1
|
Wang Y, Jin Z, Huyang S, Lian Q, Wu D. Elevated Activity in Left Homologous Music Circuits Is Inhibitory for Music Perception but Mediated by Structure-Function Coupling. CNS Neurosci Ther 2024; 30:e70174. [PMID: 39725651 DOI: 10.1111/cns.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Previous studies suggested that structural and functional connectivity of right frontotemporal circuits associate with music perception. Emerging evidences demonstrated that structure-function coupling is important for cognition and may allow for a more sensitive investigation of brain-behavior association, while we know little about the relationship between structure-function coupling and music perception. METHODS We collected multimodal neuroimaging data from 106 participants and measured their music perception by Montreal Battery of Evaluation of Amusia (MBEA). Then we computed structure-function coupling, amplitude of low-frequency fluctuation (ALFF), gray matter volume (GMV), and structural/functional degree centrality (DC) and utilized support vector regression algorithm to build their relationship with MBEA score. RESULTS We found structure-function coupling, rather than GMV, ALFF, or DC, contributed to predict MBEA score. Left middle frontal gyrus (L.MFG), bilateral inferior temporal gyrus, and right insula were the most predictive ROIs for MBEA score. Mediation analysis revealed structure-function coupling of L.MFG, a region that is homologous to typical music circuits, fully mediated the negative link between ALFF of L.MFG and MBEA score. CONCLUSION Structure-function coupling is more effective when explaining variation in music perception. Our findings provide further understanding for the neural basis of music and have implications for cognitive causes of amusia.
Collapse
Affiliation(s)
- Yucheng Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sizhu Huyang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoping Lian
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
- National Center for Mental Disorders (Xiangya), Changsha, Hunan, China
| |
Collapse
|
2
|
Jiang J, Brotherhood EV, Core LB, Hardy CJ, Yong KX, Foulkes A, Warren JD. Preserved musical working memory and absolute pitch in posterior cortical atrophy. Cortex 2024; 181:1-11. [PMID: 39442325 DOI: 10.1016/j.cortex.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
Working memory for nonverbal auditory information is essential for everyday functioning but its cognitive organisation is not well understood. Here we addressed this issue in a musician, YA, with absolute pitch (AP, the uncommon ability to categorise and label individual musical pitches without an external reference) who developed posterior cortical atrophy. We assessed YA's AP ability and her working memory for pitch and rhythmic patterns using procedures modelled on a standard test of auditory verbal working memory (digit span), referenced to age-matched, cognitively-normal AP and non-AP possessing musicians. YA had retained AP and performed comparably to healthy older AP and non-AP musicians on all musical working memory tasks, despite impaired auditory verbal working memory. These findings suggest that the cognitive mechanisms for auditory verbal working memory, nonverbal (pitch and rhythm) working memory and AP are at least partly dissociable, and both musical working memory and AP can be spared despite posterior parietal degeneration.
Collapse
Affiliation(s)
- Jessica Jiang
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy B Core
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Jd Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Keir Xx Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexander Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Jin Z, Huyang S, Jiang L, Yan Y, Li Q, Wu D. Altered resting-state connectivity of the auditory cortex in congenital amusia: A functional magnetic resonance imaging study in Mandarin speakers. Ann N Y Acad Sci 2024; 1541:140-150. [PMID: 39476072 DOI: 10.1111/nyas.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Brain imaging studies have reported that the neural deficits of congenital amusia in non-tonal language speakers are mainly in the connectivity between the auditory cortex and the inferior frontal gyrus (IFG) in the right hemisphere. However, the relationship between the functional connectivity (FC) in these regions and the music perception ability of amusia in tonal language speakers remains unclear. In this study, we investigated the FC characteristics of amusia in Mandarin speakers in resting-state functional magnetic resonance imaging data by voxel-wise connectivity analyses with seeds in left and right Heschl's gyri (HG) and region of interest (ROI)-to-ROI connectivity analyses. Our findings indicate increased connectivity between right HG and bilateral posterior superior temporal gyrus, as determined by voxel-wise connectivity analyses in amusia. Conversely, reduced connectivity was observed between bilateral HG and bilateral IFG (orbital part) as assessed through ROI-to-ROI connectivity analyses in amusia when compared to controls. Moreover, the music perception scores of amusia in Mandarin speakers were associated with diminished connectivity between the left HG and the right IFG. This study furnishes direct evidence for the link between music perception deficits and the aberrant frontotemporal connectivity of congenital amusia in tonal language speakers in resting state.
