1
|
Zou Z, Zhao B, Ting KH, Wong C, Hou X, Chan CCH. Multisensory integration augmenting motor processes among older adults. Front Aging Neurosci 2023; 15:1293479. [PMID: 38192281 PMCID: PMC10773807 DOI: 10.3389/fnagi.2023.1293479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Objective Multisensory integration enhances sensory processing in older adults. This study aimed to investigate how the sensory enhancement would modulate the motor related process in healthy older adults. Method Thirty-one older adults (12 males, mean age 67.7 years) and 29 younger adults as controls (16 males, mean age 24.9 years) participated in this study. Participants were asked to discriminate spatial information embedded in the unisensory (visual or audial) and multisensory (audiovisual) conditions. The responses made by the movements of the left and right wrists corresponding to the spatial information were registered with specially designed pads. The electroencephalogram (EEG) marker was the event-related super-additive P2 in the frontal-central region, the stimulus-locked lateralized readiness potentials (s-LRP) and response-locked lateralized readiness potentials (r-LRP). Results Older participants showed significantly faster and more accurate responses than controls in the multisensory condition than in the unisensory conditions. Both groups had significantly less negative-going s-LRP amplitudes elicited at the central sites in the between-condition contrasts. However, only the older group showed significantly less negative-going, centrally distributed r-LRP amplitudes. More importantly, only the r-LRP amplitude in the audiovisual condition significantly predicted behavioral performance. Conclusion Audiovisual integration enhances reaction time, which associates with modulated motor related processes among the older participants. The super-additive effects modulate both the motor preparation and generation processes. Interestingly, only the modulated motor generation process contributes to faster reaction time. As such effects were observed in older but not younger participants, multisensory integration likely augments motor functions in those with age-related neurodegeneration.
Collapse
Affiliation(s)
- Zhi Zou
- Department of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Benxuan Zhao
- Department of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Kin-hung Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Clive Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Xiaohui Hou
- Department of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
2
|
Bleau M, Paré S, Chebat DR, Kupers R, Nemargut JP, Ptito M. Neural substrates of spatial processing and navigation in blindness: An activation likelihood estimation meta-analysis. Front Neurosci 2022; 16:1010354. [PMID: 36340755 PMCID: PMC9630591 DOI: 10.3389/fnins.2022.1010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Even though vision is considered the best suited sensory modality to acquire spatial information, blind individuals can form spatial representations to navigate and orient themselves efficiently in space. Consequently, many studies support the amodality hypothesis of spatial representations since sensory modalities other than vision contribute to the formation of spatial representations, independently of visual experience and imagery. However, given the high variability in abilities and deficits observed in blind populations, a clear consensus about the neural representations of space has yet to be established. To this end, we performed a meta-analysis of the literature on the neural correlates of spatial processing and navigation via sensory modalities other than vision, like touch and audition, in individuals with early and late onset blindness. An activation likelihood estimation (ALE) analysis of the neuroimaging literature revealed that early blind individuals and sighted controls activate the same neural networks in the processing of non-visual spatial information and navigation, including the posterior parietal cortex, frontal eye fields, insula, and the hippocampal complex. Furthermore, blind individuals also recruit primary and associative occipital areas involved in visuo-spatial processing via cross-modal plasticity mechanisms. The scarcity of studies involving late blind individuals did not allow us to establish a clear consensus about the neural substrates of spatial representations in this specific population. In conclusion, the results of our analysis on neuroimaging studies involving early blind individuals support the amodality hypothesis of spatial representations.
