1
|
Gondová A, Neumane S, Arichi T, Dubois J. Early Development and Co-Evolution of Microstructural and Functional Brain Connectomes: A Multi-Modal MRI Study in Preterm and Full-Term Infants. Hum Brain Mapp 2025; 46:e70186. [PMID: 40099852 PMCID: PMC11915347 DOI: 10.1002/hbm.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
Functional networks characterized by coherent neural activity across distributed brain regions have been observed to emerge early in neurodevelopment. Synchronized maturation across regions that relate to functional connectivity (FC) could be partially reflected in the developmental changes in underlying microstructure. Nevertheless, covariation of regional microstructural properties, termed "microstructural connectivity" (MC), and its relationship to the emergence of functional specialization during the early neurodevelopmental period remain poorly understood. We investigated the evolution of MC and FC postnatally across a set of cortical and subcortical regions, focusing on 45 preterm infants scanned longitudinally, and compared to 45 matched full-term neonates as part of the developing Human Connectome Project (dHCP) using direct comparisons of grey-matter connectivity strengths as well as network-based analyses. Our findings revealed a global strengthening of both MC and FC with age, with connection-specific variability influenced by the connection maturational stage. Prematurity at term-equivalent age was associated with significant connectivity disruptions, particularly in FC. During the preterm period, direct comparisons of MC and FC strength showed a positive linear relationship, which seemed to weaken with development. On the other hand, overlaps between MC- and FC-derived networks (estimated with Mutual Information) increased with age, suggesting a potential convergence towards a shared underlying network structure that may support the co-evolution of microstructural and functional systems. Our study offers novel insights into the dynamic interplay between microstructural and functional brain development and highlights the potential of MC as a complementary descriptor for characterizing brain network development and alterations due to perinatal insults such as premature birth.
Collapse
Affiliation(s)
- Andrea Gondová
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| | - Sara Neumane
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Tomoki Arichi
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Paediatric Neurosciences, Evelina London Children's HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| |
Collapse
|
2
|
Wang Y, Zhu D, Zhao L, Wang X, Zhang Z, Hu B, Wu D, Zheng W. Profiling cortical morphometric similarity in perinatal brains: Insights from development, sex difference, and inter-individual variation. Neuroimage 2024; 295:120660. [PMID: 38815676 DOI: 10.1016/j.neuroimage.2024.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
The topological organization of the macroscopic cortical networks important for the development of complex brain functions. However, how the cortical morphometric organization develops during the third trimester and whether it demonstrates sexual and individual differences at this particular stage remain unclear. Here, we constructed the morphometric similarity network (MSN) based on morphological and microstructural features derived from multimodal MRI of two independent cohorts (cross-sectional and longitudinal) scanned at 30-44 postmenstrual weeks (PMW). Sex difference and inter-individual variations of the MSN were also examined on these cohorts. The cross-sectional analysis revealed that both network integration and segregation changed in a nonlinear biphasic trajectory, which was supported by the results obtained from longitudinal analysis. The community structure showed remarkable consistency between bilateral hemispheres and maintained stability across PMWs. Connectivity within the primary cortex strengthened faster than that within high-order communities. Compared to females, male neonates showed a significant reduction in the participation coefficient within prefrontal and parietal cortices, while their overall network organization and community architecture remained comparable. Furthermore, by using the morphometric similarity as features, we achieved over 65 % accuracy in identifying an individual at term-equivalent age from images acquired after birth, and vice versa. These findings provide comprehensive insights into the development of morphometric similarity throughout the perinatal cortex, enhancing our understanding of the establishment of neuroanatomical organization during early life.
Collapse
Affiliation(s)
- Ying Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Dalin Zhu
- Department of Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China; School of Physics, Hangzhou Normal University, Hangzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; School of Medical Technology, Beijing Institute of Technology, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Duan D, Wen D. MRI-based structural covariance network in early human brain development. Front Neurosci 2023; 17:1302069. [PMID: 38027513 PMCID: PMC10646325 DOI: 10.3389/fnins.2023.1302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
4
|
Zhao R, Sun C, Xu X, Zhao Z, Li M, Chen R, Shen Y, Pan Y, Zhang S, Wang G, Wu D. Developmental Pattern of Individual Morphometric Similarity Network in the Human Fetal Brain. Neuroimage 2023; 283:120410. [PMID: 39491205 DOI: 10.1016/j.neuroimage.2023.120410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024] Open
Abstract
The development of the cerebral cortex during the fetal period is a complex yet well-coordinated process. MRI-based morphological brain network provides a powerful tool for describing this process at a network level. Due to the challenges of in-utero MRI acquisition and image processing, the fetal morphological brain network has not been established. In this study, utilizing high-resolution in-utero MRI data, we constructed an individual morphometric similarity network for each fetus based on multiple cortical features. The spatiotemporal development of morphological connections was described at the level of edge, node, and lobe, respectively. Based on graph theoretical method, the topology structure of fetal morphological network was characterized. Edge analysis demonstrated an increase of morphological dissimilarity between hemispheres with gestational age, especially for the parietal cortex. The limbic and parieto-occipital regions exhibited the most drastic changes of morphological connections at both the edge and node levels. Between- and within-lobe analysis illustrated that the limbic lobe became more similar to other lobes, while the parietal and occipital lobes became more dissimilar to other lobes. Graph theoretical analysis indicated that the small-world structure of the fetal morphological network appeared as early as 22 weeks and that the network topology exhibited an enhanced integration and reduced segregation during prenatal development. The findings obtained from the preterm-born neonates agreed well with those of the fetuses. In summary, this study fills a gap in prenatal morphological brain network research and provides a piece of important evidence for understanding the normal development of fetal brain connectome during the second-third trimester.
Collapse
Affiliation(s)
- Ruoke Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyi Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhiyong Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Mingyang Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruike Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yao Shen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yibin Pan
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Jinan, China.
| | - Dan Wu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Jiang W, Zhou Z, Li G, Yin W, Wu Z, Wang L, Ghanbari M, Li G, Yap PT, Howell BR, Styner MA, Yacoub E, Hazlett H, Gilmore JH, Keith Smith J, Ugurbil K, Elison JT, Zhang H, Shen D, Lin W. Mapping the evolution of regional brain network efficiency and its association with cognitive abilities during the first twenty-eight months of life. Dev Cogn Neurosci 2023; 63:101284. [PMID: 37517139 PMCID: PMC10400876 DOI: 10.1016/j.dcn.2023.101284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.
Collapse
Affiliation(s)
- Weixiong Jiang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Zhou
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guoshi Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weiyan Yin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - J Keith Smith
- Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, USA; Department of Pediatrics, University of Minnesota, USA
| | - Han Zhang
- Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Dinggang Shen
- Biomedical Engineering, Shanghai Tech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Griffiths-King D, Wood AG, Novak J. Predicting 'Brainage' in late childhood to adolescence (6-17yrs) using structural MRI, morphometric similarity, and machine learning. Sci Rep 2023; 13:15591. [PMID: 37730747 PMCID: PMC10511546 DOI: 10.1038/s41598-023-42414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy children to predict an individual's age from structural MRI. This data-driven, predicted 'Brainage' typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this Brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel Brainage approaches using morphometric similarity against more typical, single feature (i.e., cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a Brainage framework, morphometric similarity does not provide more accurate predictions of age. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy participants in this way.