Collapse
Affiliation(s)
- Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Faculty of Education, Henan Normal University, Xinxiang, Henan, China
| | - Sizhu Huyang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lichen Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajun Yan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qixiong Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center on Mental Disorders (Xiangya)|National Center for Mental Disorders (Xiangya), Changsha, Hunan, China
| |
Collapse
|
4
|
Curzel F, Tillmann B, Ferreri L. Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain Cogn 2024; 180:106200. [PMID: 38908228 DOI: 10.1016/j.bandc.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Research investigating the neural processes related to music perception and production constitutes a well-established field within the cognitive neurosciences. While most neuroimaging tools have limitations in studying the complexity of musical experiences, functional Near-Infrared Spectroscopy (fNIRS) represents a promising, relatively new tool for studying music processes in both laboratory and ecological settings, which is also suitable for both typical and pathological populations across development. Here we systematically review fNIRS studies on music cognition, highlighting prospects and potentialities. We also include an overview of fNIRS basic theory, together with a brief comparison to characteristics of other neuroimaging tools. Fifty-nine studies meeting inclusion criteria (i.e., using fNIRS with music as the primary stimulus) are presented across five thematic sections. Critical discussion of methodology leads us to propose guidelines of good practices aiming for robust signal analyses and reproducibility. A continuously updated world map is proposed, including basic information from studies meeting the inclusion criteria. It provides an organized, accessible, and updatable reference database, which could serve as a catalyst for future collaborations within the community. In conclusion, fNIRS shows potential for investigating cognitive processes in music, particularly in ecological contexts and with special populations, aligning with current research priorities in music cognition.
Collapse
Affiliation(s)
- Federico Curzel
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France; LEAD CNRS UMR5022, Université de Bourgogne-Franche Comté, Dijon, Bourgogne-Franche Comté 21000, France.
| | - Laura Ferreri
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, Lombardia 27100, Italy.
| |
Collapse
|
5
|
Hoarau C, Pralus A, Moulin A, Bedoin N, Ginzburg J, Fornoni L, Aguera PE, Tillmann B, Caclin A. Deficits in congenital amusia: Pitch, music, speech, and beyond. Neuropsychologia 2024; 202:108960. [PMID: 39032629 DOI: 10.1016/j.neuropsychologia.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Congenital amusia is a neurodevelopmental disorder characterized by deficits of music perception and production, which are related to altered pitch processing. The present study used a wide variety of tasks to test potential patterns of processing impairment in individuals with congenital amusia (N = 18) in comparison to matched controls (N = 19), notably classical pitch processing tests (i.e., pitch change detection, pitch direction of change identification, and pitch short-term memory tasks) together with tasks assessing other aspects of pitch-related auditory cognition, such as emotion recognition in speech, sound segregation in tone sequences, and speech-in-noise perception. Additional behavioral measures were also collected, including text reading/copying tests, visual control tasks, and a subjective assessment of hearing abilities. As expected, amusics' performance was impaired for the three pitch-specific tasks compared to controls. This deficit of pitch perception had a self-perceived impact on amusics' quality of hearing. Moreover, participants with amusia were impaired in emotion recognition in vowels compared to controls, but no group difference was observed for emotion recognition in sentences, replicating previous data. Despite pitch processing deficits, participants with amusia did not differ from controls in sound segregation and speech-in-noise perception. Text reading and visual control tests did not reveal any impairments in participants with amusia compared to controls. However, the copying test revealed more numerous eye-movements and a smaller memory span. These results allow us to refine the pattern of pitch processing and memory deficits in congenital amusia, thus contributing further to understand pitch-related auditory cognition. Together with previous reports suggesting a comorbidity between congenital amusia and dyslexia, the findings call for further investigation of language-related abilities in this disorder even in the absence of neurodevelopmental language disorder diagnosis.
Collapse
Affiliation(s)
- Caliani Hoarau
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France; Humans Matter, Lyon, France.
| | - Agathe Pralus
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France; Humans Matter, Lyon, France
| | - Annie Moulin
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| | - Nathalie Bedoin
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France; Université Lumière Lyon 2, Lyon, France
| | - Jérémie Ginzburg
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| | - Lesly Fornoni
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| | - Pierre-Emmanuel Aguera
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| | - Barbara Tillmann
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France; Laboratory for Research on Learning and Development, Université de Bourgogne, LEAD-CNRS UMR5022, Dijon, France
| | - Anne Caclin
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| |
Collapse
|
6
|
Whittaker HT, Khayyat L, Fortier-Lavallée J, Laverdière M, Bélanger C, Zatorre RJ, Albouy P. Information-based rhythmic transcranial magnetic stimulation to accelerate learning during auditory working memory training: a proof-of-concept study. Front Neurosci 2024; 18:1355565. [PMID: 38638697 PMCID: PMC11024337 DOI: 10.3389/fnins.2024.1355565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.