Collapse
Affiliation(s)
- Maxime Bleau
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, Ariel, Israel
| | - Ron Kupers
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Institute of Neuroscience, Faculty of Medicine, Université de Louvain, Brussels, Belgium
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurice Ptito
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- *Correspondence: Maurice Ptito,
| |
Collapse
|
3
|
Pan N, Zheng K, Zhao Y, Zhang D, Dong C, Xu J, Li X, Zheng Y. Morphometry Difference of the Hippocampal Formation Between Blind and Sighted Individuals. Front Neurosci 2021; 15:715749. [PMID: 34803579 PMCID: PMC8601390 DOI: 10.3389/fnins.2021.715749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
The detailed morphometry alterations of the human hippocampal formation (HF) for blind individuals are still understudied. 50 subjects were recruited from Yantai Affiliated Hospital of Binzhou Medical University, including 16 congenital blindness, 14 late blindness, and 20 sighted controls. Volume and shape analysis were conducted between the blind (congenital or late) and sighted groups to observe the (sub)regional alterations of the HF. No significant difference of the hippocampal volume was observed between the blind and sighted subjects. Rightward asymmetry of the hippocampal volume was found for both congenital and late blind individuals, while no significant hemispheric difference was observed for the sighted controls. Shape analysis showed that the superior and inferior parts of both the hippocampal head and tail expanded, while the medial and lateral parts constrained for the blind individuals as compared to the sighted controls. The morphometry alterations for the congenital blind and late blind individuals are nearly the same. Significant expansion of the superior part of the hippocampal tail for both congenital and late blind groups were observed for the left hippocampi after FDR correction. Current results suggest that the cross-model plastic may occur in both hemispheres of the HF to improve the navigation ability without the stimuli of visual cues, and the alteration is more prominent for the left hemisphere.
Collapse
Affiliation(s)
- Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.,Master of Public Administration Education Center, Xinjiang Agricultural University, Xinjiang, China
| | - Ke Zheng
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Dan Zhang
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Changxu Dong
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Chen W, Lan L, Xiao W, Li J, Liu J, Zhao F, Wang CD, Zheng Y, Chen W, Cai Y. Reduced Functional Connectivity in Children With Congenital Cataracts Using Resting-State Electroencephalography Measurement. Front Neurosci 2021; 15:657865. [PMID: 33935639 PMCID: PMC8079630 DOI: 10.3389/fnins.2021.657865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Objectives Numerous task-based functional magnetic resonance imaging studies indicate the presence of compensatory functional improvement in patients with congenital cataracts. However, there is neuroimaging evidence that shows decreased sensory perception or cognition information processing related to visual dysfunction, which favors a general loss hypothesis. This study explored the functional connectivity between visual and other networks in children with congenital cataracts using resting state electroencephalography. Methods Twenty-one children with congenital cataracts (age: 8.02 ± 2.03 years) and thirty-five sex- and age-matched normal sighted controls were enrolled to investigate functional connectivity between the visual cortex and the default mode network, the salience network, and the cerebellum network during resting state electroencephalography (eyes closed) recordings. Result The congenital cataract group was less active, than the control group, in the occipital, temporal, frontal and limbic lobes in the theta, alpha, beta1 and beta2 frequency bands. Additionally, there was reduced alpha-band connectivity between the visual and somatosensory cortices and between regions of the frontal and parietal cortices associated with cognitive and attentive control. Conclusion The results indicate abnormalities in sensory, cognition, motion and execution functional connectivity across the developing brains of children with congenital cataracts when compared with normal controls. Reduced frontal alpha activity and alpha-band connectivity between the visual cortex and salience network might reflect attenuated inhibitory information flow, leading to higher attentional states, which could contribute to adaptation of environmental change in this group of patients.
