1
|
Kondas A, McDermott TJ, Ahluwalia V, Haller OC, Karkare MC, Guelfo A, Daube A, Bradley B, Powers A, Stevens JS, Ressler KJ, Siegle GJ, Fani N. White matter correlates of dissociation in a diverse sample of trauma-exposed women. Psychiatry Res 2024; 342:116231. [PMID: 39427577 DOI: 10.1016/j.psychres.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Dissociation is a common response to trauma linked to functional brain disruptions in brain networks subserving emotion regulation and multisensory integration; however, structural neural correlates of dissociation are less known, particularly abnormalities in stress-sensitive white matter (WM) tracts. The present study examined associations between dissociation and WM microstructure, assessed via fractional anisotropy (FA), in a large, diverse sample of women recruited as part of a long-standing trauma study, the Grady Trauma Project (GTP). As part of GTP, 135 trauma-exposed women (18-62 years old, M=34.25, SD=12.96, 84% self-identifying as Black) were recruited, received diffusion tensor imaging, and completed the Multiscale Dissociation Inventory (MDI); FA values were extracted from ten major WM tracts of interest. Partial correlations were conducted to examine associations between dissociation facets (MDI total and subscales) and FA while covarying age and temporal signal-to-noise ratio; false discovery rate corrected p < 0.05 indicated statistical significance. FA in seven tracts showed significant negative associations with overall dissociation (MDI total score; rs<-0.19, pFDR<0.05); the corona radiata, corpus callosum, superior longitudinal fasciculus, thalamic radiation, anterior cingulum, fornix, and uncinate fasciculus. Among facets of dissociation, FA was most consistently associated with dissociative memory disturbance, showing a significant and negative association with all but one of tract of interest, (rs<-0.23, pFDR<0.05). Our findings indicated that dissociation severity was linked to proportionally lesser WM microstructural integrity in tracts involved with sensory integration, emotion regulation, memory, and self-referential processing. Disruptions in these pathways may underlie dissociative phenomena, representing important psychotherapeutic and neuromodulatory targets.
Collapse
Affiliation(s)
- Alexa Kondas
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Timothy J McDermott
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Vishwadeep Ahluwalia
- Georgia Institute of Technology, Atlanta, GA, USA; GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, USA
| | | | - Maya C Karkare
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Alfonsina Guelfo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Alexandra Daube
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, USA; Department of Psychiatry, Harvard Medical School, USA
| | | | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Ste 6007, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Petranu K, Webb EK, Tomas CW, Harb F, Torres L, deRoon-Cassini TA, Larson CL. Investigating the bed nucleus of the stria terminalis as a predictor of posttraumatic stress disorder in Black Americans and the moderating effects of racial discrimination. Transl Psychiatry 2024; 14:337. [PMID: 39169008 PMCID: PMC11339439 DOI: 10.1038/s41398-024-03050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Altered functioning of the bed nucleus of the stria terminalis (BNST) may play a critical role in the etiology of posttraumatic stress disorder (PTSD). Chronic stressors such as racial discrimination and lifetime trauma are associated with an increased risk for PTSD, but it is unknown whether they influence the relationship between BNST functioning and PTSD. We investigated acute post-trauma BNST resting-state functional connectivity (rsFC) as a predictor of future PTSD symptoms in Black trauma survivors. We also examined whether racial discrimination and lifetime trauma moderated the relationship between BNST rsFC and PTSD symptoms. Black adults (N = 95; 54.7% female; mean age = 34.04) were recruited from an emergency department after experiencing a traumatic injury (72.6% were motor vehicle accidents). Two-weeks post-injury, participants underwent a resting-state fMRI scan and completed questionnaires evaluating their PTSD symptoms as well as lifetime exposure to racial discrimination and trauma. Six-months post-injury, PTSD symptoms were reassessed. Whole brain seed-to-voxel analyses were conducted to examine BNST rsFC patterns. Greater rsFC between the BNST and the posterior cingulate cortex, precuneus, left angular gyrus, and hippocampus prospectively predicted six-month PTSD symptoms after adjusting for sex, age, education, and baseline PTSD symptoms. Acute BNST rsFC was a stronger predictor of PTSD symptoms in individuals who experienced more racial discrimination and lifetime trauma. Thus, in the acute aftermath of a traumatic event, the BNST could be a key biomarker of risk for PTSD in Black Americans, particularly for individuals with a greater history of racial discrimination or previous trauma exposure.
Collapse
Affiliation(s)
- Kevin Petranu
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
- Advocate Aurora Research Institute, Aurora Sinai, Milwaukee, WI, USA.
| | - E Kate Webb
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carissa W Tomas
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Farah Harb
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lucas Torres
- Department of Psychology, Marquette University, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma & Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
3
|
Danböck SK, Duek O, Ben-Zion Z, Korem N, Amen SL, Kelmendi B, Wilhelm FH, Levy I, Harpaz-Rotem I. Effects of a dissociative drug on fronto-limbic resting-state functional connectivity in individuals with posttraumatic stress disorder: a randomized controlled pilot study. Psychopharmacology (Berl) 2024; 241:243-252. [PMID: 37872291 PMCID: PMC10806226 DOI: 10.1007/s00213-023-06479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
RATIONALE A subanesthetic dose of ketamine, a non-competitive N-methyl-D-aspartate glutamate receptor (NMDAR) antagonist, elicits dissociation in individuals with posttraumatic stress disorder (PTSD), who also often suffer from chronic dissociative symptoms in daily life. These debilitating symptoms have not only been linked to worse PTSD trajectories, but also to increased resting-state functional connectivity (RSFC) between medial prefrontal cortex (mPFC) and amygdala, supporting the conceptualization of dissociation as emotion overmodulation. Yet, as studies were observational, causal evidence is lacking. OBJECTIVES The present randomized controlled pilot study examines the effect of ketamine, a dissociative drug, on RSFC between mPFC subregions and amygdala in individuals with PTSD. METHODS Twenty-six individuals with PTSD received either ketamine (0.5mg/kg; n = 12) or the control drug midazolam (0.045mg/kg; n = 14) during functional magnetic resonance imaging (fMRI). RSFC between amygdala and mPFC subregions, i.e., ventromedial PFC (vmPFC), dorsomedial PFC (dmPFC) and anterior-medial PFC (amPFC), was assessed at baseline and during intravenous drug infusion. RESULTS Contrary to pre-registered predictions, ketamine did not promote a greater increase in RSFC between amygdala and mPFC subregions from baseline to infusion compared to midazolam. Instead, ketamine elicited a stronger transient decrease in vmPFC-amygdala RSFC compared to midazolam. CONCLUSIONS A dissociative drug did not increase fronto-limbic RSFC in individuals with PTSD. These preliminary experimental findings contrast with prior correlative findings and call for further exploration and, potentially, a more differentiated view on the neurobiological underpinning of dissociative phenomena in PTSD.
Collapse
Affiliation(s)
- Sarah K Danböck
- Department of Psychology, Paris Lodron University of Salzburg, Salzburg, Austria.
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| | - Or Duek
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of The Negev, Be'er-Sheva, Israel
| | - Ziv Ben-Zion
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
- Departments of Comparative Medicine and Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
| | - Nachshon Korem
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Shelley L Amen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Ben Kelmendi
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Frank H Wilhelm
- Department of Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Cen YS, Li W, Xia LX. Resting-state neural correlates of individual differences in ignored experience and its deleterious effect. Cereb Cortex 2024; 34:bhad433. [PMID: 37991321 DOI: 10.1093/cercor/bhad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Uncovering the neural mechanisms of ostracism experience (including its subclasses of excluded and ignored experiences) is important. However, the resting-state functional brain substrates responsible for individual differences in ostracism experience and its negative effects remain largely undefined. This study explored these issues in a sample of 198 Chinese college students by assessing the amplitude of low-frequency fluctuations and functional connectivity. The findings indicated a positive correlation between ignored experience and the amplitude of low-frequency fluctuations in the right superior frontal gyrus and the functional connectivity between the right superior frontal gyrus and left cerebellum posterior lobe. Additionally, a negative correlation was found between ignored experience and the functional connectivity between the right superior frontal gyrus and the bilateral insula as well as the bilateral inferior parietal lobule. Moreover, the mediation analysis demonstrated that the effects of the functional connectivities of right superior frontal gyrus-left cerebellum posterior lobe and right superior frontal gyrus-right inferior parietal lobule on revenge intention were mediated by ignored experience. Our study offers novel insights into the neural correlates of both individual variations in ignored experience and its typical deleterious effect. These results could deepen our understanding of individual differences in negative experiences and inspire the development of targeted interventions for social stress from the perspective of the brain.