Collapse
Affiliation(s)
- Heather T. Whittaker
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Lina Khayyat
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Megan Laverdière
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Carole Bélanger
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| |
Collapse
|
7
|
Haiduk F, Zatorre RJ, Benjamin L, Morillon B, Albouy P. Spectrotemporal cues and attention jointly modulate fMRI network topology for sentence and melody perception. Sci Rep 2024; 14:5501. [PMID: 38448636 PMCID: PMC10917817 DOI: 10.1038/s41598-024-56139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Speech and music are two fundamental modes of human communication. Lateralisation of key processes underlying their perception has been related both to the distinct sensitivity to low-level spectrotemporal acoustic features and to top-down attention. However, the interplay between bottom-up and top-down processes needs to be clarified. In the present study, we investigated the contribution of acoustics and attention to melodies or sentences to lateralisation in fMRI functional network topology. We used sung speech stimuli selectively filtered in temporal or spectral modulation domains with crossed and balanced verbal and melodic content. Perception of speech decreased with degradation of temporal information, whereas perception of melodies decreased with spectral degradation. Applying graph theoretical metrics on fMRI connectivity matrices, we found that local clustering, reflecting functional specialisation, linearly increased when spectral or temporal cues crucial for the task goal were incrementally degraded. These effects occurred in a bilateral fronto-temporo-parietal network for processing temporally degraded sentences and in right auditory regions for processing spectrally degraded melodies. In contrast, global topology remained stable across conditions. These findings suggest that lateralisation for speech and music partially depends on an interplay of acoustic cues and task goals under increased attentional demands.
Collapse
Affiliation(s)
- Felix Haiduk
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.
- Department of General Psychology, University of Padua, Padua, Italy.
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - CRBLM, Montreal, QC, Canada
| | - Lucas Benjamin
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| | - Benjamin Morillon
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - CRBLM, Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Laval University, Quebec, QC, Canada
| |
Collapse
|
8
|
Borderie A, Caclin A, Lachaux JP, Perrone-Bertollotti M, Hoyer RS, Kahane P, Catenoix H, Tillmann B, Albouy P. Cross-frequency coupling in cortico-hippocampal networks supports the maintenance of sequential auditory information in short-term memory. PLoS Biol 2024; 22:e3002512. [PMID: 38442128 PMCID: PMC10914261 DOI: 10.1371/journal.pbio.3002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
It has been suggested that cross-frequency coupling in cortico-hippocampal networks enables the maintenance of multiple visuo-spatial items in working memory. However, whether this mechanism acts as a global neural code for memory retention across sensory modalities remains to be demonstrated. Intracranial EEG data were recorded while drug-resistant patients with epilepsy performed a delayed matched-to-sample task with tone sequences. We manipulated task difficulty by varying the memory load and the duration of the silent retention period between the to-be-compared sequences. We show that the strength of theta-gamma phase amplitude coupling in the superior temporal sulcus, the inferior frontal gyrus, the inferior temporal gyrus, and the hippocampus (i) supports the short-term retention of auditory sequences; (ii) decodes correct and incorrect memory trials as revealed by machine learning analysis; and (iii) is positively correlated with individual short-term memory performance. Specifically, we show that successful task performance is associated with consistent phase coupling in these regions across participants, with gamma bursts restricted to specific theta phase ranges corresponding to higher levels of neural excitability. These findings highlight the role of cortico-hippocampal activity in auditory short-term memory and expand our knowledge about the role of cross-frequency coupling as a global biological mechanism for information processing, integration, and memory in the human brain.
Collapse
Affiliation(s)
- Arthur Borderie
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
| | - Anne Caclin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Jean-Philippe Lachaux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | | | - Roxane S. Hoyer
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Hélène Catenoix
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Department of Functional Neurology and Epileptology, Lyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 University, Lyon, France
| | - Barbara Tillmann
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Laboratory for Research on Learning and Development, LEAD–CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| |
Collapse
|
9
|
Thibault N, Albouy P, Grondin S. Distinct brain dynamics and networks for processing short and long auditory time intervals. Sci Rep 2023; 13:22018. [PMID: 38086944 PMCID: PMC10716402 DOI: 10.1038/s41598-023-49562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Psychophysical studies suggest that time intervals above and below 1.2 s are processed differently in the human brain. However, the neural underpinnings of this dissociation remain unclear. Here, we investigate whether distinct or common brain networks and dynamics support the passive perception of short (below 1.2 s) and long (above 1.2 s) empty time intervals. Twenty participants underwent an EEG recording during an auditory oddball paradigm with .8- and 1.6-s standard time intervals and deviant intervals either shorter (early) or longer (delayed) than the standard interval. We computed the auditory ERPs for each condition at the sensor and source levels. We then performed whole brain cluster-based permutation statistics for the CNV, N1 and P2, components, testing deviants against standards. A CNV was found only for above 1.2 s intervals (delayed deviants), with generators in temporo-parietal, SMA, and motor regions. Deviance detection of above 1.2 s intervals occurred during the N1 period over fronto-central sensors for delayed deviants only, with generators in parietal and motor regions. Deviance detection of below 1.2 s intervals occurred during the P2 period over fronto-central sensors for delayed deviants only, with generators in primary auditory cortex, SMA, IFG, cingulate and parietal cortex. We then identified deviance related changes in directed connectivity using bivariate Granger causality to highlight the networks dynamics associated with interval processing above and below 1.2. These results suggest that distinct brain dynamics and networks support the perception of time intervals above and below 1.2 s.
Collapse
Affiliation(s)
- Nicola Thibault
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada.
