1
|
Tao W, Liu L, Wu J, Luo YJ, Li H. Dynamic interaction between the cerebrum and the cerebellum during visual word processing. Cortex 2024; 180:147-162. [PMID: 39437591 DOI: 10.1016/j.cortex.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024]
Abstract
Numerous studies have investigated the relationship between the cerebellum and reading. Yet, the specific contribution of the cerebellum to reading and its interaction with the cerebrum remain elusive. To address these issues, we combined dynamic brain state analysis with large-scale network analysis to examine the imaging data gathered from the reading tasks (i.e., orthographic, phonological, and semantic tasks) and the resting period. Our analysis revealed three dynamic brain states. The first state (DFS1) exhibited a higher ratio and a longer duration in all tasks, indicating its involvement in general task-related processes. The second state (DFS2) was predominantly active during the resting stage, representing a resting-related state. The third state (DFS3) displayed a higher ratio in the reading tasks compared to the non-reading tasks, indicating its association with reading-dependent processes. In all states, hubs were predominantly distributed in the cerebrum. For DFS2, one hub was also observed in the cerebellum. Furthermore, DFS2 showed significant modularity between the cerebrum and the cerebellum. This study sheds light on the dynamic collaboration between the cerebrum and the cerebellum across different imaging modalities, offering a deeper and more comprehensive understanding of their interaction during reading and non-reading periods.
Collapse
Affiliation(s)
- Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China
| | - Lanfang Liu
- Department of Psychology, School of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, PR China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, PR China
| | - Yue-Jia Luo
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China
| | - Hehui Li
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China.
| |
Collapse
|
2
|
Bonandrini R, Gornetti E, Paulesu E. A meta-analytical account of the functional lateralization of the reading network. Cortex 2024; 177:363-384. [PMID: 38936265 DOI: 10.1016/j.cortex.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The observation that the neural correlates of reading are left-lateralized is ubiquitous in the cognitive neuroscience and neuropsychological literature. Still, reading is served by a constellation of neural units, and the extent to which these units are consistently left-lateralized is unclear. In this regard, the functional lateralization of the fusiform gyrus is of particular interest, by virtue of its hypothesized role as a "visual word form area". A quantitative Activation Likelihood Estimation meta-analysis was conducted on activation foci from 35 experiments investigating silent reading, and both a whole-brain and a bayesian ROI-based approach were used to assess the lateralization of the data submitted to meta-analysis. Perirolandic areas showed the highest level of left-lateralization, the fusiform cortex and the parietal cortex exhibited only a moderate pattern of left-lateralization, while in the occipital, insular cortices and in the cerebellum the lateralization turned out to be the lowest observed. The relatively limited functional lateralization of the fusiform gyrus was further explored in a regression analysis on the lateralization profile of each study. The functional lateralization of the fusiform gyrus during reading was positively associated with the lateralization of the precentral and inferior occipital gyri and negatively associated with the lateralization of the triangular portion of the inferior frontal gyrus and of the temporal pole. Overall, the present data highlight how lateralization patterns differ within the reading network. Furthermore, the present data highlight how the functional lateralization of the fusiform gyrus during reading is related to the degree of functional lateralization of other language brain areas.
Collapse
Affiliation(s)
| | - Edoardo Gornetti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; The International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
| | - Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
3
|
Turker S, Kuhnke P, Schmid FR, Cheung VKM, Weise K, Knoke M, Zeidler B, Seidel K, Eckert L, Hartwigsen G. Adaptive short-term plasticity in the typical reading network. Neuroimage 2023; 281:120373. [PMID: 37696425 PMCID: PMC10577446 DOI: 10.1016/j.neuroimage.2023.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.
Collapse
Affiliation(s)
- S Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany.
| | - P Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| | - F R Schmid
- CBC Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - V K M Cheung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - K Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Knoke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - B Zeidler
- Centre for Systematic Musicology, University of Graz, Austria
| | - K Seidel
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - L Eckert
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - G Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| |
Collapse
|
4
|
Braid J, Richlan F. The Functional Neuroanatomy of Reading Intervention. Front Neurosci 2022; 16:921931. [PMID: 35784836 PMCID: PMC9243375 DOI: 10.3389/fnins.2022.921931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
The present article reviews the literature on the brain mechanisms underlying reading improvements following behavioral intervention for reading disability. This includes evidence of neuroplasticity concerning functional brain activation, brain structure, and brain connectivity related to reading intervention. Consequently, the functional neuroanatomy of reading intervention is compared to the existing literature on neurocognitive models and brain abnormalities associated with reading disability. A particular focus is on the left hemisphere reading network including left occipito-temporal, temporo-parietal, and inferior frontal language regions. In addition, potential normalization/compensation mechanisms involving right hemisphere cortical regions, as well as bilateral sub-cortical and cerebellar regions are taken into account. The comparison of the brain systems associated with reading intervention and the brain systems associated with reading disability enhances our understanding of the neurobiological basis of typical and atypical reading development. All in all, however, there is a lack of sufficient evidence regarding rehabilitative brain mechanisms in reading disability, which we discuss in this review.
