasome by various ions, such as K+ and Na+ reflux and Ca2+ influx. However, few articles have reviewed the effects of various ion channels on the activation of the NLRP3 inflammasome and the relationship between the diseases caused by these proteins. This article mainly summarizes the relationship between intracellular and extracellular ion activities and ion channels and the activation of the NLRP3 inflammasome. We also provide a general summary of the diseases of each system caused by NLRP3 activation. We hope that more research will provide options for the treatment of diseases driven by the NLRP3 inflammasome.
Collapse
|
31
|
Miyata S, Ishino Y, Shimizu S, Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front Aging Neurosci 2022; 14:934346. [PMID: 35936767 PMCID: PMC9354609 DOI: 10.3389/fnagi.2022.934346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- *Correspondence: Shingo Miyata
| | - Yugo Ishino
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
32
|
Zhu Z, Lei Z, Qian J, Zhang C, Gong Y, Yin G, Li Y, Li X, Lin J, Zhou L. The Ion Channel-Related Gene Signatures Correlated With Diagnosis, Prognosis, and Individualized Treatment in Patients With Clear Cell Renal Cell Carcinoma. Front Pharmacol 2022; 13:889142. [PMID: 35721115 PMCID: PMC9198310 DOI: 10.3389/fphar.2022.889142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Early detection and precise prognostic evaluation of clear cell renal cell carcinoma (ccRCC) are crucial for patient life expectancy. Ion channel-related genes (ICRGs) are of great diagnostic and prognostic value as components that maintain the normal structure of the kidney. Therefore, we systematically explored the diagnostic, prognostic, and therapeutic value of ICRGs in ccRCC using the multi-database. Methods: RNA transcriptome profiles and clinical data of ccRCC patients were extracted and integrated from public databases including The Cancer Genome Atlas, ICGC, GEO, and E-MTAB databases. Ion channel-related genes were obtained from the literature collection. The diagnostic signature was performed using the LASSO and SVM-REF analyses. Meanwhile, the prognostic signature was conducted using the LASSO analyses. Molecular subtyping was performed using the ConsensusClusterPlus and the corresponding therapeutic targets were evaluated using the pRRophetic package. In addition, a prognostic nomogram was constructed based on the results of cox regression analyses. Results: We successfully constructed diagnostic signatures for five ICRGs and prognostic signatures for 10 ICRGs with AUC values greater than 0.7, showing good predictive performance. Based on the median risk score, we found that high-risk patients had a significantly worse prognosis. We also divided ccRCC patients into two clusters according to prognostic ICRGs, and there was a significant survival outcome between the two clusters and different sensitivity to diverse clinical therapeutic strategies. Meanwhile, we constructed a nomogram based on clinical molecules and signatures, and its predictive efficacy was better than the signature or the present tumor-node-metastasis staging system. Conclusion: In this study, we established useful signatures for early detection, prognosis evaluation, and individualized treatment for ccRCC. Moreover, KCNJ16 deserves to be explored comprehensively in the future.
Collapse
Affiliation(s)
- Zhenpeng Zhu
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhenchuan Lei
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinqin Qian
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Cuijian Zhang
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanqing Gong
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guicao Yin
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yifan Li
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xuesong Li
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jian Lin
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liqun Zhou
- National Urological Cancer Center, Department of Urology, Institute of Urology, Clinical Research Cooperation Network of Urology of the Peking University First Hospital, The Peking University First Hospital, Peking University, Beijing and the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|