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada.
| | - Philippe Albouy
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, QC, H2V 2J2, Canada
| | - Simon Grondin
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada
| |
Collapse
|
10
|
Couvignou M, Tillmann B, Caclin A, Kolinsky R. Do developmental dyslexia and congenital amusia share underlying impairments? Child Neuropsychol 2023; 29:1294-1340. [PMID: 36606656 DOI: 10.1080/09297049.2022.2162031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Developmental dyslexia and congenital amusia have common characteristics. Yet, their possible association in some individuals has been addressed only scarcely. Recently, two converging studies reported a sizable comorbidity rate between these two neurodevelopmental disorders (Couvignou et al., Cognitive Neuropsychology 2019; Couvignou & Kolinsky, Neuropsychologia 2021). However, the reason for their association remains unclear. Here, we investigate the hypothesis of shared underlying impairments between dyslexia and amusia. Fifteen dyslexic children with amusia (DYS+A), 15 dyslexic children without amusia (DYS-A), and two groups of 25 typically developing children matched on either chronological age (CA) or reading level (RL) were assessed with a behavioral battery aiming to investigate phonological and pitch processing capacities at auditory memory, perceptual awareness, and attentional levels. Overall, our results suggest that poor auditory serial-order memory increases susceptibility to comorbidity between dyslexia and amusia and may play a role in the development of the comorbid phenotype. In contrast, the impairments observed in the DYS+A children for auditory item memory, perceptual awareness, and attention might be a consequence of their reduced reading experience combined with weaker musical skills. Comparing DYS+A and DYS-A children suggests that the latter are more resourceful and/or have more effective compensatory strategies, or that their phenotype results from a different developmental trajectory. We will discuss the relevance of these findings for delving into the etiology of these two developmental disorders and address their implications for future research and practice.
Collapse
Affiliation(s)
- Manon Couvignou
- Unité de Recherche en Neurosciences Cognitives (Unescog), Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM, U1028, Lyon, France
- University Lyon 1, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM, U1028, Lyon, France
- University Lyon 1, Lyon, France
| | - Régine Kolinsky
- Unité de Recherche en Neurosciences Cognitives (Unescog), Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Fonds de la Recherche Scientifique-FNRS (FRS-FNRS), Brussels, Belgium
| |
Collapse
|
11
|
Tillmann B, Graves JE, Talamini F, Lévêque Y, Fornoni L, Hoarau C, Pralus A, Ginzburg J, Albouy P, Caclin A. Auditory cortex and beyond: Deficits in congenital amusia. Hear Res 2023; 437:108855. [PMID: 37572645 DOI: 10.1016/j.heares.2023.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Congenital amusia is a neuro-developmental disorder of music perception and production, with the observed deficits contrasting with the sophisticated music processing reported for the general population. Musical deficits within amusia have been hypothesized to arise from altered pitch processing, with impairments in pitch discrimination and, notably, short-term memory. We here review research investigating its behavioral and neural correlates, in particular the impairments at encoding, retention, and recollection of pitch information, as well as how these impairments extend to the processing of pitch cues in speech and emotion. The impairments have been related to altered brain responses in a distributed fronto-temporal network, which can be observed also at rest. Neuroimaging studies revealed changes in connectivity patterns within this network and beyond, shedding light on the brain dynamics underlying auditory cognition. Interestingly, some studies revealed spared implicit pitch processing in congenital amusia, showing the power of implicit cognition in the music domain. Building on these findings, together with audiovisual integration and other beneficial mechanisms, we outline perspectives for training and rehabilitation and the future directions of this research domain.
Collapse
Affiliation(s)
- Barbara Tillmann
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France; Laboratory for Research on Learning and Development, Université de Bourgogne, LEAD - CNRS UMR5022, Dijon, France; LEAD-CNRS UMR5022; Université Bourgogne Franche-Comté; Pôle AAFE; 11 Esplanade Erasme; 21000 Dijon, France.
| | - Jackson E Graves
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, Paris 75005, France
| | | | - Yohana Lévêque
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Lesly Fornoni
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Caliani Hoarau
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Agathe Pralus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Jérémie Ginzburg
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, G1J 2G3; International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal QC, H2V 2J2, Canada
| | - Anne Caclin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France.
| |
Collapse
|
12
|
Onishi H, Yokosawa K. Differential working memory function between phonological and visuospatial strategies: a magnetoencephalography study using a same visual task. Front Hum Neurosci 2023; 17:1218437. [PMID: 37680265 PMCID: PMC10480614 DOI: 10.3389/fnhum.2023.1218437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Previous studies have reported that, in working memory, the processing of visuospatial information and phonological information have different neural bases. However, in these studies, memory items were presented via different modalities. Therefore, the modality in which the memory items were presented and the strategy for memorizing them were not rigorously distinguished. In the present study, we explored the neural basis of two working memory strategies. Nineteen right-handed young adults memorized seven sequential directions presented visually in a task in which the memory strategy was either visuospatial or phonological (visuospatial/phonological condition). Source amplitudes of theta-band (5-7 Hz) rhythm were estimated from magnetoencephalography during the maintenance period and further analyzed using cluster-based permutation tests. Behavioral results revealed that the accuracy rates showed no significant differences between conditions, while the reaction time in the phonological condition was significantly longer than that in the visuospatial condition. Theta activity in the phonological condition was significantly greater than that in the visuospatial condition, and the cluster in spatio-temporal matrix with p < 5% difference extended to right prefrontal regions in the early maintenance period and right occipito-parietal regions in the late maintenance period. The theta activity results did not indicate strategy-specific neural bases but did reveal the dynamics of executive function required for phonological processing. The functions seemed to move from attention control and inhibition control in the prefrontal region to inhibition of irrelevant information in the occipito-parietal region.