Collapse
|
5
|
Li H, Yuan Q, Luo YJ, Tao W. A new perspective for understanding the contributions of the cerebellum to reading: The cerebro-cerebellar mapping hypothesis. Neuropsychologia 2022; 170:108231. [DOI: 10.1016/j.neuropsychologia.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
|
6
|
Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sci 2021; 11:brainsci11060722. [PMID: 34071649 PMCID: PMC8228080 DOI: 10.3390/brainsci11060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the "dorsal stream vulnerability" underlying DD.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Correspondence: (S.M.); (F.A.)
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Laboratoire de Psychologie de Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Université de Paris, 75005 Paris, France
| | - Martina Villa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Tommaso Ciceri
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Cecilia Marino
- The Division of Child and Youth Psychiatry at the Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
- Correspondence: (S.M.); (F.A.)
| |
Collapse
|
7
|
Li H, Booth JR, Feng X, Wei N, Zhang M, Zhang J, Zhong H, Lu C, Liu L, Ding G, Meng X. Functional parcellation of the right cerebellar lobule VI in children with normal or impaired reading. Neuropsychologia 2020; 148:107630. [PMID: 32976851 DOI: 10.1016/j.neuropsychologia.2020.107630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Neuroimaging studies have reported that the right cerebellar lobule VI is engaged in reading, but its role is unclear. The goal of our study was to identify functionally-dissociable subregions in the right lobule VI and how these subregions contribute to reading in children with normal or impaired reading. In Experiment I, typically developing children performed an orthographic task and a phonological task during functional magnetic resonance imaging (fMRI). We classified the voxels in the right lobule VI into seven zones based on the patterns of functional connectivity with the cerebrum across both tasks. In Experiment II, we compared the brain activation and cerebro-cerebellar connectivities of each subregion between children readers with different reading levels. We did not find significant group differences in cerebellar activation. However, we found that impaired readers had considerably higher functional connectivity between R1 and the right angular gyrus and the right precuneus compared to the control group in the phonological task. These findings show that the right cerebellar lobule VI is functionally parceled and its subregions might be differentially connected with the cerebrum between children with normal reading abilities and those with impaired reading.
Collapse
Affiliation(s)
- Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37203-5721, USA
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Na Wei
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hejing Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China; PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Beelen C, Vanderauwera J, Wouters J, Vandermosten M, Ghesquière P. Atypical gray matter in children with dyslexia before the onset of reading instruction. Cortex 2019; 121:399-413. [PMID: 31704534 DOI: 10.1016/j.cortex.2019.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/01/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
Many studies have focused on neuroanatomical anomalies in dyslexia, yet primarily in school-aged children and adults. In the present study, we investigated gray matter surface area and cortical thickness at the pre-reading stage in a cohort of 54 children, 31 with a family risk for dyslexia and 23 without a family risk for dyslexia, of whom 16 children developed dyslexia. Surface-based analyses in the core regions of the reading network in the left hemisphere and in the corresponding right hemispheric regions were performed in FreeSurfer. Results revealed that pre-readers who develop dyslexia show reduced surface area in bilateral fusiform gyri. In addition, anomalies related to a family risk for dyslexia, irrespectively of later reading ability, were observed in the area of the bilateral inferior and middle temporal gyri. Differences were apparent in surface area, as opposed to cortical thickness. Results indicate that the neuroanatomical anomalies, since they are observed in the pre-reading phase, are not the consequence of impoverished reading experience.
Collapse
Affiliation(s)
- Caroline Beelen
- Parenting & Special Education Research Unit, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium
| | - Jolijn Vanderauwera
- Parenting & Special Education Research Unit, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium; Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | | | - Pol Ghesquière
- Parenting & Special Education Research Unit, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
9
|
Ludersdorfer P, Price CJ, Kawabata Duncan KJ, DeDuck K, Neufeld NH, Seghier ML. Dissociating the functions of superior and inferior parts of the left ventral occipito-temporal cortex during visual word and object processing. Neuroimage 2019; 199:325-335. [PMID: 31176833 PMCID: PMC6693527 DOI: 10.1016/j.neuroimage.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
During word and object recognition, extensive activation has consistently been observed in the left ventral occipito-temporal cortex (vOT), focused around the occipito-temporal sulcus (OTs). Previous studies have shown that there is a hierarchy of responses from posterior to anterior vOT regions (along the y-axis) that corresponds with increasing levels of recognition - from perceptual to semantic processing, respectively. In contrast, the functional differences between superior and inferior vOT responses (i.e. along the z-axis) have not yet been elucidated. To investigate, we conducted an extensive review of the literature and found that peak activation for reading varies by more than 1 cm in the z-axis. In addition, we investigated functional differences between superior and inferior parts of left vOT by analysing functional MRI data from 58 neurologically normal skilled readers performing 8 different visual processing tasks. We found that group activation in superior vOT was significantly more sensitive than inferior vOT to the type of task, with more superior vOT activation when participants were matching visual stimuli for their semantic or perceptual content than producing speech to the same stimuli. This functional difference along the z-axis was compared to existing boundaries between cytoarchitectonic areas around the OTs. In addition, using dynamic causal modelling, we show that connectivity from superior vOT to anterior vOT increased with semantic content during matching tasks but not during speaking tasks whereas connectivity from inferior vOT to anterior vOT was sensitive to semantic content for matching and speaking tasks. The finding of a functional dissociation between superior and inferior parts of vOT has implications for predicting deficits and response to rehabilitation for patients with partial damage to vOT following stroke or neurosurgery.