Collapse
Affiliation(s)
- Daniel Griffiths-King
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Amanda G Wood
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jan Novak
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
7
|
Wang L, Wu Z, Chen L, Sun Y, Lin W, Li G. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat Protoc 2023; 18:1488-1509. [PMID: 36869216 DOI: 10.1038/s41596-023-00806-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/03/2022] [Indexed: 03/05/2023]
Abstract
The human cerebral cortex undergoes dramatic and critical development during early postnatal stages. Benefiting from advances in neuroimaging, many infant brain magnetic resonance imaging (MRI) datasets have been collected from multiple imaging sites with different scanners and imaging protocols for the investigation of normal and abnormal early brain development. However, it is extremely challenging to precisely process and quantify infant brain development with these multisite imaging data because infant brain MRI scans exhibit (a) extremely low and dynamic tissue contrast caused by ongoing myelination and maturation and (b) inter-site data heterogeneity resulting from the use of diverse imaging protocols/scanners. Consequently, existing computational tools and pipelines typically perform poorly on infant MRI data. To address these challenges, we propose a robust, multisite-applicable, infant-tailored computational pipeline that leverages powerful deep learning techniques. The main functionality of the proposed pipeline includes preprocessing, brain skull stripping, tissue segmentation, topology correction, cortical surface reconstruction and measurement. Our pipeline can handle both T1w and T2w structural infant brain MR images well in a wide age range (from birth to 6 years of age) and is effective for different imaging protocols/scanners, despite being trained only on the data from the Baby Connectome Project. Extensive comparisons with existing methods on multisite, multimodal and multi-age datasets demonstrate superior effectiveness, accuracy and robustness of our pipeline. We have maintained a website, iBEAT Cloud, for users to process their images with our pipeline ( http://www.ibeat.cloud ), which has successfully processed over 16,000 infant MRI scans from more than 100 institutions with various imaging protocols/scanners.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Griffiths-King DJ, Wood AG, Novak J. Predicting 'Brainage' in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning. RESEARCH SQUARE 2023:rs.3.rs-2583936. [PMID: 36909598 PMCID: PMC10002817 DOI: 10.21203/rs.3.rs-2583936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy-children to predict an individual's age from structural MRI. This data-driven, 'brainage' typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel brain-age approaches using morphometric similarity against more typical, single feature (i.e. cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a brain-age framework, morphometric similarity does not explain more variance than individual structural features. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy individuals.
Collapse
|
9
|
Zhao R, Zhao Z, Wang J, Wu D. Brain morphological network and its applications in human brain development. CHINESE SCIENCE BULLETIN 2023; 68:72-86. [DOI: 10.1360/tb-2022-0621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
10
|
Wang Y, Hu D, Wu Z, Wang L, Huang W, Li G. Developmental abnormalities of structural covariance networks of cortical thickness and surface area in autistic infants within the first 2 years. Cereb Cortex 2022; 32:3786-3798. [PMID: 35034115 PMCID: PMC9433424 DOI: 10.1093/cercor/bhab448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023] Open
Abstract
Converging evidence supports that a collection of brain regions is functionally or anatomically abnormal in autistic subjects. Structural covariance networks (SCNs) representing patterns of coordinated regional maturation are widely used to study abnormalities associated with neurodisorders. However, the possible developmental changes of SCNs in autistic individuals during the first 2 postnatal years, which features dynamic development and can potentially serve as biomarkers, remain unexplored. To fill this gap, for the first time, SCNs of cortical thickness and surface area were constructed and investigated in infants at high familial risk for autism and typically developing infants in this study. Group differences of SCNs emerge at 12 months of age in surface area. By 24 months of age, the autism group shows significantly increased integration, decreased segregation, and decreased small-worldness, compared with controls. The SCNs of surface area are deteriorated and shifted toward randomness in autistic infants. The abnormal brain regions changed during development, and the group differences of the left lateral occipital cortex become more prominent with age. These results indicate that autism has more significant influences on coordinated development of surface area than that of cortical thickness and the occipital cortex maybe an important biomarker of autism during infancy.
Collapse
Affiliation(s)
- Ya Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Hu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenhua Huang
- Address correspondence to Wenhua Huang, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, 11th floor, Southern Medical University, Guangzhou 510515, China. ; Gang Li, The University of North Carolina at Chapel Hill, Bioinformatics Building #3104, Chapel Hill, NC 27599.
| | - Gang Li
- Address correspondence to Wenhua Huang, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, 11th floor, Southern Medical University, Guangzhou 510515, China. ; Gang Li, The University of North Carolina at Chapel Hill, Bioinformatics Building #3104, Chapel Hill, NC 27599.
| |
Collapse
|
11
|
Song X, García-Saldivar P, Kindred N, Wang Y, Merchant H, Meguerditchian A, Yang Y, Stein EA, Bradberry CW, Ben Hamed S, Jedema HP, Poirier C. Strengths and challenges of longitudinal non-human primate neuroimaging. Neuroimage 2021; 236:118009. [PMID: 33794361 PMCID: PMC8270888 DOI: 10.1016/j.neuroimage.2021.118009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.
Collapse
Affiliation(s)
- Xiaowei Song
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Pamela García-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Nathan Kindred
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, United Kingdom
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Charles W Bradberry
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Hank P Jedema
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom.
| |
Collapse
|
12
|
Woodburn M, Bricken CL, Wu Z, Li G, Wang L, Lin W, Sheridan MA, Cohen JR. The maturation and cognitive relevance of structural brain network organization from early infancy to childhood. Neuroimage 2021; 238:118232. [PMID: 34091033 PMCID: PMC8372198 DOI: 10.1016/j.neuroimage.2021.118232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
The interactions of brain regions with other regions at the network level likely provide the infrastructure necessary for cognitive processes to develop. Specifically, it has been theorized that in infancy brain networks become more modular, or segregated, to support early cognitive specialization, before integration across networks increases to support the emergence of higher-order cognition. The present study examined the maturation of structural covariance networks (SCNs) derived from longitudinal cortical thickness data collected between infancy and childhood (0–6 years). We assessed modularity as a measure of network segregation and global efficiency as a measure of network integration. At the group level, we observed trajectories of increasing modularity and decreasing global efficiency between early infancy and six years. We further examined subject-based maturational coupling networks (sbMCNs) in a subset of this cohort with cognitive outcome data at 8–10 years, which allowed us to relate the network organization of longitudinal cortical thickness maturation to cognitive outcomes in middle childhood. We found that lower global efficiency of sbMCNs throughout early development (across the first year) related to greater motor learning at 8–10 years. Together, these results provide novel evidence characterizing the maturation of brain network segregation and integration across the first six years of life, and suggest that specific trajectories of brain network maturation contribute to later cognitive outcomes.
Collapse
Affiliation(s)
- Mackenzie Woodburn
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States.