Collapse
Affiliation(s)
- Hayate Onishi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Jiang J, Liu F, Zhou L, Chen L, Jiang C. Explicit processing of melodic structure in congenital amusia can be improved by redescription-associate learning. Neuropsychologia 2023; 182:108521. [PMID: 36870471 DOI: 10.1016/j.neuropsychologia.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
Congenital amusia is a neurodevelopmental disorder of musical processing. Previous research demonstrates that although explicit musical processing is impaired in congenital amusia, implicit musical processing can be intact. However, little is known about whether implicit knowledge could improve explicit musical processing in individuals with congenital amusia. To this end, we developed a training method utilizing redescription-associate learning, aiming at transferring implicit representations of perceptual states into explicit forms through verbal description and then establishing the associations between the perceptual states reported and responses via feedback, to investigate whether the explicit processing of melodic structure could be improved in individuals with congenital amusia. Sixteen amusics and 11 controls rated the degree of expectedness of melodies during EEG recording before and after training. In the interim, half of the amusics received nine training sessions on melodic structure, while the other half received no training. Results, based on effect size estimation, showed that at pretest, amusics but not controls failed to explicitly distinguish the regular from the irregular melodies and to exhibit an ERAN in response to the irregular endings. At posttest, trained but not untrained amusics performed as well as controls at both the behavioral and neural levels. At the 3-month follow-up, the training effects still maintained. These findings present novel electrophysiological evidence of neural plasticity in the amusic brain, suggesting that redescription-associate learning may be an effective method to remediate impaired explicit processes for individuals with other neurodevelopmental disorders who have intact implicit knowledge.
Collapse
Affiliation(s)
- Jun Jiang
- Music College, Shanghai Normal University, Shanghai, 200234, China
| | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK
| | - Linshu Zhou
- Music College, Shanghai Normal University, Shanghai, 200234, China
| | - Liaoliao Chen
- Foreign Languages College, Shanghai Normal University, Shanghai, 200234, China
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
14
|
Lévêque Y, Schellenberg EG, Fornoni L, Bouchet P, Caclin A, Tillmann B. Individuals with congenital amusia remember music they like. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01084-6. [PMID: 36949277 DOI: 10.3758/s13415-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Music is better recognized when it is liked. Does this association remain evident when music perception and memory are severely impaired, as in congenital amusia? We tested 11 amusic and 11 matched control participants, asking whether liking of a musical excerpt influences subsequent recognition. In an initial exposure phase, participants-unaware that their recognition would be tested subsequently-listened to 24 musical excerpts and judged how much they liked each excerpt. In the test phase that followed, participants rated whether they recognized the previously heard excerpts, which were intermixed with an equal number of foils matched for mode, tempo, and musical genre. As expected, recognition was in general impaired for amusic participants compared with control participants. For both groups, however, recognition was better for excerpts that were liked, and the liking enhancement did not differ between groups. These results contribute to a growing body of research that examines the complex interplay between emotions and cognitive processes. More specifically, they extend previous findings related to amusics' impairments to a new memory paradigm and suggest that (1) amusic individuals are sensitive to an aesthetic and subjective dimension of the music-listening experience, and (2) emotions can support memory processes even in a population with impaired music perception and memory.
Collapse
Affiliation(s)
- Yohana Lévêque
- Lyon Neuroscience Research Center, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France.
- University Lyon 1, F-69000, Lyon, France.