Collapse
Affiliation(s)
- Philipp Ludersdorfer
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK.
| | - Keith J Kawabata Duncan
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK; Department of Cognitive Neuroscience, University of Tokyo, Tokyo, Japan
| | - Kristina DeDuck
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Nicholas H Neufeld
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mohamed L Seghier
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK; Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Pollack C, Ashby NC. Where arithmetic and phonology meet: The meta-analytic convergence of arithmetic and phonological processing in the brain. Dev Cogn Neurosci 2018; 30:251-264. [PMID: 28533112 PMCID: PMC6969128 DOI: 10.1016/j.dcn.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/06/2017] [Accepted: 05/06/2017] [Indexed: 12/27/2022] Open
Abstract
Arithmetic facts can be solved using different strategies. Research suggests that some arithmetic problems, particularly those solved by fact retrieval, are related to phonological processing ability and elicit activity in left-lateralized brain regions that support phonological processing. However, it is unclear whether common brain regions support both retrieval-based arithmetic and phonological processing, and if these regions differ across children and adults. This study used activation likelihood estimation to investigate functional neural overlap between arithmetic and phonological processing, separately for children and adults. The meta-analyses in children showed six clusters of overlapping activation concentrated in bilateral frontal regions and in the left fusiform gyrus. The meta-analyses in adults yielded two clusters of concordant activity, one in the left inferior frontal gyrus and one in the left inferior parietal lobule. A qualitative comparison across the two age groups suggests that children show more bilateral and diffuse activation than adults, which may reflect attentional processes that support more effortful processing in children. The present meta-analyses contribute novel insights into the relationship between retrieval-based arithmetic and phonological processing in the brain across children and adults, and brain regions that may support processing of more complex symbolic representations, such as arithmetic facts and words.
Collapse
Affiliation(s)
- Courtney Pollack
- Harvard Graduate School of Education, Appian Way, Cambridge, MA 02138, United States.
| | - Nicole C Ashby
- Harvard Graduate School of Education, Appian Way, Cambridge, MA 02138, United States
| |
Collapse
|
11
|
Rendall AR, Perrino PA, LoTurco JJ, Fitch RH. Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. GENES BRAIN AND BEHAVIOR 2018; 18:e12450. [PMID: 29232042 DOI: 10.1111/gbb.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
Abstract
Developmental dyslexia is a heritable disability characterized by difficulties in learning to read and write. The neurobiological and genetic mechanisms underlying dyslexia remain poorly understood; however, several dyslexia candidate risk genes have been identified. One of these candidate risk genes-doublecortin domain containing 2 (DCDC2)-has been shown to play a role in neuronal migration and cilia function. At a behavioral level, variants of DCDC2 have been associated with impairments in phonological processing, working memory and reading speed. Additionally, a specific mutation in DCDC2 has been strongly linked to deficits in motion perception-a skill subserving reading abilities. To further explore the relationship between DCDC2 and dyslexia, a genetic knockout (KO) of the rodent homolog of DCDC2 (Dcdc2) was created. Initial studies showed that Dcdc2 KOs display deficits in auditory processing and working memory. The current study was designed to evaluate the association between DCDC2 and motion perception, as these skills have not yet been assessed in the Dcdc2 KO mouse model. We developed a novel motion perception task, utilizing touchscreen technology and operant conditioning. Dcdc2 KOs displayed deficits on the Pairwise Discrimination task specifically as motion was added to visual stimuli. Following behavioral assessment, brains were histologically prepared for neuroanatomical analysis of the lateral geniculate nucleus (LGN). The cumulative distribution showed that Dcdc2 KOs exhibited more small neurons and fewer larger neurons in the LGN. Results compliment findings that DCDC2 genetic alteration results in anomalies in visual motion pathways in a subpopulation of dyslexic patients.