Collapse
Affiliation(s)
- Yu-Shan Cen
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Wei Li
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
5
|
Zheng HY, Chen YM, Xu Y, Cen C, Wang Y. Excitatory neurons in the lateral parabrachial nucleus mediate the interruptive effect of inflammatory pain on a sustained attention task. J Transl Med 2023; 21:896. [PMID: 38072957 PMCID: PMC10712130 DOI: 10.1186/s12967-023-04583-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Attentional deficits are among the most common pain-induced cognitive disorders. Pain disrupts attention and may excessively occupy attentional resources in pathological states, leading to daily function impairment and increased disability. However, the neural circuit mechanisms by which pain disrupts attention are incompletely understood. METHODS We used a three-choice serial reaction time task (3CSRTT) to construct a sustained-attention task model in male C57BL/6J mice. Formalin or complete Freund's adjuvant was injected into a paw to establish an inflammatory pain model. We measured changes in 3CSRTT performance in the two inflammatory pain models, and investigated the neural circuit mechanisms of pain-induced attentional deficits. RESULTS Acute inflammatory pain impaired 3CSRTT performance, while chronic inflammatory pain had no effect. Either inhibition of the ascending pain pathway by blockade of the conduction of nociceptive signals in the sciatic nerve using the local anesthetic lidocaine or chemogenetic inhibition of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) neurons in the lateral parabrachial nucleus (LPBN) attenuated the acute inflammatory pain-induced impairment of 3CSRTT performance, while chemogenetic activation of CaMKIIα neurons in the LPBN disrupted the 3CSRTT. Furthermore, the activity of CaMKIIα neurons in the LPBN was significantly lower on Day 2 after complete Freund's adjuvant injection than on the day of injection, which correlated with the recovery of 3CSRTT performance during chronic inflammatory pain. CONCLUSIONS Activation of excitatory neurons in the LPBN is a mechanism by which acute inflammatory pain disrupts sustained attention. This finding has implications for the treatment of pain and its cognitive comorbidities.
Collapse
Affiliation(s)
- Huan-Yu Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yu-Meng Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yao Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Bremner JD, Ortego RA, Campanella C, Nye JA, Davis LL, Fani N, Vaccarino V. Neural correlates of PTSD in women with childhood sexual abuse with and without PTSD and response to paroxetine treatment: A placebo-controlled, double-blind trial. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023; 14:100615. [PMID: 38088987 PMCID: PMC10715797 DOI: 10.1016/j.jadr.2023.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective Childhood sexual abuse is the leading cause of posttraumatic stress disorder (PTSD) in women, and is a prominent cause of morbidity and loss of function for which limited treatments are available. Understanding the neurobiology of treatment response is important for developing new treatments. The purpose of this study was to assess neural correlates of personalized traumatic memories in women with childhood sexual abuse with and without PTSD, and to assess response to treatment. Methods Women with childhood sexual abuse with (N = 28) and without (N = 17) PTSD underwent brain imaging with High-Resolution Positron Emission Tomography scanning with radiolabeled water for brain blood flow measurements during exposure to personalized traumatic scripts and memory encoding tasks. Women with PTSD were randomized to paroxetine or placebo followed by three months of double-blind treatment and repeat imaging with the same protocol. Results Women with PTSD showed decreases in areas involved in the Default Mode Network (DMN), a network of brain areas usually active when the brain is at rest, hippocampus and visual processing areas with exposure to traumatic scripts at baseline while women without PTSD showed increased activation in superior frontal gyrus and other areas (p < 0.005). Treatment of women with PTSD with paroxetine resulted in increased anterior cingulate activation and brain areas involved in the DMN and visual processing with scripts compared to placebo (p < 0.005). Conclusion PTSD related to childhood sexual abuse in women is associated with alterations in brain areas involved in memory and the stress response and treatment with paroxetine results in modulation of these areas.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
| | - Rebeca Alvarado Ortego
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Carolina Campanella
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Lori L. Davis
- Department of Psychiatry, University of Alabama School of Medicine, Birmingham, AL
- Tuscaloosa VA Medical Center, Tuscaloosa AL
| | - Negar Fani
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta GA
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
7
|
Bennett MM, Davis KE, Fitzgerald JM. Neural Correlates of Reward Processing in the Onset, Maintenance, and Treatment of Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:884-890. [PMID: 37263417 DOI: 10.1016/j.bpsc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and heterogeneous psychiatric condition marked by both exaggerated threat responding and diminished positive affect. While symptom profiles of PTSD differ across individuals, symptoms also vary within individuals over the course of illness. Functional magnetic resonance imaging studies have provided crucial insights into the neurobiology of heightened threat responsivity in PTSD, which has aided in identifying neurobiological risk factors and treatment targets for this disorder. Despite this demonstrated utility, the application of functional magnetic resonance imaging to understanding deficits in reward responsivity in PTSD remains underexplored. Significantly, over 60% of individuals with PTSD experience anhedonia, or an inability to feel pleasure, which may reflect reward processing deficits. To better understand the neural underpinnings of reward deficits and their relevance to the onset, maintenance, and treatment of PTSD, we reviewed the functional magnetic resonance imaging literature through the framework of disease prognosis. Here, we provide insights on whether reward deficits are central to PTSD or are better explained by comorbid major depressive disorder, and we clarify how reward-related deficiencies in PTSD fit into the context of more intensely studied threat-related deficits.
Collapse
Affiliation(s)
- Meghan M Bennett
- Department of Psychology, Marquette University, Milwaukee, Wisconsin.
| | - Kaley E Davis
- Department of Psychology, Marquette University, Milwaukee, Wisconsin
| | | |
Collapse
|
8
|
Gottfredson RK, Becker WJ. How past trauma impacts emotional intelligence: Examining the connection. Front Psychol 2023; 14:1067509. [PMID: 37275697 PMCID: PMC10234103 DOI: 10.3389/fpsyg.2023.1067509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Backed by both research and practice, the organizational psychology field has come to value emotional intelligence (EI) as being vital for leader and employee effectiveness. While this field values EI, it has paid little attention to the antecedents of emotional intelligence, leaving the EI domain without clarity on (1) why EI might vary across individuals, and (2) how to best develop EI. In this article, we rely on neuroscience and psychology research to make the case that past psychological trauma impacts later EI capabilities. Specifically, we present evidence that psychological trauma impairs the brain areas and functions that support EI. Establishing psychological trauma has valuable theoretical and practical implications that include providing an explanation of why EI might vary across individuals and providing a focus for improving EI: healing from past trauma. Further theoretical and practical implications for the field of organizational psychology are provided.
Collapse
Affiliation(s)
- Ryan K Gottfredson
- Department of Management, College of Business and Economics, California State University, Fullerton, CA, United States
| | - William J Becker
- Department of Management, Pamplin College of Business, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Flook EA, Feola B, Benningfield MM, Silveri MM, Winder DG, Blackford JU. Alterations in BNST Intrinsic Functional Connectivity in Early Abstinence from Alcohol Use Disorder. Alcohol Alcohol 2023; 58:298-307. [PMID: 36847484 PMCID: PMC10168710 DOI: 10.1093/alcalc/agad006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/22/2023] [Indexed: 03/01/2023] Open
Abstract
AIMS Maintaining abstinence from alcohol use disorder (AUD) is extremely challenging, partially due to increased symptoms of anxiety and stress that trigger relapse. Rodent models of AUD have identified that the bed nucleus of the stria terminalis (BNST) contributes to symptoms of anxiety-like behavior and drug-seeking during abstinence. In humans, however, the BNST's role in abstinence remains poorly understood. The aims of this study were to assess BNST network intrinsic functional connectivity in individuals during abstinence from AUD compared to healthy controls and examine associations between BNST intrinsic functional connectivity, anxiety and alcohol use severity during abstinence. METHODS The study included resting state fMRI scans from participants aged 21-40 years: 20 participants with AUD in abstinence and 20 healthy controls. Analyses were restricted to five pre-selected brain regions with known BNST structural connections. Linear mixed models were used to test for group differences, with sex as a fixed factor given previously shown sex differences. RESULTS BNST-hypothalamus intrinsic connectivity was lower in the abstinent group relative to the control group. There were also pronounced sex differences in both the group and individual analyses; many of the findings were specific to men. Within the abstinent group, anxiety was positively associated with BNST-amygdala and BNST-hypothalamus connectivity, and men, not women, showed a negative relationship between alcohol use severity and BNST-hypothalamus connectivity. CONCLUSIONS Understanding differences in connectivity during abstinence may help explain the clinically observed anxiety and depression symptoms during abstinence and may inform the development of individualized treatments.