| | - Cheyenne L Bricken
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States
| | - Zhengwang Wu
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Gang Li
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Li Wang
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Margaret A Sheridan
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Carolina Institute of Developmental Disabilities, University of North Carolina, Chapel Hill, United States
| | - Jessica R Cohen
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Carolina Institute of Developmental Disabilities, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
13
|
Xu F, Liu M, Kim SY, Ge X, Zhang Z, Tang Y, Lin X, Toga AW, Liu S, Kim H. Morphological Development Trajectory and Structural Covariance Network of the Human Fetal Cortical Plate during the Early Second Trimester. Cereb Cortex 2021; 31:4794-4807. [PMID: 34017979 DOI: 10.1093/cercor/bhab123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
During the early second trimester, the cortical plate, or "the developing cortex", undergoes immensely complex and rapid development to complete its major complement of neurons. However, morphological development of the cortical plate and the precise patterning of brain structural covariance networks during this period remain unexplored. In this study, we used 7.0 T high-resolution magnetic resonance images of brain specimens ranging from 14 to 22 gestational weeks to manually segment the cortical plate. Thickness, area expansion, and curvature (i.e., folding) across the cortical plate regions were computed, and correlations of thickness values among different cortical plate regions were measured to analyze fetal cortico-cortical structural covariance throughout development of the early second trimester. The cortical plate displayed significant increases in thickness and expansions in area throughout all regions but changes of curvature in only certain major sulci. The topological architecture and network properties of fetal brain covariance presented immature and inefficient organizations with low degree of integration and high degree of segregation. Altogether, our results provide novel insight on the developmental patterning of cortical plate thickness and the developmental origin of brain network architecture throughout the early second trimester.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.,Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Sharon Y Kim
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Xinting Ge
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Zhonghe Zhang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| | - Xiangtao Lin
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| | - Hosung Kim
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Cai L, Okada E, Minagawa Y, Kawaguchi H. Correlating functional near-infrared spectroscopy with underlying cortical regions of 0-, 1-, and 2-year-olds using theoretical light propagation analysis. NEUROPHOTONICS 2021; 8:025009. [PMID: 34079846 PMCID: PMC8166262 DOI: 10.1117/1.nph.8.2.025009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/18/2021] [Indexed: 05/03/2023]
Abstract
Significance: The establishment of a light propagation analysis-based scalp-cortex correlation (SCC) between the scalp location of the source-detector (SD) pair and brain regions is essential for measuring functional brain development in the first 2 years of life using functional near-infrared spectroscopy (fNIRS). Aim: We aimed to reveal the optics-based SCC of 0-, 1-, and 2-year-olds (yo) and the suitable SD distance for this age period. Approach: Light propagation analyses using age-appropriate head models were conducted on SD pairs at 10-10 fiducial points on the scalp to obtain optics-based SCC and its metrics: the number of corresponding brain regions ( N C B R ), selectivity and sensitivity of the most likely corresponding brain region (MLCBR), and consistency of the MLCBR across developmental ages. Moreover, we assessed the suitable SD distances for 0-, 1-, and 2-yo by simultaneously considering the selectivity and sensitivity of the MLCBR. Results: Age-related changes in the SCC metrics were observed. For instance, the N C B R of 0-yo was larger than that of 1- and 2-yo. Conversely, the selectivity of 0-yo was lower than that of 1- and 2-yo. The sensitivity of 1-yo was higher than that of 0-yo at 15- to 30-mm SD distances and higher than that of 2-yo at 10-mm SD distance. Notably, the MLCBR of the fiducial points around the longitudinal fissure was inconsistent across age groups. An SD distance between 15 and 25 mm was found to be appropriate for satisfying both sensitivity and selectivity requirements. In addition, this work provides reference tables of optics-based SCC for 0-, 1-, and 2-yo. Conclusions: Optics-based SCC will be informative in designing and explaining child developmental studies using fNIRS. The suitable SD distances were between 15 and 25 mm for the first 2 years of life.
Collapse
Affiliation(s)
- Lin Cai
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
| | - Eiji Okada
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
| | | | - Hiroshi Kawaguchi
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
- National Institute of Advanced Industrial Science and Technology, Human Informatics and Interaction Research Institute, Tsukuba, Japan
- Address all correspondence to Hiroshi Kawaguchi,
| |
Collapse
|
15
|
Liu M, Lepage C, Kim SY, Jeon S, Kim SH, Simon JP, Tanaka N, Yuan S, Islam T, Peng B, Arutyunyan K, Surento W, Kim J, Jahanshad N, Styner MA, Toga AW, Barkovich AJ, Xu D, Evans AC, Kim H. Robust Cortical Thickness Morphometry of Neonatal Brain and Systematic Evaluation Using Multi-Site MRI Datasets. Front Neurosci 2021; 15:650082. [PMID: 33815050 PMCID: PMC8010150 DOI: 10.3389/fnins.2021.650082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain grows the most dramatically during the perinatal and early post-natal periods, during which pre-term birth or perinatal injury that may alter brain structure and lead to developmental anomalies. Thus, characterizing cortical thickness of developing brains remains an important goal. However, this task is often complicated by inaccurate cortical surface extraction due to small-size brains. Here, we propose a novel complex framework for the reconstruction of neonatal WM and pial surfaces, accounting for large partial volumes due to small-size brains. The proposed approach relies only on T1-weighted images unlike previous T2-weighted image-based approaches while only T1-weighted images are sometimes available under the different clinical/research setting. Deep neural networks are first introduced to the neonatal magnetic resonance imaging (MRI) pipeline to address the mis-segmentation of brain tissues. Furthermore, this pipeline enhances cortical boundary delineation using combined models of the cerebrospinal fluid (CSF)/GM boundary detection with edge gradient information and a new skeletonization of sulcal folding where no CSF voxels are seen due to the limited resolution. We also proposed a systematic evaluation using three independent datasets comprising 736 pre-term and 97 term neonates. Qualitative assessment for reconstructed cortical surfaces shows that 86.9% are rated as accurate across the three site datasets. In addition, our landmark-based evaluation shows that the mean displacement of the cortical surfaces from the true boundaries was less than a voxel size (0.532 ± 0.035 mm). Evaluating the proposed pipeline (namely NEOCIVET 2.0) shows the robustness and reproducibility across different sites and different age-groups. The mean cortical thickness measured positively correlated with post-menstrual age (PMA) at scan (p < 0.0001); Cingulate cortical areas grew the most rapidly whereas the inferior temporal cortex grew the least rapidly. The range of the cortical thickness measured was biologically congruent (1.3 mm at 28 weeks of PMA to 1.8 mm at term equivalent). Cortical thickness measured on T1 MRI using NEOCIVET 2.0 was compared with that on T2 using the established dHCP pipeline. It was difficult to conclude that either T1 or T2 imaging is more ideal to construct cortical surfaces. NEOCIVET 2.0 has been open to the public through CBRAIN (https://mcin-cnim.ca/technology/cbrain/), a web-based platform for processing brain imaging data.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Claude Lepage
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sharon Y Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Seun Jeon
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Julia Pia Simon
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nina Tanaka
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shiyu Yuan
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tasfiya Islam
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bailin Peng
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Knarik Arutyunyan
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wesley Surento
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Justin Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Neda Jahanshad
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Arthur W Toga
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anthony James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Lemaître H, Augé P, Saitovitch A, Vinçon-Leite A, Tacchella JM, Fillon L, Calmon R, Dangouloff-Ros V, Lévy R, Grévent D, Brunelle F, Boddaert N, Zilbovicius M. Rest Functional Brain Maturation during the First Year of Life. Cereb Cortex 2021; 31:1776-1785. [PMID: 33230520 PMCID: PMC7869100 DOI: 10.1093/cercor/bhaa325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
The first year of life is a key period of brain development, characterized by dramatic structural and functional modifications. Here, we measured rest cerebral blood flow (CBF) modifications throughout babies’ first year of life using arterial spin labeling magnetic resonance imaging sequence in 52 infants, from 3 to 12 months of age. Overall, global rest CBF significantly increased during this age span. In addition, we found marked regional differences in local functional brain maturation. While primary sensorimotor cortices and insula showed early maturation, temporal and prefrontal region presented great rest CBF increase across the first year of life. Moreover, we highlighted a late and remarkably synchronous maturation of the prefrontal and posterior superior temporal cortices. These different patterns of regional cortical rest CBF modifications reflect a timetable of local functional brain maturation and are consistent with baby’s cognitive development within the first year of life.
Collapse
Affiliation(s)
- Hervé Lemaître
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (CNRS UMR 5293), Université de Bordeaux, Bordeaux 33000, France
| | - Pierre Augé
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ana Saitovitch
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Alice Vinçon-Leite
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Jean-Marc Tacchella
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ludovic Fillon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphael Calmon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Volodia Dangouloff-Ros
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphaël Lévy
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - David Grévent
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Francis Brunelle
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Nathalie Boddaert
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Monica Zilbovicius
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| |
Collapse
|
17
|
Ghribi O, Li G, Lin W, Shen D, Rekik I. Multi-Regression based supervised sample selection for predicting baby connectome evolution trajectory from neonatal timepoint. Med Image Anal 2020; 68:101853. [PMID: 33264713 DOI: 10.1016/j.media.2020.101853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
The connectional map of the baby brain undergoes dramatic changes over the first year of postnatal development, which makes its mapping a challenging task, let alone learning how to predict its evolution. Currently, learning models for predicting brain connectomic developmental trajectories remain broadly absent despite their great potential in spotting atypical neurodevelopmental disorders early. This is most likely due to the scarcity and often incompleteness of longitudinal infant neuroimaging studies for training such models. In this paper, we propose the first approach for progressively predicting longitudinal development of brain networks during the postnatal period solely from a baseline connectome around birth. To this end, a supervised multi-regression sample selection strategy is designed to learn how to identify the best set of neighbors of a testing baseline connectome to eventually predict its evolution trajectory at follow-up timepoints. However, given that the training dataset may have missing samples (connectomes) at certain timepoints, this may affect the training of the predictive model. To overcome this problem, we perform a low-rank tensor completion based on a robust principal component analysis to impute the missing training connectomes by linearly approximating similar complete training networks. In the prediction step, our sample selection strategy aims to preserve spatiotemporal relationships between consecutive timepoints. Therefore, the proposed method learns how to identify the set of the local closest neighbors to a target network by training an ensemble of bidirectional regressors leveraging temporal dependency between consecutive timepoints with a recall to the baseline observations to progressively predict the evolution of a testing network over time. Our method achieves the best prediction results and better captures the dynamic changes of each brain connectome over time in comparison to its ablated versions using leave-one-out cross-validation strategy.