Collapse
Affiliation(s)
- A R Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - P A Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - J J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - R H Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
12
|
Danelli L, Berlingeri M, Bottini G, Borghese NA, Lucchese M, Sberna M, Price CJ, Paulesu E. How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics. Cortex 2017; 97:125-142. [PMID: 29107746 PMCID: PMC5722195 DOI: 10.1016/j.cortex.2017.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
Dyslexia can have different manifestations: this has motivated different theories on its nature, on its underlying brain bases and enduring controversies on how to best treat it. The relative weight of the different manifestations has never been evaluated using both behavioural and fMRI measures, a challenge taken here to assess the major systems called into play in dyslexia by different theories. We found that adult well-compensated dyslexics were systematically impaired only in reading and in visuo-phonological tasks, while deficits for other systems (e.g., motor/cerebellar, visual magnocellular/motion perception) were only very occasional. In line with these findings, fMRI showed a reliable hypoactivation only for the task of reading, in the left occipito-temporal cortex (l-OTC). The l-OTC, normally a crossroad between the reading system and other systems, did not show the same level of intersection in dyslexics; yet, it was not totally silent because it responded, in segregated parts, during auditory phonological and visual motion perception tasks. This minimal behavioural and functional anatomical comorbidity demonstrates that a specific deficit of reading is the best description for developmental dyslexia, at least for adult well-compensated cases, with clear implications for rehabilitation strategies. The reduced intersection of multiple systems in the l-OTC suggests that dyslexics suffer from a coarser connectivity, leading to disconnection between the multiple domains that normally interact during reading.
Collapse
Affiliation(s)
- Laura Danelli
- Psychology Department and Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Manuela Berlingeri
- DISTUM, Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Gabriella Bottini
- Centre of Cognitive Neuropsychology, Niguarda Ca' Granda Hospital, Milan, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Nunzio A Borghese
- AIS-Lab and Department of Computer Science, University of Milan, Milan, Italy
| | - Mirko Lucchese
- AIS-Lab and Department of Computer Science, University of Milan, Milan, Italy
| | - Maurizio Sberna
- Neuroradiology Department, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London UK
| | - Eraldo Paulesu
- Psychology Department and Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; fMRI Unit-IRCCS Galeazzi, Milan, Italy.
| |
Collapse
|
13
|
Different relationship of magnocellular-dorsal function and reading-related skills between Chinese developing and skilled readers. PLoS One 2017; 12:e0179712. [PMID: 28704422 PMCID: PMC5509136 DOI: 10.1371/journal.pone.0179712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/03/2017] [Indexed: 11/19/2022] Open
Abstract
Previous studies have indicated that the relationship between magnocellular-dorsal (M-D) function and reading-related skills may vary with reading development in readers of alphabetic languages. Since this relationship could be affected by the orthographic depth of writing systems, the present study explored the relationship between M-D function and reading-related skills in Chinese, a writing system with a deeper orthography than alphabetic languages. Thirty-seven primary school students and fifty-one undergraduate students participated. Orthographic and phonological awareness tests were adopted as reading-related skill measurements. A steady-pedestal paradigm was used to assess the low-spatial-frequency contrast thresholds of M-D function. Results showed that M-D function was only correlated with orthographic awareness for adults, revealing an enhancement with reading development; while being related to phonological awareness only for children revealing a developmental decrement. It suggested that the mechanism responsible for the relationship between M-D activity and reading-related skills was affected by the characteristics of literacy development in Chinese.
Collapse
|
14
|
Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams. J Neurosci 2017; 36:4895-906. [PMID: 27122044 DOI: 10.1523/jneurosci.4202-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population.
Collapse
|
15
|
An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav Brain Res 2017; 329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/27/2022]
|
16
|
Hancock R, Richlan F, Hoeft F. Possible roles for fronto-striatal circuits in reading disorder. Neurosci Biobehav Rev 2017; 72:243-260. [PMID: 27826071 PMCID: PMC5189679 DOI: 10.1016/j.neubiorev.2016.10.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/13/2016] [Accepted: 10/27/2016] [Indexed: 01/18/2023]
Abstract
Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation related to articulatory processing. Fronto-striatal hyperactivation in RD could however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States.
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States; Haskins Laboratories, 300 George St #900, New Haven, CT 06511, United States; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi Shinjuku, Tokyo, 160-8582 Japan
| |
Collapse
|
17
|
Hancock R, Richlan F, Hoeft F. Possible roles for fronto-striatal circuits in reading disorder. Neurosci Biobehav Rev 2016. [PMID: 27826071 DOI: 10.1016/j.neubiorev.2016.10.025"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation related to articulatory processing. Fronto-striatal hyperactivation in RD could however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States.