Collapse
Affiliation(s)
- Elizabeth A Flook
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
- Vanderbilt University School of Medicine, 1161 21st Ave S # D3300, Nashville, TN 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Brandee Feola
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA
| | - Margaret M Benningfield
- Vanderbilt University School of Medicine, 1161 21st Ave S # D3300, Nashville, TN 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, Brain Imaging Center, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA 02215, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37212, USA
- Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37240, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, 6902 Pine Street, Omaha, NE 68106, USA
| |
Collapse
|
10
|
Feola B, Flook EA, Gardner H, Phan KL, Gwirtsman H, Olatunji B, Blackford JU. Altered bed nucleus of the stria terminalis and amygdala responses to threat in combat veterans with posttraumatic stress disorder. J Trauma Stress 2023; 36:359-372. [PMID: 36938747 PMCID: PMC10548436 DOI: 10.1002/jts.22918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 03/21/2023]
Abstract
Posttraumatic stress disorder (PTSD) significantly impacts many veterans. Although PTSD has been linked to alterations in the fear brain network, the disorder likely involves alterations in both the fear and anxiety networks. Fear involves responses to imminent, predictable threat and is driven by the amygdala, whereas anxiety involves responses to potential, unpredictable threat and engages the bed nucleus of the stria terminalis (BNST). The BNST has been implicated in PTSD, but the role of the BNST in combat veterans with PTSD has yet to be examined. Identifying alterations in BNST responses to unpredictable threat could provide important new targets for treatment. The current study examined whether veterans with PTSD have altered BNST or amygdala responses (function and connectivity) to unpredictable and predictable threat. The fMRI task involved viewing predictable threat cues followed by threat images, predictable neutral cues followed by neutral images, and unpredictable threat cues followed by either a threat or neutral image. Participants included 32 combat-exposed veterans with PTSD and 13 combat-exposed controls without PTSD. Across all conditions, veterans with PTSD had heightened BNST activation and displayed stronger BNST and amygdala connectivity with multiple fear and anxiety regions (hypothalamus, hippocampus, insula, ventromedial prefrontal cortex) relative to controls. In contrast, combat controls showed a pattern of stronger connectivity during neutral conditions (e.g., BNST-vmPFC), which may suggest a neural signature of resilience to developing PTSD, ηp 2 = .087-.527, ps < .001. These findings have implications for understanding fear and anxiety networks that may contribute to the development and maintenance of PTSD.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hannah Gardner
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - K Luan Phan
- Department of Psychiatry, The Ohio State University, Columbus, Ohio, USA
| | - Harry Gwirtsman
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley HealthCare System, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Bunmi Olatunji
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley HealthCare System, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
11
|
Murphy RJ. Depersonalization/Derealization Disorder and Neural Correlates of Trauma-related Pathology: A Critical Review. INNOVATIONS IN CLINICAL NEUROSCIENCE 2023; 20:53-59. [PMID: 37122581 PMCID: PMC10132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Depersonalization and derealization refer to an estranged state of mind that involves a profound feeling of detachment from one's sense of self and the surrounding environment, respectively. The phenomena co-occur on a continuum of severity, ranging from a transient experience as a normal reaction to a traumatic event to a highly debilitating condition with persistent symptoms, formally described as depersonalization/derealization disorder (DPDR). Lack of awareness of DPDR is partly due to a limited neurobiological framework, and there remains a significant risk of misdiagnosis in clinical practice. Earlier literature has focused on several brain regions involved in the experience of depersonalization and derealization, including adaptive responses to stress via defense cascades comprising autonomic functioning, the hypothalamic-pituitary-adrenal (HPA) axis, and various other neurocircuits. Recent evidence has also demonstrated the role of more complex mechanisms that are bolstered by dissociative features, such as emotional dysregulation and disintegration of the body schema. This review intends to abridge the prevailing knowledge regarding structural and functional brain alterations associated with DPDR with that of its heterogenic manifestations. DPDR is not merely the disruption of various sensory integrations, but also of several large-scale brain networks. Although a comprehensive antidote is not available for DPDR, a holistic route to the neurobiological context in DPDR may improve general understanding of the disorder and help afflicted individuals re-establish their sense of personal identity. Such information may also be useful in the development of novel pharmacological agents and targeted psychological interventions.
Collapse
Affiliation(s)
- Rachael J Murphy
- Dr. Murphy is with the Department of Psychiatry at Lehigh Valley Health Network in Bethlehem, Pennsylvania
| |
Collapse
|
12
|
Thome J, Densmore M, Terpou BA, Théberge J, McKinnon MC, Lanius RA. Contrasting Associations Between Heart Rate Variability and Brainstem-Limbic Connectivity in Posttraumatic Stress Disorder and Its Dissociative Subtype: A Pilot Study. Front Behav Neurosci 2022; 16:862192. [PMID: 35706833 PMCID: PMC9190757 DOI: 10.3389/fnbeh.2022.862192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Increasing evidence points toward the need to extend the neurobiological conceptualization of posttraumatic stress disorder (PTSD) to include evolutionarily conserved neurocircuitries centered on the brainstem and the midbrain. The reticular activating system (RAS) helps to shape the arousal state of the brain, acting as a bridge between brain and body. To modulate arousal, the RAS is closely tied to the autonomic nervous system (ANS). Individuals with PTSD often reveal altered arousal patterns, ranging from hyper- to blunted arousal states, as well as altered functional connectivity profiles of key arousal-related brain structures that receive direct projections from the RAS. Accordingly, the present study aims to explore resting state functional connectivity of the RAS and its interaction with the ANS in participants with PTSD and its dissociative subtype. Methods Individuals with PTSD (n = 57), its dissociative subtype (PTSD + DS, n = 32) and healthy controls (n = 40) underwent a 6-min resting functional magnetic resonance imaging and pulse data recording. Resting state functional connectivity (rsFC) of a central node of the RAS – the pedunculopontine nuclei (PPN) – was investigated along with its relation to ANS functioning as indexed by heart rate variability (HRV). HRV is a prominent marker indexing the flexibility of an organism to react adaptively to environmental needs, with higher HRV representing greater effective adaptation. Results Both PTSD and PTSD + DS demonstrated reduced HRV as compared to controls. HRV measures were then correlated with rsFC of the PPN. Critically, participants with PTSD and participants with PTSD + DS displayed inverse correlations between HRV and rsFC between the PPN and key limbic structures, including the amygdala. Whereas participants with PTSD displayed a positive relationship between HRV and PPN rsFC with the amygdala, participants with PTSD + DS demonstrated a negative relationship between HRV and PPN rsFC with the amygdala. Conclusion The present exploratory investigation reveals contrasting patterns of arousal-related circuitry among participants with PTSD and PTSD + DS, providing a neurobiological lens to interpret hyper- and more blunted arousal states in PTSD and PTSD + DS, respectively.
Collapse
Affiliation(s)
- Janine Thome
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Braeden A. Terpou
- Homewood Research Institute, Guelph, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Margaret C. McKinnon
- Homewood Research Institute, Guelph, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Programs, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
- Department of Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- *Correspondence: Ruth A. Lanius,
| |
Collapse
|
13
|
Banihashemi L, Peng CW, Rangarajan A, Karim HT, Wallace ML, Sibbach BM, Singh J, Stinley MM, Germain A, Aizenstein HJ. Childhood Threat Is Associated With Lower Resting-State Connectivity Within a Central Visceral Network. Front Psychol 2022; 13:805049. [PMID: 35310241 PMCID: PMC8927539 DOI: 10.3389/fpsyg.2022.805049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Childhood adversity is associated with altered or dysregulated stress reactivity; these altered patterns of physiological functioning persist into adulthood. Evidence from both preclinical animal models and human neuroimaging studies indicates that early life experience differentially influences stressor-evoked activity within central visceral neural circuits proximally involved in the control of stress responses, including the subgenual anterior cingulate cortex (sgACC), paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST) and amygdala. However, the relationship between childhood adversity and the resting-state connectivity of this central visceral network remains unclear. To this end, we examined relationships between childhood threat and childhood socioeconomic deprivation, the resting-state connectivity between our regions of interest (ROIs), and affective symptom severity and diagnoses. We recruited a transdiagnostic sample of young adult males and females (n = 100; mean age = 27.28, SD = 3.99; 59 females) with a full distribution of maltreatment history and symptom severity across multiple affective disorders. Resting-state data were acquired using a 7.2-min functional magnetic resonance imaging (fMRI) sequence; noted ROIs were applied as masks to determine ROI-to-ROI connectivity. Threat was determined by measures of childhood traumatic events and abuse. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education level). Covarying for age, race and sex, greater childhood threat was significantly associated with lower BNST-PVN, amygdala-sgACC and PVN-sgACC connectivity. No significant relationships were found between SED and resting-state connectivity. BNST-PVN connectivity was associated with the number of lifetime affective diagnoses. Exposure to threat during early development may entrain altered patterns of resting-state connectivity between these stress-related ROIs in ways that contribute to dysregulated neural and physiological responses to stress and subsequent affective psychopathology.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Layla Banihashemi,
| | - Christine W. Peng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anusha Rangarajan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L. Wallace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon M. Sibbach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jaspreet Singh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark M. Stinley
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Blithikioti C, Nuño L, Guell X, Pascual-Diaz S, Gual A, Balcells-Olivero Μ, Miquel L. The cerebellum and psychological trauma: A systematic review of neuroimaging studies. Neurobiol Stress 2022; 17:100429. [PMID: 35146077 PMCID: PMC8801754 DOI: 10.1016/j.ynstr.2022.100429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Psychological trauma is highly prevalent among psychiatric disorders, however, the relationship between trauma, neurobiology and psychopathology is not yet fully understood. The cerebellum has been recognized as a crucial structure for cognition and emotion, however, it has been relatively ignored in the literature of psychological trauma, as it is not considered as part of the traditional fear neuro-circuitry. The aim of this review is to investigate how psychological trauma affects the cerebellum and to make conclusive remarks on whether the cerebellum forms part of the trauma-affected brain circuitry. A total of 267 unique records were screened and 39 studies were included in the review. Structural cerebellar alterations and aberrant cerebellar activity and connectivity in trauma-exposed individuals were consistently reported across studies. Early-onset of adverse experiences was associated with cerebellar alterations in trauma-exposed individuals. Several studies reported alterations in connectivity between the cerebellum and nodes of large-brain networks, which are implicated in several psychiatric disorders, including the default mode network, the salience network and the central executive network. Also, trauma-exposed individuals showed altered resting state and task based cerebellar connectivity with cortical and subcortical structures that are involved in emotion and fear regulation. Our preferred interpretation of the results is through the lens of the Universal Cerebellar Transform, the hypothesis that the cerebellum, given its homogeneous cytoarchitecture, performs a common computation for motor, cognitive and emotional functions. Therefore, trauma-induced alterations in this computation might set the ground for a variety of psychiatric symptoms.