Collapse
Affiliation(s)
- Olfa Ghribi
- BASIRA lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey; National School of Engineers of Sfax, University of Sfax, Tunisia
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Islem Rekik
- BASIRA lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey; School of Science and Engineering, Computing, University of Dundee, UK.
| |
Collapse
|
18
|
Fenchel D, Dimitrova R, Seidlitz J, Robinson EC, Batalle D, Hutter J, Christiaens D, Pietsch M, Brandon J, Hughes EJ, Allsop J, O'Keeffe C, Price AN, Cordero-Grande L, Schuh A, Makropoulos A, Passerat-Palmbach J, Bozek J, Rueckert D, Hajnal JV, Raznahan A, McAlonan G, Edwards AD, O'Muircheartaigh J. Development of Microstructural and Morphological Cortical Profiles in the Neonatal Brain. Cereb Cortex 2020; 30:5767-5779. [PMID: 32537627 PMCID: PMC7673474 DOI: 10.1093/cercor/bhaa150] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/17/2020] [Accepted: 05/10/2020] [Indexed: 01/19/2023] Open
Abstract
Interruptions to neurodevelopment during the perinatal period may have long-lasting consequences. However, to be able to investigate deviations in the foundation of proper connectivity and functional circuits, we need a measure of how this architecture evolves in the typically developing brain. To this end, in a cohort of 241 term-born infants, we used magnetic resonance imaging to estimate cortical profiles based on morphometry and microstructure over the perinatal period (37–44 weeks postmenstrual age, PMA). Using the covariance of these profiles as a measure of inter-areal network similarity (morphometric similarity networks; MSN), we clustered these networks into distinct modules. The resulting modules were consistent and symmetric, and corresponded to known functional distinctions, including sensory–motor, limbic, and association regions, and were spatially mapped onto known cytoarchitectonic tissue classes. Posterior regions became more morphometrically similar with increasing age, while peri-cingulate and medial temporal regions became more dissimilar. Network strength was associated with age: Within-network similarity increased over age suggesting emerging network distinction. These changes in cortical network architecture over an 8-week period are consistent with, and likely underpin, the highly dynamic processes occurring during this critical period. The resulting cortical profiles might provide normative reference to investigate atypical early brain development.
Collapse
Affiliation(s)
- Daphna Fenchel
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ralica Dimitrova
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD 20892, USA.,Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Emma C Robinson
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EU, UK
| | - Dafnis Batalle
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jana Hutter
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Daan Christiaens
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Maximilian Pietsch
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jakki Brandon
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Emer J Hughes
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Joanna Allsop
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Camilla O'Keeffe
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Anthony N Price
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, SW7 2AZ, UK
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, SW7 2AZ, UK
| | | | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, 10000, Croatia
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, SW7 2AZ, UK
| | - Joseph V Hajnal
- Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, London, SE5 8AZ, UK
| | - A David Edwards
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK.,Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jonathan O'Muircheartaigh
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| |
Collapse
|
19
|
Jiang Y, Ming Q, Gao Y, Dong D, Sun X, Zhang X, Situ W, Yao S, Rao H. Effects of BDNF Val66Met polymorphisms on brain structures and behaviors in adolescents with conduct disorder. Eur Child Adolesc Psychiatry 2020; 29:479-488. [PMID: 31264106 DOI: 10.1007/s00787-019-01363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Accumulating evidence suggests that neural abnormalities in conduct disorder (CD) may be subject to genetic influences, but few imaging studies have taken genetic variants into consideration. The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) has emerged as a high-interest genetic variant due to its importance in cortical maturation, and several studies have implicated its involvement in neurodevelopmental disorders. Thus, it is unclear how this polymorphism may influence brain anatomy and aberrant behaviors in CD. A total of 65 male adolescents with CD and 69 gender-, IQ- and socioeconomic status-matched healthy controls (HCs) (age range 13-17 years) were enrolled in this study. Analyses of variance (ANOVAs) were used to assess the main effects of CD diagnosis, BDNF genotype, and diagnosis-genotype interactions on brain anatomy and behaviors. We detected a significant main effect of BDNF genotype on temporal gyrification and antisocial behaviors, but not on CD symptoms. Diagnosis-genotype interactive effects were found for cortical thickness of the superior temporal and adjacent areas. These results suggest that the BDNF Val66Met polymorphism may exert its influence both on neural alterations and delinquent behaviors in CD patients. This initial evidence highlights the importance of elucidating potentially different pathways between BDNF genotype and cortical alterations or delinquent behaviors in CD patients.
Collapse
Affiliation(s)
- Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.,Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Qingsen Ming
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiaocui Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Weijun Situ
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China. .,National Clinical Research Center on Psychiatry and Psychology, Changsha, Hunan, People's Republic of China. .,Medical Psychological Institute of Central South University, Changsha, Hunan, People's Republic of China.
| | - Hengyi Rao
- Center of Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Lu A, Zhang J, Zhang Y, Li M, Hong X, Zheng D, Deng R. The Role of Semantic Gender in Name Comprehension: An Event-Related Potentials Study. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2020; 49:175-185. [PMID: 31734795 DOI: 10.1007/s10936-019-09677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is well known that the semantic features of gender associated with peoples' names are represented in the conceptual semantic system. However, there is scant evidence that such knowledge plays a role in name comprehension, and if so, in which processing stage this occurs. The aim of this study was to provide evidence concerning the time course of the activation of semantic gender in the processing of people's names. We recorded event-related potentials when participants saw picture-name pairs. Compared with the gender congruent condition in which the priming picture and Chinese name were matched on gender, names in the gender incongruent condition showed a mismatch effect in the time windows of 300-500 ms and 500-700 ms. These findings illustrate for the first time the activation of semantic gender when processing people's names, and further specify that this access occurs in the stage of name recognition rather than person identification.
Collapse
Affiliation(s)
- Aitao Lu
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China.
- Guangdong Center of Mental Assistance and Contingency Technique for Emergency, Guangzhou, China.
- Department of Psychology, Renmin University of China, Beijing, China.
| | - Jijia Zhang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Ye Zhang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
- Guangdong Center of Mental Assistance and Contingency Technique for Emergency, Guangzhou, China
| | - Meirong Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
- Guangdong Center of Mental Assistance and Contingency Technique for Emergency, Guangzhou, China
| | - Xiuxiu Hong
- Center for Faculty Development and Education Assessment, Shantou University, Shantou, China
| | - Dongping Zheng
- Department of Second Language Studies, University of Hawaii, Honolulu, USA
| | - Ruchen Deng
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
- Guangdong Center of Mental Assistance and Contingency Technique for Emergency, Guangzhou, China
| |
Collapse
|
21
|
Ahmad S, Wu Z, Li G, Wang L, Lin W, Yap PT, Shen D. Surface-constrained volumetric registration for the early developing brain. Med Image Anal 2019; 58:101540. [PMID: 31398617 PMCID: PMC6815721 DOI: 10.1016/j.media.2019.101540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
The T1-weighted and T2-weighted MRI contrasts of the infant brain evolve drastically during the first year of life. This poses significant challenges to inter- and intra-subject registration, which is key to subsequent statistical analyses. Existing registration methods that do not consider temporal contrast changes are ineffective for infant brain MRI data. To address this problem, we present in this paper a method for deformable registration of infant brain MRI. The key advantage of our method is threefold: (i) To deal with appearance changes, registration is performed based on segmented tissue maps instead of image intensity. Segmentation is performed by using an infant-centric algorithm previously developed by our group. (ii) Registration is carried out with respect to both cortical surfaces and volumetric tissue maps, thus allowing precise alignment of both cortical and subcortical structures. (iii) A dynamic elasticity model is utilized to allow large non-linear deformation. Experimental results in comparison with well-established registration methods indicate that our method yields superior accuracy in both cortical and subcortical alignment.