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States; Haskins Laboratories, 300 George St #900, New Haven, CT 06511, United States; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi Shinjuku, Tokyo, 160-8582 Japan
| |
Collapse
|
18
|
Tamboer P, Vorst HCM, Ghebreab S, Scholte HS. Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia. NEUROIMAGE-CLINICAL 2016; 11:508-514. [PMID: 27114899 PMCID: PMC4832088 DOI: 10.1016/j.nicl.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023]
Abstract
Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique--support vector machine--to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18-21 years), a classification performance of 80% (p < 0.001; d-prime = 1.67) was achieved on the basis of differences in gray matter (sensitivity 82%, specificity 78%). The voxels that were most reliable for classification were found in the left occipital fusiform gyrus (LOFG), in the right occipital fusiform gyrus (ROFG), and in the left inferior parietal lobule (LIPL). Additionally, we found that classification certainty (e.g. the percentage of times a subject was correctly classified) correlated with severity of dyslexia (r = 0.47). Furthermore, various significant correlations were found between the three anatomical regions and behavioural measures of spelling, phonology and whole-word-reading. No correlations were found with behavioural measures of short-term memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology. In a second and independent sample of 876 young adults of a general population, the trained classifier of the first sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in classification performance resulted from a large percentage of false alarms. This study provided support for the use of machine learning in anatomical brain imaging.
Collapse
Affiliation(s)
- P Tamboer
- University of Amsterdam, Faculty of Social and Behavioural Sciences, Weesperplein 4, 1018XA Amsterdam, The Netherlands.
| | - H C M Vorst
- University of Amsterdam, Faculty of Social and Behavioural Sciences, Weesperplein 4, 1018XA Amsterdam, The Netherlands.
| | - S Ghebreab
- University of Amsterdam, Faculty of Social and Behavioural Sciences, Weesperplein 4, 1018XA Amsterdam, The Netherlands.
| | - H S Scholte
- University of Amsterdam, Faculty of Social and Behavioural Sciences, Weesperplein 4, 1018XA Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Danelli L, Marelli M, Berlingeri M, Tettamanti M, Sberna M, Paulesu E, Luzzatti C. Framing effects reveal discrete lexical-semantic and sublexical procedures in reading: an fMRI study. Front Psychol 2015; 6:1328. [PMID: 26441712 PMCID: PMC4585139 DOI: 10.3389/fpsyg.2015.01328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
According to the dual-route model, a printed string of letters can be processed by either a grapheme-to-phoneme conversion (GPC) route or a lexical-semantic route. Although meta-analyses of the imaging literature support the existence of distinct but interacting reading procedures, individual neuroimaging studies that explored neural correlates of reading yielded inconclusive results. We used a list-manipulation paradigm to provide a fresh empirical look at this issue and to isolate specific areas that underlie the two reading procedures. In a lexical condition, we embedded disyllabic Italian words (target stimuli) in lists of either loanwords or trisyllabic Italian words with unpredictable stress position. In a GPC condition, similar target stimuli were included within lists of pseudowords. The procedure was designed to induce participants to emphasize either the lexical-semantic or the GPC reading procedure, while controlling for possible linguistic confounds and keeping the reading task requirements stable across the two conditions. Thirty-three adults participated in the behavioral study, and 20 further adult participants were included in the fMRI study. At the behavioral level, we found sizeable effects of the framing manipulations that included slower voice onset times for stimuli in the pseudoword frames. At the functional anatomical level, the occipital and temporal regions, and the intraparietal sulcus were specifically activated when subjects were reading target words in a lexical frame. The inferior parietal and anterior fusiform cortex were specifically activated in the GPC condition. These patterns of activation represented a valid classifying model of fMRI images associated with target reading in both frames in the multi-voxel pattern analyses. Further activations were shared by the two procedures in the occipital and inferior parietal areas, in the premotor cortex, in the frontal regions and the left supplementary motor area. These regions are most likely involved in either early input or late output processes.