Collapse
Affiliation(s)
- C. Blithikioti
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L. Nuño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - X. Guell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - S. Pascual-Diaz
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A. Gual
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Μ. Balcells-Olivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - L. Miquel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| |
Collapse
|
15
|
Bao W, Gao Y, Cao L, Li H, Liu J, Liang K, Hu X, Zhang L, Hu X, Gong Q, Huang X. Alterations in large-scale functional networks in adult posttraumatic stress disorder: A systematic review and meta-analysis of resting-state functional connectivity studies. Neurosci Biobehav Rev 2021; 131:1027-1036. [PMID: 34688728 DOI: 10.1016/j.neubiorev.2021.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with dysfunction in large-scale brain functional networks, as revealed by resting-state functional connectivity studies. However, it remains unclear which networks have been most consistently affected and, more importantly, what role disease and trauma may play in the disrupted functional networks. We performed a systematic review of studies exploring network alterations using seed-based functional connectivity analysis, comparing individuals with PTSD to controls in general as well as trauma-exposed or nonexposed controls specifically, and quantitative meta-analysis was conducted when the number of studies was appropriately high. We found that hypoconnectivity within the default-mode network (DMN) as well as between the affective network (AN) and DMN were specifically associated with traumatic experience. Additionally, hyperconnectivity between the AN and somatomotor network (SMN) and between the DMN and SMN were specifically related to PTSD. Our results emphasize the effect of trauma itself on alterations in intrinsic brain networks and highlight disease-associated network alterations, which may help us better understand the neural mechanisms of trauma and PTSD.
Collapse
Affiliation(s)
- Weijie Bao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
17
|
Pang M, Zhong Y, Hao Z, Xu H, Wu Y, Teng C, Li J, Xiao C, Fox PT, Zhang N, Wang C. Resting-state causal connectivity of the bed nucleus of the stria terminalis in panic disorder. Brain Imaging Behav 2021; 15:25-35. [PMID: 31833015 DOI: 10.1007/s11682-019-00229-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Panic disorder (PD) is associated with anticipatory anxiety, a sustained threat response that appears to be related to the bed nucleus of the stria terminalis (BNST). Individuals with panic disorder may demonstrate significant differences in causal connectivity of the BNST in comparison to healthy controls. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant causal connectivity of the BNST in PD patients. 19 PD patients and 18 healthy controls (HC) matched for gender, age and education were included. Granger causality analysis (GCA) utilizing the BNST as a seed region was used to investigate changes in directional connectivity. Relative to healthy controls, PD patients displayed abnormal directional connectivity of the BNST including enhanced causal connectivity between the left parahippocampal gyrus and left BNST, the right insula and the right BNST, the left BNST and the right dorsolateral prefrontal cortex (dlPFC) and right BNST to the left and right dlPFC. Furthermore, PD patients displayed weakened causal connectivity between the right dlPFC and the left BNST, the left dlPFC and the right BNST, the left BNST and the left dorsomedial prefrontal cortex (dmPFC), right insula, right fusiform, and right BNST to the right insula. The results suggest that PD strongly correlates with increased causal connectivity between emotional processing regions and the BNST and enhanced causal connectivity between the BNST and cognitive control regions.
Collapse
Affiliation(s)
- Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ziyu Hao
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Teng
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China. .,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China. .,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China. .,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Jagger-Rickels A, Stumps A, Rothlein D, Park H, Fortenbaugh F, Zuberer A, Fonda JR, Fortier CB, DeGutis J, Milberg W, McGlinchey R, Esterman M. Impaired executive function exacerbates neural markers of posttraumatic stress disorder. Psychol Med 2021; 52:1-14. [PMID: 33879272 PMCID: PMC10202148 DOI: 10.1017/s0033291721000842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND A major obstacle in understanding and treating posttraumatic stress disorder (PTSD) is its clinical and neurobiological heterogeneity. To address this barrier, the field has become increasingly interested in identifying subtypes of PTSD based on dysfunction in neural networks alongside cognitive impairments that may underlie the development and maintenance of symptoms. The current study aimed to determine if subtypes of PTSD, based on normative-based cognitive dysfunction across multiple domains, have unique neural network signatures. METHODS In a sample of 271 veterans (90% male) that completed both neuropsychological testing and resting-state fMRI, two complementary, whole-brain functional connectivity analyses explored the link between brain functioning, PTSD symptoms, and cognition. RESULTS At the network level, PTSD symptom severity was associated with reduced negative coupling between the limbic network (LN) and frontal-parietal control network (FPCN), driven specifically by the dorsolateral prefrontal cortex and amygdala Hubs of Dysfunction. Further, this relationship was uniquely moderated by executive function (EF). Specifically, those with PTSD and impaired EF had the strongest marker of LN-FPCN dysregulation, while those with above-average EF did not exhibit PTSD-related dysregulation of these networks. CONCLUSION These results suggest that poor executive functioning, alongside LN-FPCN dysregulation, may represent a neurocognitive subtype of PTSD.
Collapse
Affiliation(s)
- Audreyana Jagger-Rickels
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
| | - Anna Stumps
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
| | - David Rothlein
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
| | - Hannah Park
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
| | - Francesca Fortenbaugh
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Agnieszka Zuberer
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Jennifer R. Fonda
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| | - Joseph DeGutis
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Education and Clinical Center (GRECC), VABoston Healthcare System, Boston, Massachusetts, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Education and Clinical Center (GRECC), VABoston Healthcare System, Boston, Massachusetts, USA
| | - Michael Esterman
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
19
|
Rabellino D, Frewen PA, McKinnon MC, Lanius RA. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Front Neurosci 2020; 14:586605. [PMID: 33362457 PMCID: PMC7758430 DOI: 10.3389/fnins.2020.586605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peripersonal space (PPS) is defined as the space surrounding the body where we can reach or be reached by external entities, including objects or other individuals. PPS is an essential component of bodily self-consciousness that allows us to perform actions in the world (e.g., grasping and manipulating objects) and protect our body while interacting with the surrounding environment. Multisensory processing plays a critical role in PPS representation, facilitating not only to situate ourselves in space but also assisting in the localization of external entities at a close distance from our bodies. Such abilities appear especially crucial when an external entity (a sound, an object, or a person) is approaching us, thereby allowing the assessment of the salience of a potential incoming threat. Accordingly, PPS represents a key aspect of social cognitive processes operational when we interact with other people (for example, in a dynamic dyad). The underpinnings of PPS have been investigated largely in human models and in animals and include the operation of dedicated multimodal neurons (neurons that respond specifically to co-occurring stimuli from different perceptive modalities, e.g., auditory and tactile stimuli) within brain regions involved in sensorimotor processing (ventral intraparietal sulcus, ventral premotor cortex), interoception (insula), and visual recognition (lateral occipital cortex). Although the defensive role of the PPS has been observed in psychopathology (e.g., in phobias) the relation between PPS and altered states of bodily consciousness remains largely unexplored. Specifically, PPS representation in trauma-related disorders, where altered states of consciousness can involve dissociation from the body and its surroundings, have not been investigated. Accordingly, we review here: (1) the behavioral and neurobiological literature surrounding trauma-related disorders and its relevance to PPS; and (2) outline future research directions aimed at examining altered states of bodily self-consciousness in trauma related-disorders.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Paul A. Frewen
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph’s Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
20
|
Roydeva MI, Reinders AATS. Biomarkers of Pathological Dissociation: A Systematic Review. Neurosci Biobehav Rev 2020; 123:120-202. [PMID: 33271160 DOI: 10.1016/j.neubiorev.2020.11.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/20/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Pathological dissociation is a severe, debilitating and transdiagnostic psychiatric symptom. This review identifies biomarkers of pathological dissociation in a transdiagnostic manner to recommend the most promising research and treatment pathways in support of the precision medicine framework. A total of 205 unique studies that met inclusion criteria were included. Studies were divided into four biomarker categories, namely neuroimaging, psychobiological, psychophysiological and genetic biomarkers. The dorsomedial and dorsolateral prefrontal cortex, bilateral superior frontal regions, (anterior) cingulate, posterior association areas and basal ganglia are identified as neurofunctional biomarkers of pathological dissociation and decreased hippocampal, basal ganglia and thalamic volumes as neurostructural biomarkers. Increased oxytocin and prolactin and decreased tumor necrosis factor alpha (TNF-α) are identified as psychobiological markers. Psychophysiological biomarkers, including blood pressure, heart rate and skin conductance, were inconclusive. For the genetic biomarker category studies related to dissociation were limited and no clear directionality of effect was found to warrant identification of a genetic biomarker. Recommendations for future research pathways and possible clinical applicability are provided.
Collapse
Affiliation(s)
- Monika I Roydeva
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Antje A T S Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
21
|
Hofmann D, Straube T. Effective connectivity between bed nucleus of the stria terminalis and amygdala: Reproducibility and relation to anxiety. Hum Brain Mapp 2020; 42:824-836. [PMID: 33155747 PMCID: PMC7814768 DOI: 10.1002/hbm.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
In a previous study, we investigated the resting‐state fMRI effective connectivity (EC) between the bed nucleus of the stria terminalis (BNST) and the laterobasal (LB), centromedial (CM), and superficial (SF) amygdala. We found strong negative EC from all amygdala nuclei to the BNST, while the BNST showed positive EC to the amygdala. However, the validity of these findings remains unclear, since a reproduction in different samples has not been done. Moreover, the association of EC with measures of anxiety offers deeper insight, due to the known role of the BNST and amygdala in fear and anxiety. Here, we aimed to reproduce our previous results in three additional samples. We used spectral Dynamic Causal Modeling to estimate the EC between the BNST, the LB, CM, and SF, and its association with two measures of self‐reported anxiety. Our results revealed consistency over samples with regard to the negative EC from the amygdala nuclei to the BNST, while the positive EC from BNST to the amygdala was also found, but weaker and more heterogenic. Moreover, we found the BNST‐BNST EC showing a positive and the CM‐BNST EC, showing a negative association with anxiety. Our study suggests a reproducible pattern of negative EC from the amygdala to the BNST along with weaker positive EC from the BNST to the amygdala. Moreover, less BNST self‐inhibition and more inhibitory influence from the CM to the BNST seems to be a pattern of EC that is related to higher anxiety.
