1
|
Martin KC, Seydell-Greenwald A, Turkeltaub PE, Chambers CE, Gaillard WD, Newport EL. Functional partitioning of sentence processing and emotional prosody in the right perisylvian cortex after perinatal stroke. Sci Rep 2024; 14:28602. [PMID: 39562673 PMCID: PMC11577099 DOI: 10.1038/s41598-024-79302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
In healthy adults different language abilities-sentence processing versus emotional prosody-are supported by the left (LH) versus the right hemisphere (RH), respectively. However, after LH stroke in infancy, RH regions often support both abilities with normal outcomes. This finding raises an important question: How does the functional map of RH regions change to support both emotional prosody and also typically left-lateralized language functions after an early LH stroke? Does sentence processing simply become reflected into RH frontotemporal regions and overlap with emotional prosody processing? Or do these functions overlap less than would be expected with simple mirroring? In the current work we used task fMRI to examine precisely how sentence processing and emotional prosody processing are both organized in the intact RH of individuals who suffered a large LH perinatal arterial ischemic stroke (LHPS participants). We evaluated the activation of two fMRI tasks that probed auditory sentence processing and emotional prosody processing, comparing the overlap for these two functions in the RH of individuals with perinatal stroke with the symmetry of these functions in the LH and RH of their healthy siblings. We found less activation overlap in the RH of individuals with LH perinatal stroke than would be expected if both functions retained their typical spatial layout, suggesting that their spatial segregation may be an important feature of a functioning language system.
Collapse
Affiliation(s)
- Kelly C Martin
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC, 20057, USA.
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC, 20057, USA
- MedStar National Rehabilitation Hospital, Washington, DC, 20010, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC, 20057, USA
- MedStar National Rehabilitation Hospital, Washington, DC, 20010, USA
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC, 20057, USA
- MedStar National Rehabilitation Hospital, Washington, DC, 20010, USA
| | - William D Gaillard
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC, 20057, USA
- Children's National Hospital and Center for Neuroscience, Washington, DC, 20010, USA
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC, 20057, USA
- MedStar National Rehabilitation Hospital, Washington, DC, 20010, USA
| |
Collapse
|
2
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
3
|
Dick AS, Ralph Y, Farrant K, Reeb-Sutherland B, Pruden S, Mattfeld AT. Volumetric development of hippocampal subfields and hippocampal white matter connectivity: Relationship with episodic memory. Dev Psychobiol 2022; 64:e22333. [PMID: 36426794 PMCID: PMC11630811 DOI: 10.1002/dev.22333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
The hippocampus is a complex structure composed of distinct subfields. It has been central to understanding neural foundations of episodic memory. In the current cross-sectional study, using a large sample of 830, 3- to 21-year-olds from a unique, publicly available dataset we examined the following questions: (1) Is there elevated grey matter volume of the hippocampus and subfields in late compared to early development? (2) How does hippocampal volume compare with the rest of the cerebral cortex at different developmental stages? and (3) What is the relation between hippocampal volume and connectivity with episodic memory performance? We found hippocampal subfield volumes exhibited a nonlinear relation with age and showed a lag in volumetric change with age when compared to adjacent cortical regions (e.g., entorhinal cortex). We also observed a significant reduction in cortical volume across older cohorts, while hippocampal volume showed the opposite pattern. In addition to age-related differences in gray matter volume, dentate gyrus/cornu ammonis 3 volume was significantly related to episodic memory. We did not, however, find any associations with episodic memory performance and connectivity through the uncinate fasciculus, fornix, or cingulum. The results are discussed in the context of current research and theories of hippocampal development and its relation to episodic memory.
Collapse
Affiliation(s)
- Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Yvonne Ralph
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Kristafor Farrant
- Department of Psychology, Florida International University, Miami, Florida, USA
| | | | - Shannon Pruden
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Kumpulainen V, Merisaari H, Copeland A, Silver E, Pulli EP, Lewis JD, Saukko E, Saunavaara J, Karlsson L, Karlsson H, Tuulari JJ. Effect of number of diffusion-encoding directions in diffusion metrics of 5-year-olds using tract-based spatial statistical analysis. Eur J Neurosci 2022; 56:4843-4868. [PMID: 35904522 PMCID: PMC9545012 DOI: 10.1111/ejn.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Methodological aspects and effects of different imaging parameters on DTI (diffusion tensor imaging) results and their reproducibility have been recently studied comprehensively in adult populations. Although MR imaging of children's brains has become common, less interest has been focussed on researching whether adult-based optimised parameters and pre-processing protocols can be reliably applied to paediatric populations. Furthermore, DTI scalar values of preschool aged children are rarely reported. We gathered a DTI dataset from 5-year-old children (N = 49) to study the effect of the number of diffusion-encoding directions on the reliability of resultant scalar values with TBSS (tract-based spatial statistics) method. Additionally, the potential effect of within-scan head motion on DTI scalars was evaluated. Reducing the number of diffusion-encoding directions deteriorated both the accuracy and the precision of all DTI scalar values. To obtain reliable scalar values, a minimum of 18 directions for TBSS was required. For TBSS fractional anisotropy values, the intraclass correlation coefficient with two-way random-effects model (ICC[2,1]) for the subsets of 6 to 66 directions ranged between 0.136 [95%CI 0.0767;0.227] and 0.639 [0.542;0.740], whereas the corresponding values for subsets of 18 to 66 directions were 0.868 [0.815;0.913] and 0.995 [0.993;0.997]. Following the exclusion of motion-corrupted volumes, minor residual motion did not associate with the scalar values. A minimum of 18 diffusion directions is recommended to result in reliable DTI scalar results with TBSS. We suggest gathering extra directions in paediatric DTI to enable exclusion of volumes with motion artefacts and simultaneously preserve the overall data quality.