Collapse
Affiliation(s)
- Laura Danelli
- Psychology Department, University of Milan-Bicocca Milan, Italy ; NeuroMI -Milan Center for Neuroscience Milan, Italy
| | - Marco Marelli
- Psychology Department, University of Milan-Bicocca Milan, Italy ; Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| | - Manuela Berlingeri
- Psychology Department, University of Milan-Bicocca Milan, Italy ; NeuroMI -Milan Center for Neuroscience Milan, Italy
| | - Marco Tettamanti
- Division of Neuroscience and Department of Nuclear Medicine, San Raffaele Scientific Institute Milan, Italy
| | - Maurizio Sberna
- Neuroradiology Department, Niguarda Ca' Granda Hospital Milan, Italy
| | - Eraldo Paulesu
- Psychology Department, University of Milan-Bicocca Milan, Italy ; NeuroMI -Milan Center for Neuroscience Milan, Italy ; fMRI Unit, IRCCS Galeazzi Milan, Italy
| | - Claudio Luzzatti
- Psychology Department, University of Milan-Bicocca Milan, Italy ; NeuroMI -Milan Center for Neuroscience Milan, Italy
| |
Collapse
|
20
|
Boukrina O, Barrett AM, Alexander EJ, Yao B, Graves WW. Neurally dissociable cognitive components of reading deficits in subacute stroke. Front Hum Neurosci 2015; 9:298. [PMID: 26082701 PMCID: PMC4444825 DOI: 10.3389/fnhum.2015.00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/10/2015] [Indexed: 12/01/2022] Open
Abstract
According to cognitive models of reading, words are processed by interacting orthographic (spelling), phonological (sound), and semantic (meaning) information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here, we report on one such study. We have performed neuropsychological testing and magnetic resonance imaging on 11 patients with left-hemisphere stroke (<=5 weeks post-stroke). Patients completed tasks assessing cognitive components of reading such as semantics (matching picture or word choices to a target based on meaning), phonology (matching word choices to a target based on rhyming), and orthography (a two-alternative forced choice of the most plausible non-word). They also read aloud pseudowords and words with high or low levels of usage frequency, imageability, and spelling-sound consistency. As predicted by the cognitive model, when averaged across patients, the influence of semantics was most salient for low-frequency, low-consistency words, when phonological decoding is especially difficult. Qualitative subtraction analyses revealed lesion sites specific to phonological processing. These areas were consistent with those shown previously to activate for phonology in healthy participants, including supramarginal, posterior superior temporal, middle temporal, inferior frontal gyri, and underlying white matter. Notable divergence between this analysis and previous functional imaging is the association of lesions in the mid-fusiform gyrus and anterior temporal lobe with phonological reading deficits. This study represents progress toward identifying brain lesion-deficit relationships in the cognitive components of reading. Such correspondences are expected to help not only better understand the neural mechanisms of reading, but may also help tailor reading therapy to individual neurocognitive deficit profiles.
Collapse
Affiliation(s)
- Olga Boukrina
- Language Behavior and Brain Imaging Lab, Department of Psychology, Rutgers, The State University of New JerseyNewark, NJ, USA
| | - A. M. Barrett
- Stroke Rehabilitation Research, Kessler Foundation, West OrangeNJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical SchoolNewark, NJ, USA
| | - Edward J. Alexander
- Language Behavior and Brain Imaging Lab, Department of Psychology, Rutgers, The State University of New JerseyNewark, NJ, USA
| | - Bing Yao
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical SchoolNewark, NJ, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West OrangeNJ, USA
| | - William W. Graves
- Language Behavior and Brain Imaging Lab, Department of Psychology, Rutgers, The State University of New JerseyNewark, NJ, USA
| |
Collapse
|
21
|
Abstract
The visual word form area (VWFA), a region systematically involved in the identification of written words, occupies a reproducible location in the left occipitotemporal sulcus in expert readers of all cultures. Such a reproducible localization is paradoxical, given that reading is a recent invention that could not have influenced the genetic evolution of the cortex. Here, we test the hypothesis that the VWFA recycles a region of the ventral visual cortex that shows a high degree of anatomical connectivity to perisylvian language areas, thus providing an efficient circuit for both grapheme-phoneme conversion and lexical access. In two distinct experiments, using high-resolution diffusion-weighted data from 75 human subjects, we show that (1) the VWFA, compared with the fusiform face area, shows higher connectivity to left-hemispheric perisylvian superior temporal, anterior temporal and inferior frontal areas; (2) on a posterior-to-anterior axis, its localization within the left occipitotemporal sulcus maps onto a peak of connectivity with language areas, with slightly distinct subregions showing preferential projections to areas respectively involved in grapheme-phoneme conversion and lexical access. In agreement with functional data on the VWFA in blind subjects, the results suggest that connectivity to language areas, over and above visual factors, may be the primary determinant of VWFA localization.
Collapse
|
22
|
DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development. J Neurosci 2015; 34:14455-62. [PMID: 25339756 DOI: 10.1523/jneurosci.1216-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth.
Collapse
|
23
|
Mei L, Xue G, Lu ZL, Chen C, Wei M, He Q, Dong Q. Long-term experience with Chinese language shapes the fusiform asymmetry of English reading. Neuroimage 2015; 110:3-10. [PMID: 25598049 DOI: 10.1016/j.neuroimage.2015.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/21/2014] [Accepted: 01/10/2015] [Indexed: 10/24/2022] Open
Abstract
Previous studies have suggested differential engagement of the bilateral fusiform gyrus in the processing of Chinese and English. The present study tested the possibility that long-term experience with Chinese language affects the fusiform laterality of English reading by comparing three samples: Chinese speakers, English speakers with Chinese experience, and English speakers without Chinese experience. We found that, when reading words in their respective native language, Chinese and English speakers without Chinese experience differed in functional laterality of the posterior fusiform region (right laterality for Chinese speakers, but left laterality for English speakers). More importantly, compared with English speakers without Chinese experience, English speakers with Chinese experience showed more recruitment of the right posterior fusiform cortex for English words and pseudowords, which is similar to how Chinese speakers processed Chinese. These results suggest that long-term experience with Chinese shapes the fusiform laterality of English reading and have important implications for our understanding of the cross-language influences in terms of neural organization and of the functions of different fusiform subregions in reading.