Collapse
Affiliation(s)
- David Hofmann
- University Hospital Muenster, Institute of Medical Psychology and Systems Neuroscience, Muenster, Germany
| | - Thomas Straube
- University Hospital Muenster, Institute of Medical Psychology and Systems Neuroscience, Muenster, Germany
| |
Collapse
|
22
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
23
|
Awasthi S, Pan H, LeDoux JE, Cloitre M, Altemus M, McEwen B, Silbersweig D, Stern E. The bed nucleus of the stria terminalis and functionally linked neurocircuitry modulate emotion processing and HPA axis dysfunction in posttraumatic stress disorder. NEUROIMAGE-CLINICAL 2020; 28:102442. [PMID: 33070099 PMCID: PMC7569227 DOI: 10.1016/j.nicl.2020.102442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Task-based functional cooccurrence (tbFC) elucidates role of BNST in human PTSD neurocircuitry. The BNST is hyperactive during the processing of trauma-related words in PTSD. BNST activity correlates to PTSD symptom severity and reduced diurnal cortisol index. The BNST has positive tbFC with negative emotion- and stress-related neurocircuitry. The BNST has negative tbFC with executive function and stress regulation neurocircuitry.
Background The bed nucleus of the stria terminalis (BNST) plays an important role in rodent posttraumatic stress disorder (PTSD), but evidence to support its relevance to human PTSD is limited. We sought to understand the role of the BNST in human PTSD via fMRI, behavioral, and physiological measurements. Methods 29 patients with PTSD (childhood sexual abuse) and 23 healthy controls (HC) underwent BOLD imaging with an emotional word paradigm. Symptom severity was assessed using the Clinician-Administered PTSD Scale and HPA-axis dysfunction was assessed by measuring the diurnal cortisol amplitude index (DCAI). A data-driven multivariate analysis was used to determine BNST task-based functional co-occurrence (tbFC) across individuals. Results In the trauma-versus-neutral word contrast, patients showed increased activation compared to HC in the BNST, medial prefrontal cortex (mPFC), posterior cingulate gyrus (PCG), caudate heads, and midbrain, and decreased activation in dorsolateral prefrontal cortex (DLPFC). Symptom severity positively correlated with activity in the BNST, caudate head, amygdala, hippocampus, dorsal anterior cingulate gyrus (dACG), and PCG, and negatively with activity in the medial orbiotofrontal cortex (mOFC) and DLPFC. Patients and HC showed marked differences in the relationship between the DCAI and BOLD activity in the BNST, septal nuclei, dACG, and PCG. Patients showed stronger tbFC between the BNST and closely linked limbic and subcortical regions, and a loss of negative tbFC between the BNST and DLPFC. Conclusions Based upon novel data, we present a new model of dysexecutive emotion processing and HPA-axis dysfunction in human PTSD that incorporates the role of the BNST and functionally linked neurocircuitry.
Collapse
Affiliation(s)
- Samir Awasthi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong Pan
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph E LeDoux
- Center for Neural Science, New York University, New York, NY, USA
| | - Marylene Cloitre
- National Center for PTSD, Veteran Affairs Palo Alto Health Care System, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Margaret Altemus
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - David Silbersweig
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Emily Stern
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Lotfinia S, Soorgi Z, Mertens Y, Daniels J. Structural and functional brain alterations in psychiatric patients with dissociative experiences: A systematic review of magnetic resonance imaging studies. J Psychiatr Res 2020; 128:5-15. [PMID: 32480060 DOI: 10.1016/j.jpsychires.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION There is currently no general agreement on how to best conceptualize dissociative symptoms and whether they share similar neural underpinnings across dissociative disorders. Neuroimaging data could help elucidate these questions. OBJECTIVES The objective of this review is to summarize empirical evidence for neural aberrations observed in patients suffering from dissociative symptoms. METHODS A systematic literature review was conducted including patient cohorts diagnosed with primary dissociative disorders, post-traumatic stress disorder (PTSD), or borderline personality disorder. RESULTS Results from MRI studies reporting structural (gray matter and white matter) and functional (during resting-state and task-related activation) brain aberrations were extracted and integrated. In total, 33 articles were included of which 10 pertained to voxel-based morphology, 2 to diffusion tensor imaging, 10 to resting-state fMRI, and 11 to task-related fMRI. Overall findings indicated aberrations spread across diverse brain regions, especially in the temporal and frontal cortices. Patients with dissociative identity disorder and with dissociative PTSD showed more overlap in brain activation than each group showed with depersonalization/derealization disorder. CONCLUSION In conjunction, the results indicate that dissociative processing cannot be localized to a few distinctive brain regions but rather corresponds to differential neural signatures depending on the symptom constellation.
Collapse
Affiliation(s)
- Shahab Lotfinia
- Department of Clinical Psychology, Zahedan University of Medical Science, Zahedan, Iran
| | - Zohre Soorgi
- Department of Psychiatry, Zahedan University of Medical Science, Zahedan, Iran
| | - Yoki Mertens
- Department of Clinical Psychology, University of Groningen, the Netherlands
| | - Judith Daniels
- Department of Clinical Psychology, University of Groningen, the Netherlands.
| |
Collapse
|
25
|
Fitzgerald JM, Belleau EL, Miskovich TA, Pedersen WS, Larson CL. Multi-voxel pattern analysis of amygdala functional connectivity at rest predicts variability in posttraumatic stress severity. Brain Behav 2020; 10:e01707. [PMID: 32525273 PMCID: PMC7428479 DOI: 10.1002/brb3.1707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Resting state functional magnetic resonance imaging (rsfMRI) studies demonstrate that individuals with posttraumatic stress disorder (PTSD) exhibit atypical functional connectivity (FC) between the amygdala, involved in the generation of emotion, and regions responsible for emotional appraisal (e.g., insula, orbitofrontal cortex [OFC]) and regulation (prefrontal cortex [PFC], anterior cingulate cortex). Consequently, atypical amygdala FC within an emotional processing and regulation network may be a defining feature of PTSD, although altered FC does not seem constrained to one brain region. Instead, altered amygdala FC involves a large, distributed brain network in those with PTSD. The present study used a machine-learning data-driven approach, multi-voxel pattern analysis (MVPA), to predict PTSD severity based on whole-brain patterns of amygdala FC. METHODS Trauma-exposed adults (N = 90) completed the PTSD Checklist-Civilian Version to assess symptoms and a 5-min rsfMRI. Whole-brain FC values to bilateral amygdala were extracted and used in a relevance vector regression analysis with a leave-one-out approach for cross-validation with permutation testing (1,000) to obtain significance values. RESULTS Results demonstrated that amygdala FC predicted PCL-C scores with statistically significant accuracy (r = .46, p = .001; mean sum of squares = 130.46, p = .001; R2 = 0.21, p = .001). Prediction was based on whole-brain amygdala FC, although regions that informed prediction (top 10%) included the OFC, amygdala, and dorsolateral PFC. CONCLUSION Findings demonstrate the utility of MVPA based on amygdala FC to predict individual severity of PTSD symptoms and that amygdala FC within a fear acquisition and regulation network contributed to accurate prediction.
Collapse
Affiliation(s)
| | - Emily L Belleau
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Walker S Pedersen
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
26
|
Blades R, Jordan S, Becerra S, Eusebio B, Heatwole M, Iovine J, Mahdavi K, Mamoun M, Nicodemus N, Packham H, Spivak N, Kuhn T. Treating dissociative post-traumatic stress disorder presenting as a functional movement disorder with transcranial magnetic stimulation targeting the cingulate gyrus. Neurol Sci 2020; 41:2275-2280. [DOI: 10.1007/s10072-020-04433-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
|
27
|
Nicholson AA, Harricharan S, Densmore M, Neufeld RWJ, Ros T, McKinnon MC, Frewen PA, Théberge J, Jetly R, Pedlar D, Lanius RA. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. Neuroimage Clin 2020; 27:102262. [PMID: 32446241 PMCID: PMC7240193 DOI: 10.1016/j.nicl.2020.102262] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/26/2023]
Abstract
Intrinsic connectivity networks (ICNs), including the default mode network (DMN), the central executive network (CEN), and the salience network (SN) have been shown to be aberrant in patients with posttraumatic stress disorder (PTSD). The purpose of the current study was to a) compare ICN functional connectivity between PTSD, dissociative subtype PTSD (PTSD+DS) and healthy individuals; and b) to examine the use of multivariate machine learning algorithms in classifying PTSD, PTSD+DS, and healthy individuals based on ICN functional activation. Our neuroimaging dataset consisted of resting-state fMRI scans from 186 participants [PTSD (n = 81); PTSD + DS (n = 49); and healthy controls (n = 56)]. We performed group-level independent component analyses to evaluate functional connectivity differences within each ICN. Multiclass Gaussian Process Classification algorithms within PRoNTo software were then used to predict the diagnosis of PTSD, PTSD+DS, and healthy individuals based on ICN functional activation. When comparing the functional connectivity of ICNs between PTSD, PTSD+DS and healthy controls, we found differential patterns of connectivity to brain regions involved in emotion regulation, in addition to limbic structures and areas involved in self-referential processing, interoception, bodily self-consciousness, and depersonalization/derealization. Machine learning algorithms were able to predict with high accuracy the classification of PTSD, PTSD+DS, and healthy individuals based on ICN functional activation. Our results suggest that alterations within intrinsic connectivity networks may underlie unique psychopathology and symptom presentation among PTSD subtypes. Furthermore, the current findings substantiate the use of machine learning algorithms for classifying subtypes of PTSD illness based on ICNs.