Collapse
Affiliation(s)
- Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of RadiologyTurku University HospitalTurkuFinland
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Elmo P. Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - John D. Lewis
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | | | - Jani Saunavaara
- Department of Medical PhysicsTurku University Hospital and University of TurkuTurkuFinland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of Paediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Turku Collegium for Science and MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
5
|
Vinci-Booher S, Caron B, Bullock D, James K, Pestilli F. Development of white matter tracts between and within the dorsal and ventral streams. Brain Struct Funct 2022; 227:1457-1477. [PMID: 35267078 DOI: 10.1007/s00429-021-02414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
The degree of interaction between the ventral and dorsal visual streams has been discussed in multiple scientific domains for decades. Recently, several white matter tracts that directly connect cortical regions associated with the dorsal and ventral streams have become possible to study due to advancements in automated and reproducible methods. The developmental trajectory of this set of tracts, here referred to as the posterior vertical pathway (PVP), has yet to be described. We propose an input-driven model of white matter development and provide evidence for the model by focusing on the development of the PVP. We used reproducible, cloud-computing methods and diffusion imaging from adults and children (ages 5-8 years) to compare PVP development to that of tracts within the ventral and dorsal pathways. PVP microstructure was more adult-like than dorsal stream microstructure, but less adult-like than ventral stream microstructure. Additionally, PVP microstructure was more similar to the microstructure of the ventral than the dorsal stream and was predicted by performance on a perceptual task in children. Overall, results suggest a potential role for the PVP in the development of the dorsal visual stream that may be related to its ability to facilitate interactions between ventral and dorsal streams during learning. Our results are consistent with the proposed model, suggesting that the microstructural development of major white matter pathways is related, at least in part, to the propagation of sensory information within the visual system.
Collapse
Affiliation(s)
- S Vinci-Booher
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| | - B Caron
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - D Bullock
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - K James
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - F Pestilli
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- The University of Texas, 108 E Dean Keeton St, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Spiteri S, Crewther D. Neural Mechanisms of Visual Motion Anomalies in Autism: A Two-Decade Update and Novel Aetiology. Front Neurosci 2021; 15:756841. [PMID: 34790092 PMCID: PMC8591069 DOI: 10.3389/fnins.2021.756841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 21st century has seen dramatic changes in our understanding of the visual physio-perceptual anomalies of autism and also in the structure and development of the primate visual system. This review covers the past 20 years of research into motion perceptual/dorsal stream anomalies in autism, as well as new understanding of the development of primate vision. The convergence of this literature allows a novel developmental hypothesis to explain the physiological and perceptual differences of the broad autistic spectrum. Central to these observations is the development of motion areas MT+, the seat of the dorsal cortical stream, central area of pre-attentional processing as well as being an anchor of binocular vision for 3D action. Such development normally occurs via a transfer of thalamic drive from the inferior pulvinar → MT to the anatomically stronger but later-developing LGN → V1 → MT connection. We propose that autistic variation arises from a slowing in the normal developmental attenuation of the pulvinar → MT pathway. We suggest that this is caused by a hyperactive amygdala → thalamic reticular nucleus circuit increasing activity in the PIm → MT via response gain modulation of the pulvinar and hence altering synaptic competition in area MT. We explore the probable timing of transfer in dominance of human MT from pulvinar to LGN/V1 driving circuitry and discuss the implications of the main hypothesis.
Collapse
Affiliation(s)
- Samuel Spiteri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | | |
Collapse
|
7
|
Myelin development in visual scene-network tracts beyond late childhood: A multimethod neuroimaging study. Cortex 2021; 137:18-34. [PMID: 33588130 DOI: 10.1016/j.cortex.2020.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/30/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The visual scene-network-comprising the parahippocampal place area (PPA), retrosplenial cortex (RSC), and occipital place area (OPA)-shows a prolonged functional development. Structural development of white matter that underlies the scene-network has not been investigated despite its potential influence on scene-network function. The key factor for white matter maturation is myelination. However, research on myelination using the gold standard method of post-mortem histology is scarce. In vivo alternatives diffusion-weighted imaging (DWI) and myelin water imaging (MWI) so far report broad-scale findings that prohibit inferences concerning the scene-network. Here, we combine MWI, DWI tractography, and fMRI to investigate myelination in scene-network tracts in middle childhood, late childhood, and adulthood. We report increasing myelin from middle childhood to adulthood in right PPA-OPA, and trends towards increases in the left and right RSC-OPA tracts. Investigating tracts to regions highly connected with the scene-network, such as early visual cortex and the hippocampus, did not yield any significant age group differences. Our findings indicate that structural development coincides with functional development in the scene-network, possibly enabling structure-function interactions.
Collapse
|
8
|
Latchoumane CFV, Barany DA, Karumbaiah L, Singh T. Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications. Front Neurol 2020; 11:835. [PMID: 32849253 PMCID: PMC7396659 DOI: 10.3389/fneur.2020.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.