Collapse
Affiliation(s)
- Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States.
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Levman J, MacDonald A, Baumer N, MacDonald P, Stewart N, Lim A, Cogger L, Shiohama T, Takahashi E. Structural magnetic resonance imaging demonstrates abnormal cortical thickness in Down syndrome: Newborns to young adults. NEUROIMAGE-CLINICAL 2019; 23:101874. [PMID: 31176294 PMCID: PMC6551568 DOI: 10.1016/j.nicl.2019.101874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of all or part of chromosome 21 and is characterized by intellectual disability. We performed a retrospective analysis of 47 magnetic resonance imaging (MRI) examinations of participants with DS (aged 5 to 22 years) and compared them with a large cohort of 854 brain MRIs obtained from neurotypical participants (aged 5 to 32 years) with the objective of assessing the clinical presentation of Down syndrome, towards better understanding the neurological development associated with the condition. An additional cohort of 26 MRI exams from patients with DS and 139 exams from neurotypical participants (aged 0–5 years) are included as part of a supplementary analysis. Regionally distributed cortical thickness measurements, including average measurements as well as standard deviations (intra-regional cortical thickness variability) were extracted from each examination. The largest effect sizes observed were associated with increased average cortical thickness in the postcentral gyrus with specific abnormalities observed in Brodmann's areas 1 and 3b in DS, which was observed across all age ranges. We also observed strong effect sizes associated with decreased cortical thickness variability in the lateral orbitofrontal gyrus, the postcentral gyrus and more in DS participants. Findings suggest regionally irregular gray matter development in DS that can be detected with MRI. Large scale study of the clinical presentation of Down Syndrome Abnormally increased mean cortical thicknesses identified in key regions. Abnormally decreased variability in cortical thicknesses identified within key regions Findings may be connected with abnormal pruning in Down Syndrome.
Collapse
Affiliation(s)
- Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Patrick MacDonald
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Natalie Stewart
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Ashley Lim
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Liam Cogger
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
King DJ, Ellis KR, Seri S, Wood AG. A systematic review of cross-sectional differences and longitudinal changes to the morphometry of the brain following paediatric traumatic brain injury. Neuroimage Clin 2019; 23:101844. [PMID: 31075554 PMCID: PMC6510969 DOI: 10.1016/j.nicl.2019.101844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023]
Abstract
Paediatric traumatic brain injury (pTBI) is a leading cause of disability for children and young adults. Children are a uniquely vulnerable group with the disease process that occurs following a pTBI interacting with the trajectory of normal brain development. Quantitative MRI post-injury has suggested a long-term, neurodegenerative effect of TBI on the morphometry of the brain, in both adult and childhood TBI. Changes to the brain beyond that of anticipated, age-dependant differences may allow us to estimate the state of the brain post-injury and produce clinically relevant predictions for long-term outcome. The current review synthesises the existing literature to assess whether, following pTBI, the morphology of the brain exhibits either i) longitudinal change and/or ii) differences compared to healthy controls and outcomes. The current literature suggests that morphometric differences from controls are apparent cross-sectionally at both acute and late-chronic timepoints post-injury, thus suggesting a non-transient effect of injury. Developmental trajectories of morphometry are altered in TBI groups compared to patients, and it is unlikely that typical maturation overcomes damage post-injury, or even 'catches up' with that of typically-developing peers. However, there is limited evidence for diverted developmental trajectories being associated with cognitive impairment post-injury. The current review also highlights the apparent challenges to the existing literature and potential methods by which these can be addressed.
Collapse
Affiliation(s)
- D J King
- School of Life and Health Sciences & Aston Brain Centre, Aston University, Birmingham, UK
| | - K R Ellis
- School of Life and Health Sciences & Aston Brain Centre, Aston University, Birmingham, UK
| | - S Seri
- School of Life and Health Sciences & Aston Brain Centre, Aston University, Birmingham, UK
| | - A G Wood
- School of Life and Health Sciences & Aston Brain Centre, Aston University, Birmingham, UK; Child Neuropsychology, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
24
|
Graph theoretical modeling of baby brain networks. Neuroimage 2019; 185:711-727. [DOI: 10.1016/j.neuroimage.2018.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
|
25
|
Lebenberg J, Mangin JF, Thirion B, Poupon C, Hertz-Pannier L, Leroy F, Adibpour P, Dehaene-Lambertz G, Dubois J. Mapping the asynchrony of cortical maturation in the infant brain: A MRI multi-parametric clustering approach. Neuroimage 2019; 185:641-653. [DOI: 10.1016/j.neuroimage.2018.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/28/2022] Open
|
26
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
27
|
Adeli E, Meng Y, Li G, Lin W, Shen D. Multi-task prediction of infant cognitive scores from longitudinal incomplete neuroimaging data. Neuroimage 2018; 185:783-792. [PMID: 29709627 DOI: 10.1016/j.neuroimage.2018.04.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 01/13/2023] Open
Abstract
Early postnatal brain undergoes a stunning period of development. Over the past few years, research on dynamic infant brain development has received increased attention, exhibiting how important the early stages of a child's life are in terms of brain development. To precisely chart the early brain developmental trajectories, longitudinal studies with data acquired over a long-enough period of infants' early life is essential. However, in practice, missing data from different time point(s) during the data gathering procedure is often inevitable. This leads to incomplete set of longitudinal data, which poses a major challenge for such studies. In this paper, prediction of multiple future cognitive scores with incomplete longitudinal imaging data is modeled into a multi-task machine learning framework. To efficiently learn this model, we account for selection of informative features (i.e., neuroimaging morphometric measurements for different time points), while preserving the structural information and the interrelation between these multiple cognitive scores. Several experiments are conducted on a carefully acquired in-house dataset, and the results affirm that we can predict the cognitive scores measured at the age of four years old, using the imaging data of earlier time points, as early as 24 months of age, with a reasonable performance (i.e., root mean square error of 0.18).
Collapse
Affiliation(s)
- Ehsan Adeli
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, United States; Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, United States.
| | - Yu Meng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, United States; Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, United States; Department of Brain & Cognitive Eng, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
28
|
Batalle D, Edwards AD, O'Muircheartaigh J. Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 2018; 59:350-371. [PMID: 29105061 PMCID: PMC5900873 DOI: 10.1111/jcpp.12838] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND There has been a recent proliferation in neuroimaging research focusing on brain development in the prenatal, neonatal and very early childhood brain. Early brain injury and preterm birth are associated with increased risk of neurodevelopmental disorders, indicating the importance of this early period for later outcome. SCOPE AND METHODOLOGY Although using a wide range of different methodologies and investigating diverse samples, the common aim of many of these studies has been to both track normative development and investigate deviations in this development to predict behavioural, cognitive and neurological function in childhood. Here we review structural and functional neuroimaging studies investigating the developing brain. We focus on practical and technical complexities of studying this early age range and discuss how neuroimaging techniques have been successfully applied to investigate later neurodevelopmental outcome. CONCLUSIONS Neuroimaging markers of later outcome still have surprisingly low predictive power and their specificity to individual neurodevelopmental disorders is still under question. However, the field is still young, and substantial challenges to both acquiring and modeling neonatal data are being met.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Department of NeuroimagingInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
29
|
Computational neuroanatomy of baby brains: A review. Neuroimage 2018; 185:906-925. [PMID: 29574033 DOI: 10.1016/j.neuroimage.2018.03.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
The first postnatal years are an exceptionally dynamic and critical period of structural, functional and connectivity development of the human brain. The increasing availability of non-invasive infant brain MR images provides unprecedented opportunities for accurate and reliable charting of dynamic early brain developmental trajectories in understanding normative and aberrant growth. However, infant brain MR images typically exhibit reduced tissue contrast (especially around 6 months of age), large within-tissue intensity variations, and regionally-heterogeneous, dynamic changes, in comparison with adult brain MR images. Consequently, the existing computational tools developed typically for adult brains are not suitable for infant brain MR image processing. To address these challenges, many infant-tailored computational methods have been proposed for computational neuroanatomy of infant brains. In this review paper, we provide a comprehensive review of the state-of-the-art computational methods for infant brain MRI processing and analysis, which have advanced our understanding of early postnatal brain development. We also summarize publically available infant-dedicated resources, including MRI datasets, computational tools, grand challenges, and brain atlases. Finally, we discuss the limitations in current research and suggest potential future research directions.