Collapse
Affiliation(s)
- Leilei Mei
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, and School of Psychology, South China Normal University, Guangzhou, China; Department of Psychology and Social Behavior, University of California, Irvine, CA, USA.
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhong-Lin Lu
- Center for Cognitive and Behavioral Brain Imaging and Department of Psychology, Ohio State University, Columbus, OH, USA
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA, USA.
| | - Miao Wei
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Saralegui I, Ontañón JM, Fernandez-Ruanova B, Garcia-Zapirain B, Basterra A, Sanz-Arigita EJ. Reading networks in children with dyslexia compared to children with ocular motility disturbances revealed by fMRI. Front Hum Neurosci 2014; 8:936. [PMID: 25477808 PMCID: PMC4237045 DOI: 10.3389/fnhum.2014.00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Key PointsDyslexia is a neurological disorder with a genetic origin, but the underlying biological and cognitive causes are still being investigated.This study compares the brain activation pattern while reading in Spanish, a semitransparent language, in three groups of children: typically developing readers, dyslexic readers and readers with functional monocular vision.Based on our results Dyslexia would be a neurological disorder not related to vision impairments and would require a multidisciplinary treatment based on improving phonological awareness and language development. Developmental dyslexia is a neurological disorder the underlying biological and cognitive causes of which are still being investigated, a key point, because the findings will determine the best therapeutic approach to use. Using functional magnetic resonance imaging, we studied the brain activation pattern while reading in the language-related cortical areas from the two reading routes, phonological and orthographic, and the strength of their association with reading scores in 66 Spanish-speaking children aged 9-12 years divided into three groups: typically developing readers (controls), dyslexic readers and readers with monocular vision due to ocular motility disorders but with normal reading development, to assess whether (or not) the neuronal network for reading in children with dyslexia has similarities with that in children with impaired binocular vision due to ocular motility disorders. We found that Spanish-speaking children with dyslexia have a brain circuit for reading that differs from that in children with monocular vision. Individuals with dyslexia tend to hypoactivate some of the language-related areas in the left hemisphere engaged by the phonological route, especially the visual word form area and left Wernicke's area, and try to compensate this deficit by activating language-related areas related to the orthographic route, such as the anterior part of the visual word form area and the posterior part of both middle temporal gyri. That is, they seem to compensate for impairment in the phonological route through orthographic routes of both hemispheres. Our results suggest that ocular motility disturbances do not play a causal role in dyslexia. Dyslexia seems to be a neurological disorder that is unrelated to vision impairments and requires early recognition and multidisciplinary treatment, based on improving phonological awareness and language development, to achieve the best possible outcome.
Collapse
Affiliation(s)
- Ibone Saralegui
- Department of Neuroradiology, Osatek, Galdakao-Usansolo HospitalGaldakao, Spain
| | - José M. Ontañón
- Department of Neuroradiology, Osatek, Galdakao-Usansolo HospitalGaldakao, Spain
| | | | | | | | - Ernesto J. Sanz-Arigita
- CITA-Alzheimer FoundationDonostia, Spain
- Radiology and Image Analysis Centre, VU Medical CentreAmsterdam, Netherlands
| |
Collapse
|
25
|
Paulesu E, Danelli L, Berlingeri M. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front Hum Neurosci 2014; 8:830. [PMID: 25426043 PMCID: PMC4227573 DOI: 10.3389/fnhum.2014.00830] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/29/2014] [Indexed: 02/01/2023] Open
Abstract
Developmental dyslexia has been the focus of much functional anatomical research. The main trust of this work is that typical developmental dyslexics have a dysfunction of the phonological and orthography to phonology conversion systems, in which the left occipito-temporal cortex has a crucial role. It remains to be seen whether there is a systematic co-occurrence of dysfunctional patterns of different functional systems perhaps converging on the same brain regions associated with the reading deficit. Such evidence would be relevant for theories like, for example, the magnocellular/attentional or the motor/cerebellar ones, which postulate a more basic and anatomically distributed disorder in dyslexia. We addressed this issue with a meta-analysis of all the imaging literature published until September 2013 using a combination of hierarchical clustering and activation likelihood estimation methods. The clustering analysis on 2360 peaks identified 193 clusters, 92 of which proved spatially significant. Following binomial tests on the clusters, we found left hemispheric network specific for normal controls (i.e., of reduced involvement in dyslexics) including the left inferior frontal, premotor, supramarginal cortices and the left infero-temporal and fusiform regions: these were preferentially associated with reading and the visual-to-phonology processes. There was also a more dorsal left fronto-parietal network: these clusters included peaks from tasks involving phonological manipulation, but also motoric or visuo-spatial perception/attention. No cluster was identified in area V5 for no task, nor cerebellar clusters showed a reduced association with dyslexics. We conclude that the examined literature demonstrates a specific lack of activation of the left occipito-temporal cortex in dyslexia particularly for reading and reading-like behaviors and for visuo-phonological tasks. Additional deficits of motor and attentional systems relevant for reading may be associated with altered functionality of dorsal left fronto-parietal cortex.