Collapse
Affiliation(s)
- Wan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liping Lan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Fei Zhao
- Department of Speech and Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff, United Kingdom.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Chang-Dong Wang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Blindness and the Reliability of Downwards Sensors to Avoid Obstacles: A Study with the EyeCane. SENSORS 2021; 21:s21082700. [PMID: 33921202 PMCID: PMC8070041 DOI: 10.3390/s21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Vision loss has dramatic repercussions on the quality of life of affected people, particularly with respect to their orientation and mobility. Many devices are available to help blind people to navigate in their environment. The EyeCane is a recently developed electronic travel aid (ETA) that is inexpensive and easy to use, allowing for the detection of obstacles lying ahead within a 2 m range. The goal of this study was to investigate the potential of the EyeCane as a primary aid for spatial navigation. Three groups of participants were recruited: early blind, late blind, and sighted. They were first trained with the EyeCane and then tested in a life-size obstacle course with four obstacles types: cube, door, post, and step. Subjects were requested to cross the corridor while detecting, identifying, and avoiding the obstacles. Each participant had to perform 12 runs with 12 different obstacles configurations. All participants were able to learn quickly to use the EyeCane and successfully complete all trials. Amongst the various obstacles, the step appeared to prove the hardest to detect and resulted in more collisions. Although the EyeCane was effective for detecting obstacles lying ahead, its downward sensor did not reliably detect those on the ground, rendering downward obstacles more hazardous for navigation.
Collapse
|
6
|
Zhang C, Lee TMC, Fu Y, Ren C, Chan CCH, Tao Q. Properties of cross-modal occipital responses in early blindness: An ALE meta-analysis. NEUROIMAGE-CLINICAL 2019; 24:102041. [PMID: 31677587 PMCID: PMC6838549 DOI: 10.1016/j.nicl.2019.102041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022]
Abstract
ALE meta-analysis reveals distributed brain networks for object and spatial functions in individuals with early blindness. ALE contrast analysis reveals specific activations in the left cuneus and lingual gyrus for language function, suggesting a reverse hierarchical organization of the visual cortex for early blind individuals. The findings contribute to visual rehabilitation in blind individuals by revealing the function-dependent and sensory-independent networks during nonvisual processing.
Cross-modal occipital responses appear to be essential for nonvisual processing in individuals with early blindness. However, it is not clear whether the recruitment of occipital regions depends on functional domain or sensory modality. The current study utilized a coordinate-based meta-analysis to identify the distinct brain regions involved in the functional domains of object, spatial/motion, and language processing and the common brain regions involved in both auditory and tactile modalities in individuals with early blindness. Following the PRISMA guidelines, a total of 55 studies were included in the meta-analysis. The specific analyses revealed the brain regions that are consistently recruited for each function, such as the dorsal fronto-parietal network for spatial function and ventral occipito-temporal network for object function. This is consistent with the literature, suggesting that the two visual streams are preserved in early blind individuals. The contrast analyses found specific activations in the left cuneus and lingual gyrus for language function. This finding is novel and suggests a reverse hierarchical organization of the visual cortex for early blind individuals. The conjunction analyses found common activations in the right middle temporal gyrus, right precuneus and a left parieto-occipital region. Clinically, this work contributes to visual rehabilitation in early blind individuals by revealing the function-dependent and sensory-independent networks during nonvisual processing.
Collapse
Affiliation(s)
- Caiyun Zhang
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, CHINA; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, CHINA; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunwei Fu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, CHINA.
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
7
|
Alterations of the Brain Microstructure and Corresponding Functional Connectivity in Early-Blind Adolescents. Neural Plast 2019; 2019:2747460. [PMID: 30996726 PMCID: PMC6408999 DOI: 10.1155/2019/2747460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022] Open
Abstract
Although evidence from studies on blind adults indicates that visual deprivation early in life leads to structural and functional disruption and reorganization of the brain, whether young blind people show similar patterns remains unknown. Therefore, this study is aimed at exploring the structural and functional alterations of the brain of early-blind adolescents (EBAs) compared to normal-sighted controls (NSCs) and investigating the effects of residual light perception on brain microstructure and function in EBAs. We obtained magnetic resonance imaging (MRI) data from 23 EBAs (8 with residual light perception (LPs), 15 without light perception (NLPs)) and 21 NSCs (age range 11-19 years old). Whole-brain voxel-based analyses of diffusion tensor imaging metrics and region-of-interest analyses of resting-state functional connectivity (RSFC) were performed to compare patterns of brain microstructure and the corresponding RSFC between the groups. The results showed that structural disruptions of LPs and NLPs were mainly located in the occipital visual pathway. Compared with NLPs, LPs showed increased fractional anisotropy (FA) in the superior frontal gyrus and reduced diffusivity in the caudate nucleus. Moreover, the correlations between FA of the occipital cortices or mean diffusivity of the lingual gyrus and age were consistent with the development trajectory of the brain in NSCs, but inconsistent or even opposite in EBAs. Additionally, we found functional, but not structural, reorganization in NLPs compared with NSCs, suggesting that functional neuroplasticity occurs earlier than structural neuroplasticity in EBAs. Altogether, these findings provided new insights into the mechanisms underlying the neural reorganization of the brain in adolescents with early visual deprivation.