Collapse
|
30
|
Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira RPAG, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 2018. [PMID: 29409960 DOI: 10.1101/125526] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Collapse
Affiliation(s)
- Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Emma C Robinson
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Robert Wright
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Maria Murgasova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Yang J, Yin Y, Zhang Z, Long J, Dong J, Zhang Y, Xu Z, Li L, Liu J, Yuan Y. Predictive brain networks for major depression in a semi-multimodal fusion hierarchical feature reduction framework. Neurosci Lett 2018; 665:163-169. [PMID: 29217258 DOI: 10.1016/j.neulet.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/05/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
Major depressive disorder (MDD) is characterized by dysregulation of distributed structural and functional networks. It is now recognized that structural and functional networks are related at multiple temporal scales. The recent emergence of multimodal fusion methods has made it possible to comprehensively and systematically investigate brain networks and thereby provide essential information for influencing disease diagnosis and prognosis. However, such investigations are hampered by the inconsistent dimensionality features between structural and functional networks. Thus, a semi-multimodal fusion hierarchical feature reduction framework is proposed. Feature reduction is a vital procedure in classification that can be used to eliminate irrelevant and redundant information and thereby improve the accuracy of disease diagnosis. Our proposed framework primarily consists of two steps. The first step considers the connection distances in both structural and functional networks between MDD and healthy control (HC) groups. By adding a constraint based on sparsity regularization, the second step fully utilizes the inter-relationship between the two modalities. However, in contrast to conventional multi-modality multi-task methods, the structural networks were considered to play only a subsidiary role in feature reduction and were not included in the following classification. The proposed method achieved a classification accuracy, specificity, sensitivity, and area under the curve of 84.91%, 88.6%, 81.29%, and 0.91, respectively. Moreover, the frontal-limbic system contributed the most to disease diagnosis. Importantly, by taking full advantage of the complementary information from multimodal neuroimaging data, the selected consensus connections may be highly reliable biomarkers of MDD.
Collapse
Affiliation(s)
- Jie Yang
- School of Information Science and Engineering, Central South University, Changsha, Hunan, PR China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing, PR China
| | - Zuping Zhang
- School of Information Science and Engineering, Central South University, Changsha, Hunan, PR China.
| | - Jun Long
- School of Information Science and Engineering, Central South University, Changsha, Hunan, PR China
| | - Jian Dong
- School of Information Science and Engineering, Central South University, Changsha, Hunan, PR China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing, PR China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing, PR China
| | - Lei Li
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing, PR China
| | - Jie Liu
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing, PR China.
| |
Collapse
|
32
|
Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira RPAG, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 2018; 173:88-112. [PMID: 29409960 DOI: 10.1016/j.neuroimage.2018.01.054] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Collapse
Affiliation(s)
- Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Emma C Robinson
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Robert Wright
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Maria Murgasova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Meng Y, Li G, Gao Y, Lin W, Shen D. Learning-based subject-specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies. Hum Brain Mapp 2018; 37:4129-4147. [PMID: 27380969 DOI: 10.1002/hbm.23301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/20/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Longitudinal neuroimaging analysis of the dynamic brain development in infants has received increasing attention recently. Many studies expect a complete longitudinal dataset in order to accurately chart the brain developmental trajectories. However, in practice, a large portion of subjects in longitudinal studies often have missing data at certain time points, due to various reasons such as the absence of scan or poor image quality. To make better use of these incomplete longitudinal data, in this paper, we propose a novel machine learning-based method to estimate the subject-specific, vertex-wise cortical morphological attributes at the missing time points in longitudinal infant studies. Specifically, we develop a customized regression forest, named dynamically assembled regression forest (DARF), as the core regression tool. DARF ensures the spatial smoothness of the estimated maps for vertex-wise cortical morphological attributes and also greatly reduces the computational cost. By employing a pairwise estimation followed by a joint refinement, our method is able to fully exploit the available information from both subjects with complete scans and subjects with missing scans for estimation of the missing cortical attribute maps. The proposed method has been applied to estimating the dynamic cortical thickness maps at missing time points in an incomplete longitudinal infant dataset, which includes 31 healthy infant subjects, each having up to five time points in the first postnatal year. The experimental results indicate that our proposed framework can accurately estimate the subject-specific vertex-wise cortical thickness maps at missing time points, with the average error less than 0.23 mm. Hum Brain Mapp 37:4129-4147, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Meng
- Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina.
| | - Yaozong Gao
- Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina. .,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Cao M, Huang H, He Y. Developmental Connectomics from Infancy through Early Childhood. Trends Neurosci 2017; 40:494-506. [PMID: 28684174 PMCID: PMC5975640 DOI: 10.1016/j.tins.2017.06.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Abstract
The human brain undergoes rapid growth in both structure and function from infancy through early childhood, and this significantly influences cognitive and behavioral development in later life. A newly emerging research framework, developmental connectomics, provides unprecedented opportunities for exploring the developing brain through non-invasive mapping of structural and functional connectivity patterns. Within this framework, we review recent neuroimaging and neurophysiological studies investigating connectome development from 20 postmenstrual weeks to 5 years of age. Specifically, we highlight five fundamental principles of brain network development during the critical first years of life, emphasizing strengthened segregation/integration balance, a remarkable hierarchical order from primary to higher-order regions, unparalleled structural and functional maturations, substantial individual variability, and high vulnerability to risk factors and developmental disorders.