Collapse
Affiliation(s)
- Charles-Francois V. Latchoumane
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Lohitash Karumbaiah
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Tarkeshwar Singh
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Ackermann C, Andronikou S, Saleh MG, Kidd M, Cotton MF, Meintjes EM, Laughton B. Diffusion tensor imaging point to ongoing functional impairment in HIV-infected children at age 5, undetectable using standard neurodevelopmental assessments. AIDS Res Ther 2020; 17:20. [PMID: 32430069 PMCID: PMC7236356 DOI: 10.1186/s12981-020-00278-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background Perinatal HIV infection negatively impacts cognitive functioning of children, main domains affected are working memory, processing speed and executive function. Early ART, even when interrupted, improves neurodevelopmental outcomes. Diffusion tension imaging (DTI) is a sensitive tool assessing white matter damage. We hypothesised that white matter measures in regions showing HIV-related alterations will be associated with lower neurodevelopmental scores in specific domains related to the functionality of the affected tracts. Methods DTI was performed on children in a neurodevelopmental sub study from the Children with HIV Early Antiretroviral (CHER) trial. Voxel-based group comparisons to determine regions where fractional anisotropy and mean diffusion differed between HIV+ and uninfected children were done. Locations of clusters showing group differences were identified using the Harvard–Oxford cortical and subcortical and John Hopkins University WM tractography atlases provided in FSL. This is a second review of DTI data in this cohort, which was reported in a previous study. Neurodevelopmental assessments including GMDS and Beery-Buktenica tests were performed and correlated with DTI parameters in abnormal white matter. Results 38 HIV+ children (14 male, mean age 64.7 months) and 11 controls (4 male, mean age 67.7 months) were imaged. Two clusters with lower fractional anisotropy and 7 clusters with increased mean diffusion were identified in the HIV+ group. The only neurodevelopmental domain with a trend of difference between the HIV+ children and controls (p = 0.08), was Personal Social Quotient which correlated to improved myelination of the forceps minor in the control group. As a combined group there was a negative correlation between visual perception and radial diffusion in the right superior longitudinal fasciculus and left inferior longitudinal fasciculus, which may be related to the fact that these tracts, forming part of the visual perception pathway, are at a crucial state of development at age 5. Conclusion Even directed neurodevelopmental tests will underestimate the degree of microstructural white matter damage detected by DTI. The visual perception deficit detected in the entire study population should be further examined in a larger study.
Collapse
|
10
|
Ciesielski KTR, Stern ME, Diamond A, Khan S, Busa EA, Goldsmith TE, van der Kouwe A, Fischl B, Rosen BR. Maturational Changes in Human Dorsal and Ventral Visual Networks. Cereb Cortex 2019; 29:5131-5149. [PMID: 30927361 DOI: 10.1093/cercor/bhz053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Indexed: 11/14/2022] Open
Abstract
Developmental neuroimaging studies report the emergence of increasingly diverse cognitive functions as closely entangled with a rise-fall modulation of cortical thickness (CTh), structural cortical and white-matter connectivity, and a time-course for the experience-dependent selective elimination of the overproduced synapses. We examine which of two visual processing networks, the dorsal (DVN; prefrontal, parietal nodes) or ventral (VVN; frontal-temporal, fusiform nodes) matures first, thus leading the neuro-cognitive developmental trajectory. Three age-dependent measures are reported: (i) the CTh at network nodes; (ii) the matrix of intra-network structural connectivity (edges); and (iii) the proficiency in network-related neuropsychological tests. Typically developing children (age ~6 years), adolescents (~11 years), and adults (~21 years) were tested using multiple-acquisition structural T1-weighted magnetic resonance imaging (MRI) and neuropsychology. MRI images reconstructed into a gray/white/pial matter boundary model were used for CTh evaluation. No significant group differences in CTh and in the matrix of edges were found for DVN (except for the left prefrontal), but a significantly thicker cortex in children for VVN with reduced prefrontal ventral-fusiform connectivity and with an abundance of connections in adolescents. The higher performance in children on tests related to DVN corroborates the age-dependent MRI structural connectivity findings. The current findings are consistent with an earlier maturational course of DVN.
Collapse
Affiliation(s)
- Kristina T R Ciesielski
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Moriah E Stern
- Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Adele Diamond
- Department of Psychiatry, University of British Columbia, Vancouver BC V6T2A1, Canada
| | - Sheraz Khan
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Evelina A Busa
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA
| | - Timothy E Goldsmith
- Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Andre van der Kouwe
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA
| | - Bruce Fischl
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Bruce R Rosen
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Ryckman N, Bandzo M, Qian Y, Lambert AJ. Sub-threshold cuing: Saccadic responses to low-contrast, peripheral, transient visual landmark cues. Conscious Cogn 2019; 74:102783. [DOI: 10.1016/j.concog.2019.102783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
|
12
|
Ross P, de Gelder B, Crabbe F, Grosbras MH. Emotion modulation of the body-selective areas in the developing brain. Dev Cogn Neurosci 2019; 38:100660. [PMID: 31128318 PMCID: PMC6969350 DOI: 10.1016/j.dcn.2019.100660] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Passive viewing fMRI task using dynamic emotional bodies and non-human objects. Adults showed increased activation in the body-selective areas compared with children. Adults also showed more activation than adolescents, but only in the right hemisphere. Crucially, we found no age differences in the emotion modulation of these areas.