Collapse
Affiliation(s)
- Andrew A Nicholson
- Department of Cognition, Emotion and Methods in Psychology, University of Vienna, Austria; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Sherain Harricharan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada; Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Richard W J Neufeld
- Department of Psychiatry, Western University, London, ON, Canada; Department of Psychology, Western University, London, ON, Canada; Department of Medical Imaging, Western University, London, ON, Canada
| | - Tomas Ros
- Department of Neuroscience, University of Geneva, Switzerland
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, ON, Canada; Homewood Research Institute, Guelph, ON, Canada
| | - Paul A Frewen
- Department of Psychiatry, Western University, London, ON, Canada; Department of Neuroscience, Western University, London, ON, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada; Department of Medical Imaging, Western University, London, ON, Canada; Imaging Division, Lawson Health Research Institute, London, ON, Canada; Department of Diagnostic Imaging, St. Joseph's Health Care, London, ON, Canada
| | - Rakesh Jetly
- Canadian Forces, Health Services, Ottawa, Ontario, Canada
| | - David Pedlar
- Canadian Institute for Military and Veteran Health Research (CIMVHR), Canada
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada; Department of Neuroscience, Western University, London, ON, Canada; Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
28
|
Flook EA, Feola B, Avery SN, Winder DG, Woodward ND, Heckers S, Blackford JU. BNST-insula structural connectivity in humans. Neuroimage 2020; 210:116555. [PMID: 31954845 PMCID: PMC7089680 DOI: 10.1016/j.neuroimage.2020.116555] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/10/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is emerging as a critical region in multiple psychiatric disorders including anxiety, PTSD, and alcohol and substance use disorders. In conjunction with growing knowledge of the BNST, an increasing number of studies examine connections of the BNST and how those connections impact BNST function. The importance of this BNST network is highlighted by rodent studies demonstrating that projections from other brain regions regulate BNST activity and influence BNST-related behavior. While many animal and human studies replicate the components of the BNST network, to date, structural connections between the BNST and insula have only been described in rodents and have yet to be shown in humans. In this study, we used probabilistic tractography to examine BNST-insula structural connectivity in humans. We used two methods of dividing the insula: 1) anterior and posterior insula, to be consistent with much of the existing insula literature; and 2) eight subregions that represent informative cytoarchitectural divisions. We found evidence of a BNST-insula structural connection in humans, with the strongest BNST connectivity localized to the anteroventral insula, a region of agranular cortex. BNST-insula connectivity differed by hemisphere and was moderated by sex. These results translate rodent findings to humans and lay an important foundation for future studies examining the role of BNST-insula pathways in psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danny G Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Research and Development, Department of Veterans Affairs Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Maron-Katz A, Zhang Y, Narayan M, Wu W, Toll RT, Naparstek S, De Los Angeles C, Longwell P, Shpigel E, Newman J, Abu-Amara D, Marmar C, Etkin A. Individual Patterns of Abnormality in Resting-State Functional Connectivity Reveal Two Data-Driven PTSD Subgroups. Am J Psychiatry 2020; 177:244-253. [PMID: 31838870 DOI: 10.1176/appi.ajp.2019.19010060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A major challenge in understanding and treating posttraumatic stress disorder (PTSD) is its clinical heterogeneity, which is likely determined by various neurobiological perturbations. This heterogeneity likely also reduces the effectiveness of standard group comparison approaches. The authors tested whether a statistical approach aimed at identifying individual-level neuroimaging abnormalities that are more prevalent in case subjects than in control subjects could reveal new clinically meaningful insights into the heterogeneity of PTSD. METHODS Resting-state functional MRI data were recorded from 87 unmedicated PTSD case subjects and 105 war zone-exposed healthy control subjects. Abnormalities were modeled using tolerance intervals, which referenced the distribution of healthy control subjects as the "normative population." Out-of-norm functional connectivity values were examined for enrichment in cases and then used in a clustering analysis to identify biologically defined PTSD subgroups based on their abnormality profiles. RESULTS The authors identified two subgroups among PTSD cases, each with a distinct pattern of functional connectivity abnormalities with respect to healthy control subjects. Subgroups differed clinically on levels of reexperiencing symptoms and improved case-control discriminability and were detectable using independently recorded resting-state EEG data. CONCLUSIONS The results provide proof of concept for the utility of abnormality-based approaches for studying heterogeneity within clinical populations. Such approaches, applied not only to neuroimaging data, may allow detection of subpopulations with distinct biological signatures so that further clinical and mechanistic investigations can be focused on more biologically homogeneous subgroups.
Collapse
Affiliation(s)
- Adi Maron-Katz
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Yu Zhang
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Manjari Narayan
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Wei Wu
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Russell T Toll
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Sharon Naparstek
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Carlo De Los Angeles
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Parker Longwell
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Emmanuel Shpigel
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Jennifer Newman
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Duna Abu-Amara
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Charles Marmar
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| | - Amit Etkin
- Department of Bioengineering (Toll) and Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin), Stanford University, Stanford, Calif.; VA Palo Alto Health Care System and Sierra Pacific Mental Illness Research, Education, and Clinical Center, Palo Alto, Calif. (Maron-Katz, Zhang, Narayan, Wu, Toll, Naparstek, De Los Angeles, Longwell, Shpigel, Etkin); School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China (Wu); Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury and Department of Psychiatry (Newman, Abu-Amara, Marmar), New York University Langone School of Medicine, New York
| |
Collapse
|
30
|
Nicholson AA, McKinnon MC, Jetly R, Lanius RA. Uncovering the heterogeneity of posttraumatic stress disorder: Towards a personalized medicine approach for military members and Veterans. JOURNAL OF MILITARY, VETERAN AND FAMILY HEALTH 2020. [DOI: 10.3138/jmvfh.2019-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Recently, there has been substantial interest in exploring the heterogeneity of posttraumatic stress disorder (PTSD) on a neurobiological level, as individuals with PTSD, including military members and Veterans, vary in their presentation of symptoms. Methods: Critically, a dissociative subtype of PTSD (PTSD+DS) has been defined, where a large body of evidence suggests that the unique presentation of symptoms among PTSD+DS patients is associated with aberrant neurobiological underpinnings. Results: PTSD+DS is often characterized by emotion overmodulation, with increased top-down activation from emotion regulation areas, which is associated with emotional detachment, depersonalization, and derealization. This is in stark contrast to the symptoms commonly observed in individuals with PTSD, who exhibit emotion undermodulation, which involves decreased top-down regulation of hyperactive emotion generation areas and is associated with vivid re-experiencing of trauma memories and hyperarousal. Discussion: This article examines a clinical case example that clearly illustrates this heterogeneous presentation of PTSD symptomatology and psychopathology. It discusses the implications this evidence base holds for a neurobiologically-informed, personalized medicine approach to treatment for military members and Veterans.
Collapse
Affiliation(s)
- Andrew A. Nicholson
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton
- Homewood Research Institute, Guelph, Ontario
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
| | - Margaret C. McKinnon
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton
- Homewood Research Institute, Guelph, Ontario
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
| | - Rakesh Jetly
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton
- Homewood Research Institute, Guelph, Ontario
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
| | - Ruth A. Lanius
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton
- Homewood Research Institute, Guelph, Ontario
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
| |
Collapse
|
31
|
Jenks SK, Zhang S, Li CSR, Hu S. Threat bias and resting state functional connectivity of the amygdala and bed nucleus stria terminalis. J Psychiatr Res 2020; 122:54-63. [PMID: 31927266 PMCID: PMC7010552 DOI: 10.1016/j.jpsychires.2019.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous research has distinguished the activations of the amygdala and bed nucleus of stria terminalis (BNST) during threat-related contingencies. However, how intrinsic connectivities of the amygdala and BNST relate to threat bias remains unclear. Here, we investigated how resting state functional connectivity (rsFC) of the amygdala and BNST in healthy controls (HC) and patients with anxiety-related disorders (PAD) associate with threat bias in a dot-probe task. METHODS Imaging and behavioral data of 30 PAD and 83 HC were obtained from the Nathan Kline Institute - Rockland sample and processed according to published routines. All imaging results were evaluated at voxel p < 0.001 and cluster p < 0.05, FWE corrected in SPM. RESULTS PAD and HC did not show differences in whole brain rsFC with either the amygdala or BNST. In linear regressions threat bias was positively correlated with amygdala-thalamus/anterior cingulate cortex (ACC) rsFC in HC but not PAD, and with BNST-caudate rsFC in PAD but not HC. Slope tests confirmed group differences in the correlations between threat bias and amygdala-thalamus/ACC as well as BNST-caudate rsFC. LIMITATIONS As only half of the patients included were diagnosed with comorbid anxiety, the current findings need to be considered with the clinical heterogeneity and require replication in populations specifically with anxiety disorders. CONCLUSIONS Together, these results suggest amygdala and BNST connectivities as new neural markers of anxiety disorders. Whereas amygdala-thalamus/ACC rsFC support adaptive regulation of threat response in the HC, BNST-caudate rsFC may reflect maladaptive neural processes that are dominated by anticipatory anxiety.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY, 13126, USA.