| | - E Glenn Schellenberg
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Lesly Fornoni
- Lyon Neuroscience Research Center, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, F-69000, Lyon, France
| | - Patrick Bouchet
- Lyon Neuroscience Research Center, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, F-69000, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, F-69000, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, F-69000, Lyon, France
| |
Collapse
|
15
|
Music perception in acquired prosopagnosia. Neuropsychologia 2023; 183:108540. [PMID: 36913989 DOI: 10.1016/j.neuropsychologia.2023.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Acquired prosopagnosia is often associated with other deficits such as dyschromatopsia and topographagnosia, from damage to adjacent perceptual networks. A recent study showed that some subjects with developmental prosopagnosia also have congenital amusia, but problems with music perception have not been described with the acquired variant. OBJECTIVE Our goal was to determine if music perception was also impaired in subjects with acquired prosopagnosia, and if so, its anatomic correlate. METHOD We studied eight subjects with acquired prosopagnosia, all of whom had extensive neuropsychological and neuroimaging testing. They performed a battery of tests evaluating pitch and rhythm processing, including the Montréal Battery for the Evaluation of Amusia. RESULTS At the group level, subjects with anterior temporal lesions were impaired in pitch perception relative to the control group, but not those with occipitotemporal lesions. Three of eight subjects with acquired prosopagnosia had impaired musical pitch perception while rhythm perception was spared. Two of the three also showed reduced musical memory. These three reported alterations in their emotional experience of music: one reported music anhedonia and aversion, while the remaining two had changes consistent with musicophilia. The lesions of these three subjects affected the right or bilateral temporal poles as well as the right amygdala and insula. None of the three prosopagnosic subjects with lesions limited to the inferior occipitotemporal cortex exhibited impaired pitch perception or musical memory, or reported changes in music appreciation. CONCLUSION Together with the results of our previous studies of voice recognition, these findings indicate an anterior ventral syndrome that can include the amnestic variant of prosopagnosia, phonagnosia, and various alterations in music perception, including acquired amusia, reduced musical memory, and subjective reports of altered emotional experience of music.
Collapse
|
16
|
Malinovitch T, Albouy P, Zatorre RJ, Ahissar M. Training allows switching from limited-capacity manipulations to large-capacity perceptual processing. Cereb Cortex 2023; 33:1826-1842. [PMID: 35511687 PMCID: PMC9977386 DOI: 10.1093/cercor/bhac175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
In contrast to perceptual tasks, which enable concurrent processing of many stimuli, working memory (WM) tasks have a very small capacity, limiting cognitive skills. Training on WM tasks often yields substantial improvement, suggesting that training might increase the general WM capacity. To understand the underlying processes, we trained a test group with a newly designed tone manipulation WM task and a control group with a challenging perceptual task of pitch pattern discrimination. Functional magnetic resonance imaging (fMRI) scans confirmed that pretraining, manipulation was associated with a dorsal fronto-parietal WM network, while pitch comparison was associated with activation of ventral auditory regions. Training induced improvement in each group, which was limited to the trained task. Analyzing the behavior of the group trained with tone manipulation revealed that participants learned to replace active manipulation with a perceptual verification of the position of a single salient tone in the sequence presented as a tentative reply. Posttraining fMRI scans revealed modifications in ventral activation of both groups. Successful WMtrained participants learned to utilize auditory regions for the trained task. These observations suggest that the huge task-specific enhancement of WM capacity stems from a task-specific switch to perceptual routines, implemented in perceptual regions.
Collapse
Affiliation(s)
- Tamar Malinovitch
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
| | - Philippe Albouy
- CERVO Brain Research Centre, Laval University, 2301 Av. D'Estimauville, Québec, G1V 0A6, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, 3801, rue University Montreal, Québec, H3A 2B4, Canada
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
17
|
Sokolowski HM, Levine B. Common neural substrates of diverse neurodevelopmental disorders. Brain 2022; 146:438-447. [PMID: 36299249 PMCID: PMC9924912 DOI: 10.1093/brain/awac387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
Neurodevelopmental disorders are categorized and studied according to their manifestations as distinct syndromes. For instance, congenital prosopagnosia and dyslexia have largely non-overlapping research literatures and clinical pathways for diagnosis and intervention. On the other hand, the high incidence of neurodevelopmental comorbidities or co-existing extreme strengths and weaknesses suggest that transdiagnostic commonalities may be greater than currently appreciated. The core-periphery model holds that brain regions within the stable core perceptual and motor regions are more densely connected to one another compared to regions in the flexible periphery comprising multimodal association regions. This model provides a framework for the interpretation of neural data in normal development and clinical disorders. Considering network-level commonalities reported in studies of neurodevelopmental disorders, variability in multimodal association cortex connectivity may reflect a shared origin of seemingly distinct neurodevelopmental disorders. This framework helps to explain both comorbidities in neurodevelopmental disorders and profiles of strengths and weaknesses attributable to competitive processing between cognitive systems within an individual.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Correspondence may also be addressed to: H. Moriah Sokolowski E-mail: Twitter: https://twitter.com/hm_sokolowski
| | - Brian Levine
- Correspondence to: Brian Levine 3560 Bathurst St, North York, ON M6A 2E1, Canada E-mail: Website: www.LevineLab.ca Twitter: https://twitter.com/briantlevine
| |
Collapse
|
18
|
Domain-specific hearing-in-noise performance is associated with absolute pitch proficiency. Sci Rep 2022; 12:16344. [PMID: 36175508 PMCID: PMC9521875 DOI: 10.1038/s41598-022-20869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that musicians may have an advantage over non-musicians in perceiving speech against noisy backgrounds. Previously, musicians have been compared as a homogenous group, despite demonstrated heterogeneity, which may contribute to discrepancies between studies. Here, we investigated whether “quasi”-absolute pitch (AP) proficiency, viewed as a general trait that varies across a spectrum, accounts for the musician advantage in hearing-in-noise (HIN) performance, irrespective of whether the streams are speech or musical sounds. A cohort of 12 non-musicians and 42 trained musicians stratified into high, medium, or low AP proficiency identified speech or melody targets masked in noise (speech-shaped, multi-talker, and multi-music) under four signal-to-noise ratios (0, − 3, − 6, and − 9 dB). Cognitive abilities associated with HIN benefits, including auditory working memory and use of visuo-spatial cues, were assessed. AP proficiency was verified against pitch adjustment and relative pitch tasks. We found a domain-specific effect on HIN perception: quasi-AP abilities were related to improved perception of melody but not speech targets in noise. The quasi-AP advantage extended to tonal working memory and the use of spatial cues, but only during melodic stream segregation. Overall, the results do not support the putative musician advantage in speech-in-noise perception, but suggest a quasi-AP advantage in perceiving music under noisy environments.