Emotions are strongly conveyed by the human body and the ability to recognize emotions from body posture or movement is still developing through childhood and adolescence. To date, very few studies have explored how these behavioural observations are paralleled by functional brain development. Furthermore, currently no studies have explored the development of emotion modulation in these areas. In this study, we used functional magnetic resonance imaging (fMRI) to compare the brain activity of 25 children (age 6–11), 18 adolescents (age 12–17) and 26 adults while they passively viewed short videos of angry, happy or neutral body movements. We observed that when viewing dynamic bodies generally, adults showed higher activity than children bilaterally in the body-selective areas; namely the extra-striate body area (EBA), fusiform body area (FBA), posterior superior temporal sulcus (pSTS), as well as the amygdala (AMY). Adults also showed higher activity than adolescents, but only in the right hemisphere. Crucially, however, we found that there were no age differences in the emotion modulation of activity in these areas. These results indicate, for the first time, that despite activity selective to body perception increasing across childhood and adolescence, emotion modulation of these areas in adult-like from 7 years of age.
Collapse
Affiliation(s)
- Paddy Ross
- Department of Psychology, Durham University, Durham, UK; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Frances Crabbe
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Marie-Hélène Grosbras
- Laboratoire de Neurosciences Cognitives, Aix Marseille Université, Marseille, France; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Lebel C, Treit S, Beaulieu C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR IN BIOMEDICINE 2019; 32:e3778. [PMID: 28886240 DOI: 10.1002/nbm.3778] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/24/2017] [Accepted: 07/05/2017] [Indexed: 05/05/2023]
Abstract
Understanding typical, healthy brain development provides a baseline from which to detect and characterize brain anomalies associated with various neurological or psychiatric disorders and diseases. Diffusion MRI is well suited to study white matter development, as it can virtually extract individual tracts and yield parameters that may reflect alterations in the underlying neural micro-structure (e.g. myelination, axon density, fiber coherence), though it is limited by its lack of specificity and other methodological concerns. This review summarizes the last decade of diffusion imaging studies of healthy white matter development spanning childhood to early adulthood (4-35 years). Conclusions about anatomical location, rates, and timing of white matter development with age are discussed, as well as the influence of image acquisition, analysis, age range/sample size, and statistical model. Despite methodological variability between studies, some consistent findings have emerged from the literature. Specifically, diffusion studies of neurodevelopment overwhelmingly demonstrate regionally varying increases of fractional anisotropy and decreases of mean diffusivity during childhood and adolescence, some of which continue into adulthood. While most studies use linear fits to model age-related changes, studies with sufficient sample sizes and age range provide clear evidence that white matter development (as indicated by diffusion) is non-linear. Several studies further suggest that maturation in association tracts with frontal-temporal connections continues later than commissural and projection tracts. The emerging contributions of more advanced diffusion methods are also discussed, as they may reveal new aspects of white matter development. Although non-specific, diffusion changes may reflect increases of myelination, axonal packing, and/or coherence with age that may be associated with changes in cognition.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Ickx G, Bleyenheuft Y, Hatem SM. Development of Visuospatial Attention in Typically Developing Children. Front Psychol 2017; 8:2064. [PMID: 29270138 PMCID: PMC5724151 DOI: 10.3389/fpsyg.2017.02064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study is to investigate the development of visuospatial attention in typically developing children and to propose reference values for children for the following six visuospatial attention tests: star cancellation, Ogden figure, reading test, line bisection, proprioceptive pointing and visuo-proprioceptive pointing. Data of 159 children attending primary or secondary school in the Fédération Wallonie Bruxelles (Belgium) were analyzed. Results showed that the children's performance on star cancellation, Ogden figure and reading test improved until the age of 13 years, whereas their performance on proprioceptive pointing, visuo-proprioceptive pointing and line bisection was stable with increasing age. These results suggest that the execution of different types of visuospatial attention tasks are not following the same developmental trajectories. This dissociation is strengthened by the lack of correlation observed between tests assessing egocentric and allocentric visuospatial attention, except for the star cancellation test (egocentric) and the Ogden figure copy (ego- and allocentric). Reference values are proposed that may be useful to examine children with clinical disorders of visuospatial attention.
Collapse
Affiliation(s)
- Gaétan Ickx
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Samar M Hatem
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Physical Medicine and Rehabilitation, Brugmann University Hospital, Brussels, Belgium.,Faculty of Medicine and Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Ngo CT, Alm KH, Metoki A, Hampton W, Riggins T, Newcombe NS, Olson IR. White matter structural connectivity and episodic memory in early childhood. Dev Cogn Neurosci 2017; 28:41-53. [PMID: 29175538 PMCID: PMC5909412 DOI: 10.1016/j.dcn.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children's performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory.