| |
Collapse
|
32
|
Dzafic I, Oestreich L, Martin AK, Mowry B, Burianová H. Stria terminalis, amygdala, and temporoparietal junction networks facilitate efficient emotion processing under expectations. Hum Brain Mapp 2019; 40:5382-5396. [PMID: 31460690 PMCID: PMC6864902 DOI: 10.1002/hbm.24779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/11/2019] [Accepted: 08/18/2019] [Indexed: 01/17/2023] Open
Abstract
Rapid emotion processing is an ecologically essential ability for survival in social environments in which threatening or advantageous encounters dynamically and rapidly occur. Efficient emotion recognition is subserved by different processes, depending on one's expectations; however, the underlying functional and structural circuitry is still poorly understood. In this study, we delineate brain networks that subserve fast recognition of emotion in situations either congruent or incongruent with prior expectations. For this purpose, we used multimodal neuroimaging and investigated performance on a dynamic emotion perception task. We show that the extended amygdala structural and functional networks relate to speed of emotion processing under threatening conditions. Specifically, increased microstructure of the right stria terminalis, an amygdala white-matter pathway, was related to faster detection of emotion during actual presentation of anger or after cueing anger. Moreover, functional connectivity of right amygdala with limbic regions was related to faster detection of anger congruent with cue, suggesting selective attention to threat. On the contrary, we found that faster detection of anger incongruent with cue engaged the ventral attention "reorienting" network. Faster detection of happiness, in either expectancy context, engaged a widespread frontotemporal-subcortical functional network. These findings shed light on the functional and structural circuitries that facilitate speed of emotion recognition and, for the first time, elucidate a role for the stria terminalis in human emotion processing.
Collapse
Affiliation(s)
- Ilvana Dzafic
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionAustralia
| | - Lena Oestreich
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical ResearchBrisbaneAustralia
| | - Andrew K. Martin
- University of Queensland Centre for Clinical ResearchBrisbaneAustralia
- Department of PsychologyDurham UniversityDurhamUK
| | - Bryan Mowry
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- Queensland Centre for Mental Health ResearchBrisbaneAustralia
| | - Hana Burianová
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Department of PsychologySwansea UniversitySwanseaUnited Kingdom
| |
Collapse
|
33
|
Pham X, Wright DK, Atapour N, Chan JMH, Watkins KJ, Worthy KH, Rosa M, Reichelt A, Reser DH. Internal Subdivisions of the Marmoset Claustrum Complex: Identification by Myeloarchitectural Features and High Field Strength Imaging. Front Neuroanat 2019; 13:96. [PMID: 31827427 PMCID: PMC6890826 DOI: 10.3389/fnana.2019.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
There has been a surge of interest in the structure and function of the mammalian claustrum in recent years. However, most anatomical and physiological studies treat the claustrum as a relatively homogenous structure. Relatively little attention has been directed toward possible compartmentalization of the claustrum complex into anatomical subdivisions, and how this compartmentalization is reflected in claustrum connections with other brain structures. In this study, we examined the cyto- and myelo-architecture of the claustrum of the common marmoset (Callithrix jacchus), to determine whether the claustrum contains internal anatomical structures or compartments, which could facilitate studies focused on understanding its role in brain function. NeuN, Nissl, calbindin, parvalbumin, and myelin-stained sections from eight adult marmosets were studied using light microscopy and serial reconstruction to identify potential internal compartments. Ultra high resolution (9.4T) post-mortem magnetic resonance imaging was employed to identify tractographic differences between identified claustrum subcompartments by diffusion-weighted tractography. Our results indicate that the classically defined marmoset claustrum includes at least two major subdivisions, which correspond to the dorsal endopiriform and insular claustrum nuclei, as described in other species, and that the dorsal endopiriform nucleus (DEnD) contains architecturally distinct compartments. Furthermore, the dorsal subdivision of the DEnD is tractographically distinguishable from the insular claustrum with respect to cortical connections.
Collapse
Affiliation(s)
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Nafiseh Atapour
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Jonathan M-H Chan
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Kirsty J Watkins
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katrina H Worthy
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello Rosa
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Amy Reichelt
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Robarts Research Institute, Western University, London, ON, Canada
| | - David H Reser
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Graduate Entry Medicine Program, Monash Rural Health, Churchill, VIC, Australia
| |
Collapse
|
34
|
Harricharan S, Nicholson AA, Thome J, Densmore M, McKinnon MC, Théberge J, Frewen PA, Neufeld RWJ, Lanius RA. PTSD and its dissociative subtype through the lens of the insula: Anterior and posterior insula resting‐state functional connectivity and its predictive validity using machine learning. Psychophysiology 2019; 57:e13472. [DOI: 10.1111/psyp.13472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sherain Harricharan
- Department of Neuroscience Western University London Ontario Canada
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| | - Andrew A. Nicholson
- Department of Psychological Research and Research Methods University of Vienna Vienna Austria
| | - Janine Thome
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| | - Maria Densmore
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| | - Margaret C. McKinnon
- Mood Disorders Program St. Joseph's Healthcare Hamilton Ontario Canada
- Department of Psychiatry and Behavioural Neurosciences McMaster University Hamilton Ontario Canada
- Homewood Research Institute Guelph Ontario Canada
| | - Jean Théberge
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
- Department of Medical Imaging Western University London Ontario Canada
- Department of Medical Biophysics Western University London Ontario Canada
- Department of Diagnostic Imaging St. Joseph's Healthcare London Ontario Canada
| | - Paul A. Frewen
- Department of Neuroscience Western University London Ontario Canada
- Department of Psychiatry Western University London Ontario Canada
- Department of Psychology Western University London Ontario Canada
| | - Richard W. J. Neufeld
- Department of Psychiatry Western University London Ontario Canada
- Department of Psychology Western University London Ontario Canada
| | - Ruth A. Lanius
- Department of Neuroscience Western University London Ontario Canada
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| |
Collapse
|
35
|
Nicholson AA, Densmore M, McKinnon MC, Neufeld RWJ, Frewen PA, Théberge J, Jetly R, Richardson JD, Lanius RA. Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach. Psychol Med 2019; 49:2049-2059. [PMID: 30306886 DOI: 10.1017/s0033291718002866] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The field of psychiatry would benefit significantly from developing objective biomarkers that could facilitate the early identification of heterogeneous subtypes of illness. Critically, although machine learning pattern recognition methods have been applied recently to predict many psychiatric disorders, these techniques have not been utilized to predict subtypes of posttraumatic stress disorder (PTSD), including the dissociative subtype of PTSD (PTSD + DS). METHODS Using Multiclass Gaussian Process Classification within PRoNTo, we examined the classification accuracy of: (i) the mean amplitude of low-frequency fluctuations (mALFF; reflecting spontaneous neural activity during rest); and (ii) seed-based amygdala complex functional connectivity within 181 participants [PTSD (n = 81); PTSD + DS (n = 49); and age-matched healthy trauma-unexposed controls (n = 51)]. We also computed mass-univariate analyses in order to observe regional group differences [false-discovery-rate (FDR)-cluster corrected p < 0.05, k = 20]. RESULTS We found that extracted features could predict accurately the classification of PTSD, PTSD + DS, and healthy controls, using both resting-state mALFF (91.63% balanced accuracy, p < 0.001) and amygdala complex connectivity maps (85.00% balanced accuracy, p < 0.001). These results were replicated using independent machine learning algorithms/cross-validation procedures. Moreover, areas weighted as being most important for group classification also displayed significant group differences at the univariate level. Here, whereas the PTSD + DS group displayed increased activation within emotion regulation regions, the PTSD group showed increased activation within the amygdala, globus pallidus, and motor/somatosensory regions. CONCLUSION The current study has significant implications for advancing machine learning applications within the field of psychiatry, as well as for developing objective biomarkers indicative of diagnostic heterogeneity.
Collapse
Affiliation(s)
- Andrew A Nicholson
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
- Department of Mood Disorders Program, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Richard W J Neufeld
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Paul A Frewen
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
- Department of Medial Biophysics, Western University, London, ON, Canada
- Department of Diagnostic Imaging, St. Joseph's Healthcare, London, ON, Canada
| | - Rakesh Jetly
- Canadian Forces, Health Services, Ottawa, Ontario, Canada
| | - J Donald Richardson
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
- Department of Mood Disorders Program, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Ruth A Lanius
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
36
|
Elman I, Borsook D. The failing cascade: Comorbid post traumatic stress- and opioid use disorders. Neurosci Biobehav Rev 2019; 103:374-383. [DOI: 10.1016/j.neubiorev.2019.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
|
37
|
Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol 2019; 54:100774. [PMID: 31348932 DOI: 10.1016/j.yfrne.2019.100774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/22/2022]
Abstract
Stress-related psychiatric conditions are one of the main causes of disability in developed countries. They account for a large portion of resource investment in stress-related disorders, become chronic, and remain difficult to treat. Research on the neurobehavioral effects of stress reveals how changes in certain brain areas, mediated by a number of neurochemical messengers, markedly alter behavior. The cerebellum is connected with stress-related brain areas and expresses the machinery required to process stress-related neurochemical mediators. Surprisingly, it is not regarded as a substrate of stress-related behavioral alterations, despite numerous studies that show cerebellar responsivity to stress. Therefore, this review compiles those studies and proposes a hypothesis for cerebellar function in stressful conditions, relating it to stress-induced psychopathologies. It aims to provide a clearer picture of stress-related neural circuitry and stimulate cerebellum-stress research. Consequently, it might contribute to the development of improved treatment strategies for stress-related disorders.