Collapse
|
19
|
Quiroga‐Martinez DR, Basiński K, Nasielski J, Tillmann B, Brattico E, Cholvy F, Fornoni L, Vuust P, Caclin A. Enhanced mismatch negativity in harmonic compared with inharmonic sounds. Eur J Neurosci 2022; 56:4583-4599. [PMID: 35833941 PMCID: PMC9543822 DOI: 10.1111/ejn.15769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Many natural sounds have frequency spectra composed of integer multiples of a fundamental frequency. This property, known as harmonicity, plays an important role in auditory information processing. However, the extent to which harmonicity influences the processing of sound features beyond pitch is still unclear. This is interesting because harmonic sounds have lower information entropy than inharmonic sounds. According to predictive processing accounts of perception, this property could produce more salient neural responses due to the brain's weighting of sensory signals according to their uncertainty. In the present study, we used electroencephalography to investigate brain responses to harmonic and inharmonic sounds commonly occurring in music: Piano tones and hi-hat cymbal sounds. In a multifeature oddball paradigm, we measured mismatch negativity (MMN) and P3a responses to timbre, intensity, and location deviants in listeners with and without congenital amusia-an impairment of pitch processing. As hypothesized, we observed larger amplitudes and earlier latencies (for both MMN and P3a) in harmonic compared with inharmonic sounds. These harmonicity effects were modulated by sound feature. Moreover, the difference in P3a latency between harmonic and inharmonic sounds was larger for controls than amusics. We propose an explanation of these results based on predictive coding and discuss the relationship between harmonicity, information entropy, and precision weighting of prediction errors.
Collapse
Affiliation(s)
- David Ricardo Quiroga‐Martinez
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCAUSA
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
| | - Krzysztof Basiński
- Division of Quality of Life Research, Faculty of Health SciencesMedical University of GdańskGdańskPoland
| | | | - Barbara Tillmann
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Elvira Brattico
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
- Department of Educational Sciences, Psychology and CommunicationUniversity of Bari Aldo MoroBariItaly
| | - Fanny Cholvy
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Lesly Fornoni
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Peter Vuust
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
| | - Anne Caclin
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| |
Collapse
|
20
|
Li Q, Gong D, Zhang Y, Zhang H, Liu G. The bottom-up information transfer process and top-down attention control underlying tonal working memory. Front Neurosci 2022; 16:935120. [PMID: 35979330 PMCID: PMC9376259 DOI: 10.3389/fnins.2022.935120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Tonal working memory has been less investigated by neuropsychological and neuroimaging studies and even less in terms of tonal working memory load. In this study, we analyzed the dynamic cortical processing process of tonal working memory with an original surface-space-based multivariate pattern analysis (sf-MVPA) method and found that this process constituted a bottom-up information transfer process. Then, the local cortical activity pattern, local cortical response strength, and cortical functional connectivity under different tonal working memory loads were investigated. No brain area’s local activity pattern or response strength was significantly different under different memory loads. Meanwhile, the interactions between the auditory cortex (AC) and an attention control network were linearly correlated with the memory load. This finding shows that the neural mechanism underlying the tonal working memory load does not arise from changes in local activity patterns or changes in the local response strength, but from top-down attention control. Our results indicate that the implementation of tonal working memory is based on the cooperation of the bottom-up information transfer process and top-down attention control.