Collapse
|
16
|
Klaver P, Knirsch W, Wurmitzer K, von Allmen DY. Children and Adolescents Show Altered Visual Working Memory Related Brain Activity More Than One Decade After Arterial Switch Operation for D-Transposition of the Great Arteries. Dev Neuropsychol 2016; 41:261-267. [PMID: 27918206 DOI: 10.1080/87565641.2016.1243115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This pilot study investigated neural correlates of visual working memory using functional magnetic resonance imaging (fMRI) in seven patients more than one decade after neonatal arterial switch operation for surgical correction of d-transposition of the great arteries (d-TGA, aged 10-18 years, 1 female). Compared with age and sex matched healthy controls patients showed similar visual working memory performance and a smaller increase in brain activity in the posterior parietal cortex with higher visual working memory load. These findings suggest that patients exhibit altered neural activity within a network that is known to support visuospatial memory and cognition.
Collapse
Affiliation(s)
- Peter Klaver
- a School of Psychology , University of Surrey , Guildford , United Kingdom.,b Center for MR Research , University Children's Hospital , Zurich , Switzerland.,c Institute of Psychology , University of Zurich , Zurich , Switzerland
| | - Walter Knirsch
- d Division of Cardiology , University Children's Hospital , Zurich , Switzerland.,e Child Research Center (CRC) , University Children's Hospital , Zurich , Switzerland
| | | | - David Yoh von Allmen
- f Evidence-based Insurance Medicine , University Hospital Basel , Basel , Switzerland
| |
Collapse
|
17
|
Pel JJM, Dudink J, Vonk M, Plaisier A, Reiss IKM, van der Steen J. Early identification of cerebral visual impairments in infants born extremely preterm. Dev Med Child Neurol 2016; 58:1030-5. [PMID: 27061277 DOI: 10.1111/dmcn.13115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Abstract
AIM Children born extremely preterm are at risk of visual processing problems related to brain damage. Damage in visual pathways can remain undetected by conventional magnetic resonance imaging (MRI) and functional consequences cannot always be predicted. The aim of this study was to assess the efficacy of processing visual information in infants born extremely preterm at a corrected age of 1 year using a communication-free visual function test based on eye tracking. METHOD Infants born extremely preterm (<29wks' gestation) without apparent white and grey matter damage on conventional MRI at 30 weeks' postmenstrual age were included (19 males, 1.01y [0.96-1.24] (median [25th-75th centiles]); 11 females, 0.99y [0.98-1.01]). At the corrected age of 1 year, reaction times to fixation (RTF) of specific visual properties displayed on an eye-tracker monitor were quantified and compared with results from a comparison group (eight males, 1.28y [1.01-1.33]; nine females, 1.10y [0.90-1.20]). RESULTS The infants in the preterm group had longer response times in detecting colour patterns (red-green) and motion compared with infants in the comparison group. No impairments were detected in oculomotor functions (saccades, pursuit, and fixations). INTERPRETATION The data suggest that delays in processing visual information can be identified in children born extremely preterm. The delays might be ascribed to deficits in neuronal connectivity in visual pathways at a microstructural level.
Collapse
Affiliation(s)
- Johan J M Pel
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen Dudink
- Department of Pediatrics, Subdivision of Neonatology and Pediatric Intensive Care, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Mark Vonk
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Annemarie Plaisier
- Department of Pediatrics, Subdivision of Neonatology and Pediatric Intensive Care, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Subdivision of Neonatology and Pediatric Intensive Care, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Johannes van der Steen
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,Royal Dutch Visio, Huizen, the Netherlands
| |
Collapse
|
18
|
Longitudinal study of preterm and full-term infants: High-density EEG analyses of cortical activity in response to visual motion. Neuropsychologia 2016; 84:89-104. [DOI: 10.1016/j.neuropsychologia.2016.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/14/2016] [Accepted: 02/03/2016] [Indexed: 11/21/2022]
|
19
|
Agyei SB, van der Weel FR(R, van der Meer ALH. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants. Front Psychol 2016; 7:100. [PMID: 26903908 PMCID: PMC4746292 DOI: 10.3389/fpsyg.2016.00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control.
Collapse
Affiliation(s)
| | | | - Audrey L. H. van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
20
|
Blindness alters the microstructure of the ventral but not the dorsal visual stream. Brain Struct Funct 2015; 221:2891-903. [PMID: 26134685 DOI: 10.1007/s00429-015-1078-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.
Collapse
|
21
|
Rousseaux M, Allart E, Bernati T, Saj A. Anatomical and psychometric relationships of behavioral neglect in daily living. Neuropsychologia 2015; 70:64-70. [PMID: 25676676 DOI: 10.1016/j.neuropsychologia.2015.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 02/09/2015] [Indexed: 11/15/2022]
Abstract
Spatial neglect has been related to both cortical (predominantly at the temporal-parietal junction) and subcortical (predominantly of the superior longitudinal fasciculus) lesions. The objectives of this observational study were to specify the anatomical relationships of behavioral neglect in activities of daily living (N-ADLs), and the anatomical and psychometric relationships of N-ADLs on one hand and components of neglect (peripersonal neglect and personal neglect) and anosognosia on the other. Forty five patients were analyzed for behavioral difficulties in daily living (on the Catherine Bergego scale) and the main components of neglect (using conventional clinical assessments) during the first months post right hemisphere stroke. Voxel-based lesion-symptom mapping was used to identify brain areas within which lesions explained the severity of bias in each assessment (non-parametric permutation test; p<0.01, one tailed). N-ADLs was associated with lesions centered on the posterior part of the superior temporal gyrus and extending to the temporo-parietal junction, temporo-occipital junction and subcortical white matter (including the superior longitudinal fasciculus). Peripersonal neglect resulted from extended cortical lesions centered on the superior temporal gyrus and the inferior parietal gyrus, with subcortical extension. Personal neglect resulted predominantly from lesions centered on the somatosensory cortex and at a lesser degree on the superior temporal sulcus. Anosognosia resulted from lesions of the posterior inferior temporal gyrus and superior temporal gyrus. In anatomic terms, N-ADLs was strongly related to peripersonal neglect, and those relationships were also shown by the psychometric analysis. In conclusions, superior temporal gyrus and superior longitudinal fasciculus lesions have a pivotal role in N-ADLs. N-ADLs is principally related (anatomically and psychometrically) to peripersonal neglect, and at a lesser degree to anosognosia and personal neglect.