Collapse
|
8
|
Zou Z, Chau BKH, Ting KH, Chan CCH. Aging Effect on Audiovisual Integrative Processing in Spatial Discrimination Task. Front Aging Neurosci 2017; 9:374. [PMID: 29184494 PMCID: PMC5694625 DOI: 10.3389/fnagi.2017.00374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/01/2017] [Indexed: 11/13/2022] Open
Abstract
Multisensory integration is an essential process that people employ daily, from conversing in social gatherings to navigating the nearby environment. The aim of this study was to investigate the impact of aging on modulating multisensory integrative processes using event-related potential (ERP), and the validity of the study was improved by including “noise” in the contrast conditions. Older and younger participants were involved in perceiving visual and/or auditory stimuli that contained spatial information. The participants responded by indicating the spatial direction (far vs. near and left vs. right) conveyed in the stimuli using different wrist movements. electroencephalograms (EEGs) were captured in each task trial, along with the accuracy and reaction time of the participants’ motor responses. Older participants showed a greater extent of behavioral improvements in the multisensory (as opposed to unisensory) condition compared to their younger counterparts. Older participants were found to have fronto-centrally distributed super-additive P2, which was not the case for the younger participants. The P2 amplitude difference between the multisensory condition and the sum of the unisensory conditions was found to correlate significantly with performance on spatial discrimination. The results indicated that the age-related effect modulated the integrative process in the perceptual and feedback stages, particularly the evaluation of auditory stimuli. Audiovisual (AV) integration may also serve a functional role during spatial-discrimination processes to compensate for the compromised attention function caused by aging.
Collapse
Affiliation(s)
- Zhi Zou
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bolton K H Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kin-Hung Ting
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
9
|
Tao Q, Chan CCH, Luo YJ, Li JJ, Ting KH, Lu ZL, Whitfield-Gabrieli S, Wang J, Lee TMC. Prior Visual Experience Modulates Learning of Sound Localization Among Blind Individuals. Brain Topogr 2017; 30:364-379. [PMID: 28161728 PMCID: PMC5408050 DOI: 10.1007/s10548-017-0549-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/19/2017] [Indexed: 11/26/2022]
Abstract
Cross-modal learning requires the use of information from different sensory modalities. This study investigated how the prior visual experience of late blind individuals could modulate neural processes associated with learning of sound localization. Learning was realized by standardized training on sound localization processing, and experience was investigated by comparing brain activations elicited from a sound localization task in individuals with (late blind, LB) and without (early blind, EB) prior visual experience. After the training, EB showed decreased activation in the precuneus, which was functionally connected to a limbic-multisensory network. In contrast, LB showed the increased activation of the precuneus. A subgroup of LB participants who demonstrated higher visuospatial working memory capabilities (LB-HVM) exhibited an enhanced precuneus-lingual gyrus network. This differential connectivity suggests that visuospatial working memory due to the prior visual experience gained via LB-HVM enhanced learning of sound localization. Active visuospatial navigation processes could have occurred in LB-HVM compared to the retrieval of previously bound information from long-term memory for EB. The precuneus appears to play a crucial role in learning of sound localization, disregarding prior visual experience. Prior visual experience, however, could enhance cross-modal learning by extending binding to the integration of unprocessed information, mediated by the cognitive functions that these experiences develop.