Collapse
Affiliation(s)
- Miao Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
35
|
Meng Y, Li G, Rekik I, Zhang H, Gao Y, Lin W, Shen D. Can we predict subject-specific dynamic cortical thickness maps during infancy from birth? Hum Brain Mapp 2017; 38:2865-2874. [PMID: 28295833 PMCID: PMC5426957 DOI: 10.1002/hbm.23555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/28/2017] [Accepted: 02/21/2017] [Indexed: 11/08/2022] Open
Abstract
Understanding the early dynamic development of the human cerebral cortex remains a challenging problem. Cortical thickness, as one of the most important morphological attributes of the cerebral cortex, is a sensitive indicator for both normal neurodevelopment and neuropsychiatric disorders, but its early postnatal development remains largely unexplored. In this study, we investigate a key question in neurodevelopmental science: can we predict the future dynamic development of cortical thickness map in an individual infant based on its available MRI data at birth? If this is possible, we might be able to better model and understand the early brain development and also early detect abnormal brain development during infancy. To this end, we develop a novel learning-based method, called Dynamically-Assembled Regression Forest (DARF), to predict the development of the cortical thickness map during the first postnatal year, based on neonatal MRI features. We applied our method to 15 healthy infants and predicted their cortical thickness maps at 3, 6, 9, and 12 months of age, with respectively mean absolute errors of 0.209 mm, 0.332 mm, 0.340 mm, and 0.321 mm. Moreover, we found that the prediction precision is region-specific, with high precision in the unimodal cortex and relatively low precision in the high-order association cortex, which may be associated with their differential developmental patterns. Additional experiments also suggest that using more early time points for prediction can further significantly improve the prediction accuracy. Hum Brain Mapp 38:2865-2874, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Meng
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Gang Li
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Islem Rekik
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Han Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Yaozong Gao
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Weili Lin
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
36
|
Rekik I, Li G, Yap PT, Chen G, Lin W, Shen D. Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI. Neuroimage 2017; 152:411-424. [PMID: 28284800 PMCID: PMC5432411 DOI: 10.1016/j.neuroimage.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022] Open
Abstract
The human brain can be modeled as multiple interrelated shapes (or a multishape), each for characterizing one aspect of the brain, such as the cortex and white matter pathways. Predicting the developing multishape is a very challenging task due to the contrasting nature of the developmental trajectories of the constituent shapes: smooth for the cortical surface and non-smooth for white matter tracts due to changes such as bifurcation. We recently addressed this problem and proposed an approach for predicting the multishape developmental spatiotemporal trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic, and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further improve the prediction of multishape evolution. First, for a more accurate cortical surface prediction, instead of simply relying on one neonatal atlas to guide the prediction of the multishape, we propose to use multiple neonatal atlases to build a spatially heterogeneous atlas using the multidirectional varifold representation. This individualizes the atlas by locally maximizing its similarity to the testing baseline cortical shape for each cortical region, thereby better representing the baseline testing cortical surface, which founds the multishape prediction process. Second, for temporally consistent fiber prediction, we propose to reliably estimate spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the variability and richness of the temporal development of fibers. Experimental results confirm that the proposed variants significantly improve the prediction performance of our original multishape prediction framework for both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. Our pioneering model will pave the way for learning how to predict the evolution of anatomical shapes with abnormal changes. Ultimately, devising accurate shape evolution prediction models that can help quantify and predict the severity of a brain disorder as it progresses will be of great aid in individualized treatment planning.
Collapse
Affiliation(s)
- Islem Rekik
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; CVIP, Computing, School of Science and Engineering, University of Dundee, UK
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Geng Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Remer J, Croteau-Chonka E, Dean DC, D'Arpino S, Dirks H, Whiley D, Deoni SCL. Quantifying cortical development in typically developing toddlers and young children, 1-6 years of age. Neuroimage 2017; 153:246-261. [PMID: 28392489 PMCID: PMC5460988 DOI: 10.1016/j.neuroimage.2017.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/02/2023] Open
Abstract
Cortical maturation, including age-related changes in thickness, volume, surface area, and folding (gyrification), play a central role in developing brain function and plasticity. Further, abnormal cortical maturation is a suspected substrate in various behavioral, intellectual, and psychiatric disorders. However, in order to characterize the altered development associated with these disorders, appreciation of the normative patterns of cortical development in neurotypical children between 1 and 6 years of age, a period of peak brain development during which many behavioral and developmental disorders emerge, is necessary. To this end, we examined measures of cortical thickness, surface area, mean curvature, and gray matter volume across 34 bilateral regions in a cohort of 140 healthy children devoid of major risk factors for abnormal development. From these data, we observed linear, logarithmic, and quadratic patterns of change with age depending on brain region. Cortical thinning, ranging from 10% to 20%, was observed throughout most of the brain, with the exception of posterior brain structures, which showed initial cortical thinning from 1 to 5 years, followed by thickening. Cortical surface area expansion ranged from 20% to 108%, and cortical curvature varied by 1–20% across the investigated age range. Right-left hemisphere asymmetry was observed across development for each of the 4 cortical measures. Our results present new insight into the normative patterns of cortical development across an important but under studied developmental window, and provide a valuable reference to which trajectories observed in neurodevelopmental disorders may be compared. Analysis of cortical thickness, surface area, curvature, and gray matter volume. Region specific trajectories of cortical maturation in infants and children. Analysis of significant asymmetry during early brain development. Differential brain development based on sex.
Collapse
Affiliation(s)
- Justin Remer
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States.
| | - Elise Croteau-Chonka
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States
| | - Douglas C Dean
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States
| | - Sara D'Arpino
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States
| | - Holly Dirks
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States
| | - Dannielle Whiley
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI 02912, United States
| |
Collapse
|
38
|
Meng Y, Li G, Gao Y, Gilmore JH, Lin W, Shen D. Subject-specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains. "MEDICAL COMPUTER VISION: ALGORITHMS FOR BIG DATA" : INTERNATIONAL WORKSHOP, MCV 2015, HELD IN CONJUNCTION WITH MICCAI 2015, MUNICH, GERMANY, OCTOBER 9, 2015 : REVISED SELECTED PAPERS. MCV (WORKSHOP) (5TH : 2015 : MUNICH, GERMANY) 2016; 9601:83-92. [PMID: 29202134 PMCID: PMC5709089 DOI: 10.1007/978-3-319-42016-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To accurately chart the dynamic brain developmental trajectories in infants, many longitudinal neuroimaging studies prefer having a complete dataset. Unfortunately, missing data at certain time points are unavoidable in longitudinal datasets. To better use incomplete longitudinal data, we propose a novel method to estimate the subject-specific vertex-wise cortical thickness maps at missing time points, by using a customized regression forest, Dynamically-Assembled Regression Forest (DARF). DARF ensures spatial smoothness of the estimated cortical thickness maps and also the computational efficiency. The proposed method can fully exploit the available information from the subjects both with and without missing scans. Our method has been applied to estimate the missing cortical thickness maps in a longitudinal infant dataset, which includes 31 healthy subjects, with each having up to 5 scans. The experimental results indicate that our method can accurately estimate missing cortical thickness maps, with the average vertex-wise error less than 0.23 mm.
Collapse
Affiliation(s)
- Yu Meng
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Yaozong Gao
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
39
|
Koenis MMG, Brouwer RM, van den Heuvel MP, Mandl RCW, van Soelen ILC, Kahn RS, Boomsma DI, Hulshoff Pol HE. Development of the brain's structural network efficiency in early adolescence: A longitudinal DTI twin study. Hum Brain Mapp 2015; 36:4938-53. [PMID: 26368846 PMCID: PMC6869380 DOI: 10.1002/hbm.22988] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/31/2015] [Accepted: 08/21/2015] [Indexed: 01/25/2023] Open
Abstract
The brain is a network and our intelligence depends in part on the efficiency of this network. The network of adolescents differs from that of adults suggesting developmental changes. However, whether the network changes over time at the individual level and, if so, how this relates to intelligence, is unresolved in adolescence. In addition, the influence of genetic factors in the developing network is not known. Therefore, in a longitudinal study of 162 healthy adolescent twins and their siblings (mean age at baseline 9.9 [range 9.0-15.0] years), we mapped local and global structural network efficiency of cerebral fiber pathways (weighted with mean FA and streamline count) and assessed intelligence over a three-year interval. We find that the efficiency of the brain's structural network is highly heritable (locally up to 74%). FA-based local and global efficiency increases during early adolescence. Streamline count based local efficiency both increases and decreases, and global efficiency reorganizes to a net decrease. Local FA-based efficiency was correlated to IQ. Moreover, increases in FA-based network efficiency (global and local) and decreases in streamline count based local efficiency are related to increases in intellectual functioning. Individual changes in intelligence and local FA-based efficiency appear to go hand in hand in frontal and temporal areas. More widespread local decreases in streamline count based efficiency (frontal cingulate and occipital) are correlated with increases in intelligence. We conclude that the teenage brain is a network in progress in which individual differences in maturation relate to level of intellectual functioning.