Collapse
Affiliation(s)
- Marc Rousseaux
- Service de Rééducation Neurologique, Centre Hospitalier Universitaire and University of Lille Nord de la France, 59037 Lille, France.
| | - Etienne Allart
- Service de Rééducation Neurologique, Centre Hospitalier Universitaire and University of Lille Nord de la France, 59037 Lille, France
| | - Thérèse Bernati
- Service de Rééducation Neurologique, Centre Hospitalier Universitaire and University of Lille Nord de la France, 59037 Lille, France
| | - Arnaud Saj
- Neurology Department, Geneva University Medical Center, and LabNic, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Klaver P, Latal B, Martin E. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks. Neuropsychologia 2014; 67:41-54. [PMID: 25458481 DOI: 10.1016/j.neuropsychologia.2014.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/22/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood.
Collapse
Affiliation(s)
- Peter Klaver
- Department of Psychology, University of Zurich, Switzerland; Center for MR Research and Children׳s Research Center, University Children׳s Hospital Zurich, Switzerland; Zurich Center for Neuroscience, University of Zurich/ETHZ, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.
| | - Beatrice Latal
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Child Development Center and Children׳s Research Center, University Children׳s Hospital Zurich, Switzerland
| | - Ernst Martin
- Center for MR Research and Children׳s Research Center, University Children׳s Hospital Zurich, Switzerland
| |
Collapse
|
23
|
Karl JM, Whishaw IQ. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Exp Brain Res 2014; 232:3301-16. [DOI: 10.1007/s00221-014-4013-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
24
|
Rachakonda T, Shimony JS, Coalson RS, Lieu JEC. Diffusion tensor imaging in children with unilateral hearing loss: a pilot study. Front Syst Neurosci 2014; 8:87. [PMID: 24904310 PMCID: PMC4033270 DOI: 10.3389/fnsys.2014.00087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/25/2014] [Indexed: 11/17/2022] Open
Abstract
Objective: Language acquisition was assumed to proceed normally in children with unilateral hearing loss (UHL) since they have one functioning ear. However, children with UHL score poorly on speech-language tests and have higher rates of educational problems compared to normal hearing (NH) peers. Diffusion tensor imaging (DTI) is an imaging modality used to measure microstructural integrity of brain white matter. The purpose of this pilot study was to investigate differences in fractional anisotropy (FA) and mean diffusivity (MD) in hearing- and non-hearing-related structures in the brain between children with UHL and their NH siblings. Study Design: Prospective observational cohort. Setting: Academic medical center. Subjects and Methods: Sixty one children were recruited, tested and imaged. Twenty nine children with severe-to-profound UHL were compared to 20 siblings with NH using IQ and oral language testing, and MRI with DTI. Twelve children had inadequate MRI data. Parents provided demographic data and indicated whether children had a need for an individualized educational program (IEP) or speech therapy (ST). DTI parameters were measured in auditory and non-auditory regions of interest (ROIs). Between-group comparisons were evaluated with non-parametric tests. Results: Lower FA of left lateral lemniscus was observed for children with UHL compared to their NH siblings, as well as trends toward differences in other auditory and non-auditory regions. Correlation analyses showed associations between several DTI parameters and outcomes in children with UHL. Regression analyses revealed relationships between educational outcome variables and several DTI parameters, which may provide clinically useful information for guidance of speech therapy. Discussion/Conclusion: Our data suggests that white matter microstructural patterns in several brain regions are preserved despite unilateral rather than bilateral auditory input which contrasts with findings in patients with bilateral hearing loss.
Collapse
Affiliation(s)
- Tara Rachakonda
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine St. Louis, MO, USA
| | - Joshua S Shimony
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO, USA
| | - Rebecca S Coalson
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO, USA
| | - Judith E C Lieu
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
25
|
Abstract
White matter matures with age and is important for the efficient transmission of neuronal signals. Consequently, white matter growth may underlie the development of cognitive processes important for learning, including the speed of information processing. To dissect the relationship between white matter structure and information processing speed, we administered a reaction time task (finger abduction in response to visual cue) to 27 typically developing, right-handed children aged 4 to 13. Magnetoencephalography and Diffusion Tensor Imaging were used to delineate white matter connections implicated in visual-motor information processing. Fractional anisotropy (FA) and radial diffusivity (RD) of the optic radiation in the left hemisphere, and FA and mean diffusivity (MD) of the optic radiation in the right hemisphere changed significantly with age. MD and RD decreased with age in the right inferior fronto-occipital fasciculus, and bilaterally in the cortico-spinal tracts. No age-related changes were evident in the inferior longitudinal fasciculus. FA of the cortico-spinal tract in the left hemisphere and MD of the inferior fronto-occipital fasciculus of the right hemisphere contributed uniquely beyond the effect of age in accounting for reaction time performance of the right hand. Our findings support the role of white matter maturation in the development of information processing speed.