Collapse
Affiliation(s)
- Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, China
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.
| | - Yue-Jia Luo
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jian-Jun Li
- China Rehabilitation Research Center, Beijing, China
| | - Kin-Hung Ting
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Zhong-Lin Lu
- Center for Cognitive and Behavioral Brain Imaging, Arts, & Sciences, Department of Psychology, The Ohio State University, Ohio, OH, 43210, USA
| | | | - Jun Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tatia M C Lee
- Laboratory of Neuropsychology, Department of Psychology, The University of Hong Kong, Hong Kong, Hong Kong.
- Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, Hong Kong.
- State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten Percept Psychophys 2016; 78:373-95. [PMID: 26590050 PMCID: PMC4744263 DOI: 10.3758/s13414-015-1015-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss.
Collapse
|
11
|
Schinazi VR, Thrash T, Chebat DR. Spatial navigation by congenitally blind individuals. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 7:37-58. [PMID: 26683114 PMCID: PMC4737291 DOI: 10.1002/wcs.1375] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/16/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022]
Abstract
Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over‐reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. WIREs Cogn Sci 2016, 7:37–58. doi: 10.1002/wcs.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Victor R Schinazi
- Department of Humanities, Social, and Political Sciences, ETH Zürich, Zürich, Switzerland
| | - Tyler Thrash
- Department of Humanities, Social, and Political Sciences, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
12
|
Fiehler K, Schütz I, Meller T, Thaler L. Neural Correlates of Human Echolocation of Path Direction During Walking. Multisens Res 2015; 28:195-226. [PMID: 26152058 DOI: 10.1163/22134808-00002491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Echolocation can be used by blind and sighted humans to navigate their environment. The current study investigated the neural activity underlying processing of path direction during walking. Brain activity was measured with fMRI in three blind echolocation experts, and three blind and three sighted novices. During scanning, participants listened to binaural recordings that had been made prior to scanning while echolocation experts had echolocated during walking along a corridor which could continue to the left, right, or straight ahead. Participants also listened to control sounds that contained ambient sounds and clicks, but no echoes. The task was to decide if the corridor in the recording continued to the left, right, or straight ahead, or if they were listening to a control sound. All participants successfully dissociated echo from no echo sounds, however, echolocation experts were superior at direction detection. We found brain activations associated with processing of path direction (contrast: echo vs. no echo) in superior parietal lobule (SPL) and inferior frontal cortex in each group. In sighted novices, additional activation occurred in the inferior parietal lobule (IPL) and middle and superior frontal areas. Within the framework of the dorso-dorsal and ventro-dorsal pathway proposed by Rizzolatti and Matelli (2003), our results suggest that blind participants may automatically assign directional meaning to the echoes, while sighted participants may apply more conscious, high-level spatial processes. High similarity of SPL and IFC activations across all three groups, in combination with previous research, also suggest that all participants recruited a multimodal spatial processing system for action (here: locomotion).
Collapse
|
13
|
Tao Q, Chan CCH, Luo YJ, Li JJ, Ting KH, Wang J, Lee TMC. How does experience modulate auditory spatial processing in individuals with blindness? Brain Topogr 2013; 28:506-19. [PMID: 24322827 PMCID: PMC4408360 DOI: 10.1007/s10548-013-0339-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/21/2013] [Indexed: 11/24/2022]
Abstract
Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel “Bat-ears” sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.
Collapse
Affiliation(s)
- Qian Tao
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012; 2012:305693. [PMID: 22848849 PMCID: PMC3400395 DOI: 10.1155/2012/305693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
Collapse
|