Collapse
|
38
|
Martin WJ, Wallace TL. The Nociceptive Opioid Peptide Receptor System and Posttraumatic Stress Disorder: An Enigma Wrapped Around a Conundrum. Biol Psychiatry 2019; 85:986-988. [PMID: 31171112 DOI: 10.1016/j.biopsych.2019.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022]
|
39
|
Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 2019; 8:46525. [PMID: 30946011 PMCID: PMC6456295 DOI: 10.7554/elife.46525] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Reed L Ressler
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Gillian M Acca
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Olivia W Miles
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| |
Collapse
|
40
|
Thome J, Densmore M, Koppe G, Terpou B, Théberge J, McKinnon MC, Lanius RA. Back to the Basics: Resting State Functional Connectivity of the Reticular Activation System in PTSD and its Dissociative Subtype. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019873663. [PMID: 32440600 PMCID: PMC7219926 DOI: 10.1177/2470547019873663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Brainstem and midbrain neuronal circuits that control innate, reflexive responses and arousal are increasingly recognized as central to the neurobiological framework of post-traumatic stress disorder (PTSD). The reticular activation system represents a fundamental neuronal circuit that plays a critical role not only in generating arousal but also in coordinating innate, reflexive responding. Accordingly, the present investigation aims to characterize the resting state functional connectivity of the reticular activation system in PTSD and its dissociative subtype. METHODS We investigated patterns of resting state functional connectivity of a central node of the reticular activation system, namely, the pedunculopontine nuclei, among individuals with PTSD (n = 77), its dissociative subtype (PTSD+DS; n = 48), and healthy controls (n = 51). RESULTS Participants with PTSD and PTSD+DS were characterized by within-group pedunculopontine nuclei resting state functional connectivity to brain regions involved in innate threat processing and arousal modulation (i.e., midbrain, amygdala, ventromedial prefrontal cortex). Critically, this pattern was most pronounced in individuals with PTSD+DS, as compared to both control and PTSD groups. As compared to participants with PTSD and controls, individuals with PTSD+DS showed enhanced pedunculopontine nuclei resting state functional connectivity to the amygdala and the parahippocampal gyrus as well as to the anterior cingulate and the ventromedial prefrontal cortex. No group differences emerged between PTSD and control groups. In individuals with PTSD+DS, state derealization/depersonalization was associated with reduced resting state functional connectivity between the left pedunculopontine nuclei and the anterior nucleus of the thalamus. Altered connectivity in these regions may restrict the thalamo-cortical transmission necessary to integrate internal and external signals at a cortical level and underlie, in part, experiences of depersonalization and derealization. CONCLUSIONS The present findings extend the current neurobiological model of PTSD and provide emerging evidence for the need to incorporate brainstem structures, including the reticular activation system, into current conceptualizations of PTSD and its dissociative subtype.
Collapse
Affiliation(s)
- Janine Thome
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Department of Theoretical Neuroscience,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Densmore
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
| | - Georgia Koppe
- Department of Theoretical Neuroscience,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Braeden Terpou
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Department of Neuroscience, Western
University, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
- Department of Medical Biophysics,
Western University, London, Ontario, Canada
| | - Margaret C. McKinnon
- Homewood Research Institute, Guelph,
Ontario, Canada
- Mood Disorder Programs, St. Joseph's
Healthcare, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioral
Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
- Department of Neuroscience, Western
University, London, Ontario, Canada
- Homewood Research Institute, Guelph,
Ontario, Canada
| |
Collapse
|
41
|
A Review of the Neurobiological Basis of Trauma-Related Dissociation and Its Relation to Cannabinoid- and Opioid-Mediated Stress Response: a Transdiagnostic, Translational Approach. Curr Psychiatry Rep 2018; 20:118. [PMID: 30402683 DOI: 10.1007/s11920-018-0983-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dissociative experiences have been associated with increased disease severity, chronicity, and, in some cases, reduced treatment response across trauma-related and other psychiatric disorders. A better understanding of the neurobiological mechanisms through which dissociative experiences occur may assist in identifying novel pharmacological and non-pharmacological treatment approaches. Here, we review emerging work on the dissociative subtype of posttraumatic stress disorder (PTSD), and other trauma-related disorders providing evidence for two related overarching neurobiological models of dissociation, the defense cascade model of dissociation and Mobb's threat detection model. In particular, we review neuroimaging studies highlighting alterations in functional connectivity of key brain regions associated with these models, including connectivity between the prefrontal cortex, the amygdala and its complexes, the insula, and the periaqueductal gray. Work implicating the kappa-opioid and endocannabinoid systems in trauma-related dissociative experiences is also reviewed. Finally, we hypothesize mechanisms by which pharmacological modulation of these neurochemical systems may serve as promising transdiagnostic treatment modalities for individuals experiencing clinically significant levels of dissociation. Specifically, whereas kappa-opioid receptor antagonists may serve as a pharmacological vehicle for the selective targeting of dissociative symptoms and associated emotion overmodulation in the dissociative subtype of posttraumatic stress disorder and transdiagnostically, modulation of the endocannabinoid system may reduce symptoms associated with emotional undermodulation of the fight or flight components of the defense cascade model.
Collapse
|
42
|
Rabellino D, Densmore M, Théberge J, McKinnon MC, Lanius RA. The cerebellum after trauma: Resting-state functional connectivity of the cerebellum in posttraumatic stress disorder and its dissociative subtype. Hum Brain Mapp 2018; 39:3354-3374. [PMID: 29667267 PMCID: PMC6866303 DOI: 10.1002/hbm.24081] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
The cerebellum plays a key role not only in motor function but also in affect and cognition. Although several psychopathological disorders have been associated with overall cerebellar dysfunction, it remains unclear whether different regions of the cerebellum contribute uniquely to psychopathology. Accordingly, we compared seed-based resting-state functional connectivity of the anterior cerebellum (lobule IV-V), of the posterior cerebellum (Crus I), and of the anterior vermis across posttraumatic stress disorder (PTSD; n = 65), its dissociative subtype (PTSD + DS; n = 37), and non-trauma-exposed healthy controls (HC; n = 47). Here, we observed decreased functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self-consciousness (temporo-parietal junction, postcentral gyrus, and superior parietal lobule) in PTSD + DS as compared to PTSD and HC. Moreover, the PTSD + DS group showed increased functional connectivity of the posterior cerebellum with cortical areas related to emotion regulation (ventromedial prefrontal and orbito-frontal cortex, subgenual anterior cingulum) as compared to PTSD. By contrast, PTSD showed increased functional connectivity of the anterior cerebellum with cortical areas associated with visual processing (fusiform gyrus), interoceptive awareness (posterior insula), memory retrieval, and contextual processing (hippocampus) as compared to HC. Finally, we observed decreased functional connectivity between the posterior cerebellum and prefrontal regions involved in emotion regulation, in PTSD as compared to HC. These findings not only highlight the crucial role of each cerebellar region examined in the psychopathology of PTSD but also reveal unique alterations in functional connectivity distinguishing the dissociative subtype of PTSD versus PTSD.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Maria Densmore
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Jean Théberge
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph's HealthcareHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
| | - Ruth A. Lanius
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
43
|
Rabellino D, Densmore M, Harricharan S, Jean T, McKinnon MC, Lanius RA. Resting-state functional connectivity of the bed nucleus of the stria terminalis in post-traumatic stress disorder and its dissociative subtype. Hum Brain Mapp 2017; 39:1367-1379. [PMID: 29266586 DOI: 10.1002/hbm.23925] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The bed nucleus of the stria terminals (BNST) is a subcortical structure involved in anticipatory and sustained reactivity to threat and is thus essential to the understanding of anxiety and stress responses. Although chronic stress and anxiety represent a hallmark of post-traumatic stress disorder (PTSD), to date, few studies have examined the functional connectivity of the BNST in PTSD. Here, we used resting state functional Magnetic Resonance Imaging (fMRI) to investigate the functional connectivity of the BNST in PTSD (n = 70), its dissociative subtype (PTSD + DS) (n = 41), and healthy controls (n = 50). In comparison to controls, PTSD showed increased functional connectivity of the BNST with regions of the reward system (ventral and dorsal striatum), possibly underlying stress-induced reward-seeking behaviors in PTSD. By contrast, comparing PTSD + DS to controls, we observed increased functional connectivity of the BNST with the claustrum, a brain region implicated in consciousness and a primary site of kappa-opioid receptors, which are critical to the dynorphin-mediated dysphoric stress response. Moreover, PTSD + DS showed increased functional connectivity of the BNST with brain regions involved in attention and salience detection (anterior insula and caudate nucleus) as compared to PTSD and controls. Finally, BNST functional connectivity positively correlated with default-mode network regions as a function of state identity dissociation, suggesting a role of BNST networks in the disruption of self-relevant processing characterizing the dissociative subtype. These findings represent an important first step in elucidating the role of the BNST in aberrant functional networks underlying PTSD and its dissociative subtype.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada.,Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Sherain Harricharan
- Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Théberge Jean
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada.,Imaging Division, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Margaret C McKinnon
- Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Homewood Research Institute, Guelph, Ontario, Canada
| | - Ruth A Lanius
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada.,Imaging Division, Lawson Health Research Institute, London, Ontario, Canada.,Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|