Collapse
|
26
|
Tinelli F, Bulgheroni S, Mazzotti S, Vago C, Groppo M, Scaramuzzo RT, Riva D, Cioni G. Ventral stream sensitivity in "healthy" preterm-born adolescents: psychophysical and neuropsychological evaluation. Early Hum Dev 2014; 90:45-9. [PMID: 24284081 DOI: 10.1016/j.earlhumdev.2013.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deficits of motion processing have been reported in premature and very low birth-weight subjects during infancy, childhood and adolescence. Less is known about ventral stream functioning in preterms. AIM The aim of this study is to investigate ventral stream functioning in a sample of "healthy" adolescents born preterm with normal outcome and without brain damage. STUDY DESIGN We enrolled thirty preterm-born adolescents (mean age: 14.2years, mean gestational age 28.9weeks, mean birth weight 1097g), and 34 age-matched term-born controls (mean age: 14.5years). All subjects were administered a psychophysical test known as "Form Coherence Task" and a comprehensive standardized battery of neuropsychological tests suitable for investigating ventral stream functioning including Street Completion Test, Poppelreuter-Ghent Test and the first part of the Visual Object and Space Perception (VOSP) battery. Dorsal stream visual functioning was investigated by the second part of the VOSP. RESULTS Preterm (PT) subjects showed the same results in all "ventral" tasks with respect to full-term controls without any correlation to gestational age or birth weight. We found a significant negative correlation between Form Coherence Task and Letters Task (p=.014) and between Form Coherence and Silhouette Tasks (p=.017). No correlation was observed between Form Coherence Task and Street and Ghent Tests. A statistical difference was instead found between PTs and controls in two tasks of the VOSP battery that mostly involve the dorsal stream. CONCLUSIONS Preterm birth per se (in absence of evident brain lesions) is not sufficient to compromise the development of ventral pathway.
Collapse
Affiliation(s)
- Francesca Tinelli
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Sara Bulgheroni
- Developmental Neurology Division, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - Sara Mazzotti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Chiara Vago
- Developmental Neurology Division, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - Michela Groppo
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Rosa Teresa Scaramuzzo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Division of Neonatology, S. Chiara Hospital, University of Pisa, Pisa, Italy
| | - Daria Riva
- Developmental Neurology Division, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
27
|
Scherf KS, Thomas C, Doyle J, Behrmann M. Emerging structure-function relations in the developing face processing system. Cereb Cortex 2013; 24:2964-80. [PMID: 23765156 DOI: 10.1093/cercor/bht152] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To evaluate emerging structure-function relations in a neural circuit that mediates complex behavior, we investigated age-related differences among cortical regions that support face recognition behavior and the fiber tracts through which they transmit and receive signals using functional neuroimaging and diffusion tensor imaging. In a large sample of human participants (aged 6-23 years), we derived the microstructural and volumetric properties of the inferior longitudinal fasciculus (ILF), the inferior fronto-occipital fasciculus, and control tracts, using independently defined anatomical markers. We also determined the functional characteristics of core face- and place-selective regions that are distributed along the trajectory of the pathways of interest. We observed disproportionately large age-related differences in the volume, fractional anisotropy, and mean and radial, but not axial, diffusivities of the ILF. Critically, these differences in the structural properties of the ILF were tightly and specifically linked with an age-related increase in the size of a key face-selective functional region, the fusiform face area. This dynamic association between emerging structural and functional architecture in the developing brain may provide important clues about the mechanisms by which neural circuits become organized and optimized in the human cortex.
Collapse
Affiliation(s)
- K Suzanne Scherf
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Cibu Thomas
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA, Center for Neuroscience and Regenerative Medicine at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20892, USA
| | - Jaime Doyle
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA and
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Plewan T, Weidner R, Eickhoff SB, Fink GR. Ventral and Dorsal Stream Interactions during the Perception of the Müller-Lyer Illusion: Evidence Derived from fMRI and Dynamic Causal Modeling. J Cogn Neurosci 2012; 24:2015-29. [DOI: 10.1162/jocn_a_00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The human visual system converts identically sized retinal stimuli into different-sized perceptions. For instance, the Müller-Lyer illusion alters the perceived length of a line via arrows attached to its end. The strength of this illusion can be expressed as the difference between physical and perceived line length. Accordingly, illusion strength reflects how strong a representation is transformed along its way from a retinal image up to a conscious percept. In this study, we investigated changes of effective connectivity between brain areas supporting these transformation processes to further elucidate the neural underpinnings of optical illusions. The strength of the Müller-Lyer illusion was parametrically modulated while participants performed either a spatial or a luminance task. Lateral occipital cortex and right superior parietal cortex were found to be associated with illusion strength. Dynamic causal modeling was employed to investigate putative interactions between ventral and dorsal visual streams. Bayesian model selection indicated that a model that involved bidirectional connections between dorsal and ventral stream areas most accurately accounted for the underlying network dynamics. Connections within this network were partially modulated by illusion strength. The data further suggest that the two areas subserve differential roles: Whereas lateral occipital cortex seems to be directly related to size transformation processes, activation in right superior parietal cortex may reflect subsequent levels of processing, including task-related supervisory functions. Furthermore, the data demonstrate that the observer's top–down settings modulate the interactions between lateral occipital and superior parietal regions and thereby influence the effect of illusion strength.