Collapse
Affiliation(s)
- Marinka M G Koenis
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Rachel M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - René C W Mandl
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Inge L C van Soelen
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
40
|
Li G, Liu T, Ni D, Lin W, Gilmore JH, Shen D. Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Hum Brain Mapp 2015; 36:5183-95. [PMID: 26417847 PMCID: PMC4715737 DOI: 10.1002/hbm.23003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022] Open
Abstract
The intrinsic relationship between the convoluted cortical folding and the underlying complex whiter matter fiber connections has received increasing attention in current neuroscience studies. Recently, the axonal pushing hypothesis of cortical folding has been proposed to explain the finding that the axonal fibers (derived from diffusion tensor images) connecting to gyri are significantly denser than those connecting to sulci in both adult human and non-human primate brains. However, it is still unclear about the spatiotemporal patterns of the fiber density on the cortical surface of the developing infant brains from birth to 2 years of age, which is the most dynamic phase of postnatal brain development. In this paper, for the first time, we systemically characterized the spatial distributions and longitudinal developmental trajectories of the cortical fiber density in the first 2 postnatal years, via joint analysis of longitudinal structural and diffusion tensor imaging from 33 healthy infants. We found that the cortical fiber density increases dramatically in the first year and then keeps relatively stable in the second year. Moreover, we revealed that the cortical fiber density on gyral regions was significantly higher at 0, 1, and 2 years of age than that on sulcal regions in the frontal, temporal, and parietal lobes. Meanwhile, the cortical fiber density was strongly positively correlated with cortical thickness at several three-hinge junction regions of gyri. These results significantly advanced our understanding of the intrinsic relationship between the cortical folding, cortical thickness and axonal wiring during early postnatal stages.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Tianming Liu
- Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensGeorgia
| | - Dong Ni
- Department of Biomedical Engineering, The Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingShenzhen UniversityShenzhenChina
| | - Weili Lin
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - John H. Gilmore
- Department of PsychiatryUniversity of North Carolina at Chapel HillNorth Carolina
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
41
|
Meng Y, Li G, Lin W, Gilmore JH, Shen D. Cortical Surface-Based Construction of Individual Structural Network with Application to Early Brain Development Study. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2015; 9351:560-568. [PMID: 27169140 DOI: 10.1007/978-3-319-24574-4_67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Analysis of anatomical covariance for cortex morphology in individual subjects plays an important role in the study of human brains. However, the approaches for constructing individual structural networks have not been well developed yet. Existing methods based on patch-wise image intensity similarity suffer from several major drawbacks, i.e., 1) violation of cortical topological properties, 2) sensitivity to intensity heterogeneity, and 3) influence by patch size heterogeneity. To overcome these limitations, this paper presents a novel cortical surface-based method for constructing individual structural networks. Specifically, our method first maps the cortical surfaces onto a standard spherical surface atlas and then uniformly samples vertices on the spherical surface as the nodes of the networks. The similarity between any two nodes is computed based on the biologically-meaningful cortical attributes (e.g., cortical thickness) in the spherical neighborhood of their sampled vertices. The connection between any two nodes is established only if the similarity is larger than a user-specified threshold. Through leveraging spherical cortical surface patches, our method generates biologically-meaningful individual networks that are comparable across ages and subjects. The proposed method has been applied to construct cortical-thickness networks for 73 healthy infants, with each infant having two MRI scans at 0 and 1 year of age. The constructed networks during the two ages were compared using various network metrics, such as degree, clustering coefficient, shortest path length, small world property, global efficiency, and local efficiency. Experimental results demonstrate that our method can effectively construct individual structural networks and reveal meaningful patterns in early brain development.
Collapse
Affiliation(s)
- Yu Meng
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
42
|
Li G, Wang L, Shi F, Gilmore JH, Lin W, Shen D. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Med Image Anal 2015; 25:22-36. [PMID: 25980388 PMCID: PMC4540689 DOI: 10.1016/j.media.2015.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/24/2022]
Abstract
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Spatial Patterns, Longitudinal Development, and Hemispheric Asymmetries of Cortical Thickness in Infants from Birth to 2 Years of Age. J Neurosci 2015; 35:9150-62. [PMID: 26085637 DOI: 10.1523/jneurosci.4107-14.2015] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cortical thickness (CT) is related to normal development and neurodevelopmental disorders. It remains largely unclear how the characteristic patterns of CT evolve in the first 2 years. In this paper, we systematically characterized for the first time the detailed vertex-wise patterns of spatial distribution, longitudinal development, and hemispheric asymmetries of CT at 0, 1, and 2 years of age, via surface-based analysis of 219 longitudinal magnetic resonance images from 73 infants. Despite the dynamic increase of CT in the first year and the little change of CT in the second year, we found that the overall spatial distribution of thin and thick cortices was largely present at birth, and evolved only modestly during the first 2 years. Specifically, the precentral gyrus, postcentral gyrus, occipital cortex, and superior parietal region had thin cortices, whereas the prefrontal, lateral temporal, insula, and inferior parietal regions had thick cortices. We revealed that in the first year thin cortices exhibited low growth rates of CT, whereas thick cortices exhibited high growth rates. We also found that gyri were thicker than sulci, and that the anterior bank of the central sulcus was thicker than the posterior bank. Moreover, we showed rightward hemispheric asymmetries of CT in the lateral temporal and posterior insula regions at birth, which shrank gradually in the first 2 years, and also leftward asymmetries in the medial prefrontal, paracentral, and anterior cingulate cortices, which expanded substantially during this period. This study provides the first comprehensive picture of early patterns and evolution of CT during infancy.
Collapse
|
44
|
Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, Shen D. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. Neuroimage 2014; 108:160-72. [PMID: 25541188 DOI: 10.1016/j.neuroimage.2014.12.042] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 01/21/2023] Open
Abstract
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy.
Collapse
Affiliation(s)
- Li Wang
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Yaozong Gao
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | - Feng Shi
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Li G, Wang L, Shi F, Lin W, Shen D. Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Med Image Anal 2014; 18:1274-89. [PMID: 25066749 PMCID: PMC4162754 DOI: 10.1016/j.media.2014.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/06/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023]
Abstract
The human cerebral cortex develops extremely dynamically in the first 2years of life. Accurate and consistent parcellation of longitudinal dynamic cortical surfaces during this critical stage is essential to understand the early development of cortical structure and function in both normal and high-risk infant brains. However, directly applying the existing methods developed for the cross-sectional studies often generates longitudinally-inconsistent results, thus leading to inaccurate measurements of the cortex development. In this paper, we propose a new method for accurate, consistent, and simultaneous labeling of longitudinal cortical surfaces in the serial infant brain MR images. The proposed method is explicitly formulated as a minimization problem with an energy function that includes a data fitting term, a spatial smoothness term, and a temporal consistency term. Specifically, inspired by multi-atlas based label fusion, the data fitting term is designed to integrate the contributions from multi-atlas surfaces adaptively, according to the similarities of their local cortical folding with that of the subject cortical surface. The spatial smoothness term is then designed to adaptively encourage label smoothness based on the local cortical folding geometries, i.e., allowing label discontinuity at sulcal bottoms (which often are the boundaries of cytoarchitecturally and functionally distinct regions). The temporal consistency term is to adaptively encourage the label consistency among the temporally-corresponding vertices, based on their similarity of local cortical folding. Finally, the entire energy function is efficiently minimized by a graph cuts method. The proposed method has been applied to the parcellation of longitudinal cortical surfaces of 13 healthy infants, each with 6 serial MRI scans acquired at 0, 3, 6, 9, 12 and 18months of age. Qualitative and quantitative evaluations demonstrated both accuracy and longitudinal consistency of the proposed method. By using our method, for the first time, we reveal several hitherto unseen properties of the dynamic and regionally heterogeneous development of the cortical surface area in the first 18months of life.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage 2014; 100:206-18. [PMID: 24945660 DOI: 10.1016/j.neuroimage.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/20/2014] [Accepted: 06/04/2014] [Indexed: 01/05/2023] Open
Abstract
Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age, which likely has close relationships with the lateralization of brain functions of these regions. This study provides detailed insights into the spatial distribution and temporal development of deep sulcal landmarks in infants.
Collapse
|
47
|
Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 2014; 34:4228-38. [PMID: 24647943 DOI: 10.1523/jneurosci.3976-13.2014] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood.
Collapse
|