Collapse
Affiliation(s)
- Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; NEUROMI- Milan Center for Neuroscience, University of Milano-Bicocca Milan, Italy ; fMRI - Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Milan, Italy
| | - Laura Danelli
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; NEUROMI- Milan Center for Neuroscience, University of Milano-Bicocca Milan, Italy
| | - Manuela Berlingeri
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; NEUROMI- Milan Center for Neuroscience, University of Milano-Bicocca Milan, Italy
| |
Collapse
|
26
|
González-Castro P, Rodríguez C, Núñez JC, Vallejo G, González-Pienda JA. Altered visual sensory fusion in children with reading difficulties. Percept Mot Skills 2014; 119:925-48. [PMID: 25375826 DOI: 10.2466/15.10.pms.119c27z6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reading is a multi-sensory and multi-cognitive task, and its difficulties (e.g., dyslexia) are not a unitary disorder. There are probably a variety of manifestations that relate to the actual site of impairment. A randomized, pre-test/post-test nonequivalent-groups design was conducted over 4 months with three groups aged between 6 and 8 years. One group comprised 76 participants (34 boys, 42 girls) with reading difficulties and altered sensory fusion (RD+ASF), a second group was made up of 123 students (59 boys, 64 girls) with reading difficulties but without altered sensory fusion (RD), and a third group comprised 81 participants (39 boys, 42 girls) who were young readers (RL) without reading delay, paired with the RD group on reading level. The experimental groups received intervention in the skills of control, stimulus recognition, and phonological awareness during a 4-month period. Both pre-test and post-test measures of errors in reading mechanics and reading routes (word and pseudo-word) were obtained. Poorer results in mechanics and reading routes of the RD+ASF group suggest that the effectiveness of the intervention depended on the characteristics of the groups and on the presence of sensory fusion deficits in the RD students.
Collapse
|
27
|
Advances in experimental psychopatholinguistics: What can we learn from simulation of disorder-like symptoms in human volunteers? Adv Cogn Psychol 2013; 9:102-11. [PMID: 23833697 PMCID: PMC3700744 DOI: 10.2478/v10053-008-0137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
For more than a century, work on patients with acquired or developmental language
disorders has informed psycholinguistic models of normal linguistic processing
in healthy persons. On the other hand, such models of healthy language
processing have been used as blue-prints to gain further insights into the
impairments of patients with language pathologies. Against the exemplary
background of language production, the first part of this paper reflects this
relationship and formulates a desideratum for naturalistic albeit controlled
experimental settings. Two recent examples of behavioural and neurofunctional
research are presented in which aphasia-like speech symptoms were elicited in
healthy control subjects. In the second part, this idea to investigate
disorder-like symptoms which are being experimentally induced for the course of
the study is further pursued in the field of reading and dyslexia research.
Here, it is argued, again on the basis of behavioural and neurofunctional data,
that such an approach is advantageous in at least two respects: 1. It allows a much more stringent control of experimental factors and confounds
than could be potentially achieved in a clinical setting. 2. It allows in-extenso piloting of experiments with healthy volunteers before
actually recruiting selected (and sometimes rare) patients. It will be concluded that the experimental simulation of disorder-like symptoms
in easily accessible healthy volunteers may be a useful approach to understand
novel aspects of a language disorder on the basis of a human neurocognitive
model of this disorder.
Collapse
|
28
|
Olulade OA, Napoliello EM, Eden GF. Abnormal visual motion processing is not a cause of dyslexia. Neuron 2013; 79:180-90. [PMID: 23746630 DOI: 10.1016/j.neuron.2013.05.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Developmental dyslexia is a reading disorder, yet deficits also manifest in the magnocellular-dominated dorsal visual system. Uncertainty about whether visual deficits are causal or consequential to reading disability encumbers accurate identification and appropriate treatment of this common learning disability. Using fMRI, we demonstrate in typical readers a relationship between reading ability and activity in area V5/MT during visual motion processing and, as expected, also found lower V5/MT activity for dyslexic children compared to age-matched controls. However, when dyslexics were matched to younger controls on reading ability, no differences emerged, suggesting that weakness in V5/MT may not be causal to dyslexia. To further test for causality, dyslexics underwent a phonological-based reading intervention. Surprisingly, V5/MT activity increased along with intervention-driven reading gains, demonstrating that activity here is mobilized through reading. Our results provide strong evidence that visual magnocellular dysfunction is not causal to dyslexia but may instead be consequential to impoverished reading. VIDEO ABSTRACT
Collapse
Affiliation(s)
- Olumide A Olulade
- Center for the Study of Learning, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|