Collapse
Affiliation(s)
| | | | - Simon B. Eickhoff
- 1Research Centre Jülich
- 2Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
29
|
Violante IR, Ribeiro MJ, Cunha G, Bernardino I, Duarte JV, Ramos F, Saraiva J, Silva E, Castelo-Branco M. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network. PLoS One 2012; 7:e38785. [PMID: 22723888 PMCID: PMC3377684 DOI: 10.1371/journal.pone.0038785] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/10/2012] [Indexed: 11/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.
Collapse
Affiliation(s)
- Inês R. Violante
- Visual Neuroscience Laboratory, Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria J. Ribeiro
- Visual Neuroscience Laboratory, Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Gil Cunha
- Visual Neuroscience Laboratory, Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Bernardino
- Visual Neuroscience Laboratory, Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João V. Duarte
- Visual Neuroscience Laboratory, Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fabiana Ramos
- Medical Genetic Department, Pediatric Hospital of Coimbra, Coimbra, Portugal
| | - Jorge Saraiva
- Medical Genetic Department, Pediatric Hospital of Coimbra, Coimbra, Portugal
| | - Eduardo Silva
- Centre for Hereditary Eye Diseases, Department of Ophthalmology, University Hospital of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
30
|
Ortibus E, Verhoeven J, Sunaert S, Casteels I, de Cock P, Lagae L. Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Dev Med Child Neurol 2012; 54:38-43. [PMID: 22171928 DOI: 10.1111/j.1469-8749.2011.04147.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM In this study, we explored the integrity of the inferior longitudinal fasciculus (ILF) by means of diffusion tensor imaging tractography in children with visual perceptual impairment, and more specifically, object recognition deficits, compared with typically developing children. METHODS Eleven individuals (nine males, two females; mean age 7 y 8 mo; range 3 y 5 mo-13 y) were assessed with the L94 visual perceptual battery after assessment of performance age. In all participants, an ophthalmological evaluation was carried out. Diffusion tensor imaging tractography of the ILF was performed. The mean fractional anisotropy was determined for every child and compared with data for 11 age- and sex-matched typically developing children. RESULTS The mean fractional anisotropy value in the left ILF was consistently lower in the study participants than in the comparison group. The five children with L94 impairment showed a significantly lower ILF fractional anisotropy on the left as well as on the right side. Furthermore, the decrease in ILF fractional anisotropy was correlated with the number of impaired subtests. INTERPRETATION The results suggest an association between ILF integrity loss and object recognition deficits. Moreover, the severity of clinical impairment is reflected in the degree of ILF integrity loss. Therefore, the ILF plays a potential role in object recognition.
Collapse
Affiliation(s)
- Els Ortibus
- Paediatric Neurology Department, University Hospitals of the Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Mullen KM, Vohr BR, Katz KH, Schneider KC, Lacadie C, Hampson M, Makuch RW, Reiss AL, Constable RT, Ment LR. Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage 2010; 54:2563-70. [PMID: 21073965 DOI: 10.1016/j.neuroimage.2010.11.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/28/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022] Open
Abstract
Very low birth weight preterm (PT) children are at high risk for brain injury. Employing diffusion tensor imaging (DTI), we tested the hypothesis that PT adolescents would demonstrate microstructural white matter disorganization relative to term controls at 16 years of age. Forty-four PT subjects (600-1250 g birth weight) without neonatal brain injury and 41 term controls were evaluated at age 16 years with DTI, the Wechsler Intelligence Scale for Children-III (WISC), the Peabody Picture Vocabulary Test-Revised (PPVT), and the Comprehensive Test of Phonological Processing (CTOPP). PT subjects scored lower than term subjects on WISC full scale (p=0.003), verbal (p=0.043), and performance IQ tests (p=0.001), as well as CTOPP phonological awareness (p=0.004), but scored comparably to term subjects on PPVT and CTOPP Rapid Naming tests. PT subjects had lower fractional anisotropy (FA) values in multiple regions including bilateral uncinate fasciculi (left: p=0.01; right: p=0.004), bilateral external capsules (left: p<0.001; right: p<0.001), the splenium of the corpus callosum (p=0.008), and white matter serving the inferior frontal gyrus bilaterally (left: p<0.001; right: p=0.011). FA values in both the left and right uncinate fasciculi correlated with PPVT scores (a semantic language task) in the PT subjects (left: r=0.314, p=0.038; right: r=0.336, p=0.026). FA values in the left and right arcuate fasciculi correlated with CTOPP Rapid Naming scores (a phonologic task) in the PT subjects (left: r=0.424, p=0.004; right: r=0.301, p=0.047). These data support for the first time that dual pathways underlying language function are present in PT adolescents. The striking bilateral dorsal correlations for the PT group suggest that prematurely born subjects rely more heavily on the right hemisphere than typically developing adults for performance of phonological language tasks. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain.
Collapse
Affiliation(s)
- Katherine M Mullen
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|