Collapse
Affiliation(s)
- Qiang Li
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Dinghong Gong
- Office of Academic Affairs, Guizhou Education University, Guiyang, China
| | - Yuan Zhang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Hongyi Zhang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
- *Correspondence: Guangyuan Liu,
| |
Collapse
|
21
|
Tonal structures benefit short-term memory for real music: Evidence from non-musicians and individuals with congenital amusia. Brain Cogn 2022; 161:105881. [DOI: 10.1016/j.bandc.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022]
|
22
|
Samiee S, Vuvan D, Florin E, Albouy P, Peretz I, Baillet S. Cross-Frequency Brain Network Dynamics Support Pitch Change Detection. J Neurosci 2022; 42:3823-3835. [PMID: 35351829 PMCID: PMC9087716 DOI: 10.1523/jneurosci.0630-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
Processing auditory sequences involves multiple brain networks and is crucial to complex perception associated with music appreciation and speech comprehension. We used time-resolved cortical imaging in a pitch change detection task to detail the underlying nature of human brain network activity, at the rapid time scales of neurophysiology. In response to tone sequence presentation to the participants, we observed slow inter-regional signaling at the pace of tone presentations (2-4 Hz) that was directed from auditory cortex toward both inferior frontal and motor cortices. Symmetrically, motor cortex manifested directed influence onto auditory and inferior frontal cortices via bursts of faster (15-35 Hz) activity. These bursts occurred precisely at the expected latencies of each tone in a sequence. This expression of interdependency between slow/fast neurophysiological activity yielded a form of local cross-frequency phase-amplitude coupling in auditory cortex, which strength varied dynamically and peaked when pitch changes were anticipated. We clarified the mechanistic relevance of these observations in relation to behavior by including a group of individuals afflicted by congenital amusia, as a model of altered function in processing sound sequences. In amusia, we found a depression of inter-regional slow signaling toward motor and inferior frontal cortices, and a chronic overexpression of slow/fast phase-amplitude coupling in auditory cortex. These observations are compatible with a misalignment between the respective neurophysiological mechanisms of stimulus encoding and internal predictive signaling, which was absent in controls. In summary, our study provides a functional and mechanistic account of neurophysiological activity for predictive, sequential timing of auditory inputs.SIGNIFICANCE STATEMENT Auditory sequences are processed by extensive brain networks, involving multiple systems. In particular, fronto-temporal brain connections participate in the encoding of sequential auditory events, but so far, their study was limited to static depictions. This study details the nature of oscillatory brain activity involved in these inter-regional interactions in human participants. It demonstrates how directed, polyrhythmic oscillatory interactions between auditory and motor cortical regions provide a functional account for predictive timing of incoming items in an auditory sequence. In addition, we show the functional relevance of these observations in relation to behavior, with data from both normal hearing participants and a rare cohort of individuals afflicted by congenital amusia, which we considered here as a model of altered function in processing sound sequences.
Collapse
Affiliation(s)
- Soheila Samiee
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
- Mila, Quebec AI Institute, Montreal, Quebec H2S 3H1, Canada
| | - Dominique Vuvan
- International Laboratory for Brain, Music, and Sound Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
- Psychology Department, Skidmore College, Saratoga Springs, New York 12866
| | - Esther Florin
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Philippe Albouy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
- International Laboratory for Brain, Music, and Sound Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
- Psychology Department, CERVO brain research Center, Laval University, Montreal, Quebec G1V 0A6, Canada
| | - Isabelle Peretz
- International Laboratory for Brain, Music, and Sound Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
23
|
Shared cognitive resources between memory and attention during sound-sequence encoding. Atten Percept Psychophys 2022; 84:739-759. [PMID: 35106682 DOI: 10.3758/s13414-021-02390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/08/2022]
Abstract
You are on the phone, walking down a street. This daily situation calls for selective attention, allowing you to ignore surrounding irrelevant sounds, while trying to encode in memory the relevant information from the phone. Attention and memory are indeed two cognitive functions that are interacting constantly. However, their interaction is not yet well characterized during sound-sequence encoding. We independently manipulated both selective attention and working memory in a delayed-matching-to-sample of two tone-series, played successively in one ear. During the first melody presentation (memory encoding), weakly or highly distracting melodies were played in the other ear. Detection of the difference between the two comparison melodies could be easy or difficult, requiring low- or high-precision encoding, i.e., low or high memory load. Sixteen non-musician and 16 musician participants performed this new task. As expected, both groups of participants were less accurate in the difficult memory task and in difficult-to-ignore distractor conditions. Importantly, an interaction between memory-task difficulty and distractor difficulty was found in both groups. Non-musicians presented less difference between easy and difficult-to-ignore distractors in the difficult than in the easy memory task. On the contrary, musicians, with better performance than non-musicians, showed a greater difference between easy and difficult-to-ignore distractors in the difficult than in the easy memory task. In a second experiment including trials without a distractor, we could show that these effects are in line with the cognitive load theory. Taken together, these results speak for shared cognitive resources between working memory and attention during sound-sequence encoding.
Collapse
|
24
|
Sihvonen AJ, Särkämö T. Music processing and amusia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:55-67. [PMID: 35964992 DOI: 10.1016/b978-0-12-823493-8.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Music is a universal and important human trait, which is orchestrated by complex brain network centered in the temporal lobe but connecting broadly to multiple cortical and subcortical regions. In the human brain, music engages a widespread bilateral network of regions that govern auditory perception, syntactic and semantic processing, attention and memory, emotion and reward, and motor skills. The ability to perceive or produce music can be severely impaired either due to abnormal brain development or brain damage, leading to a condition called amusia. Modern neuroimaging studies of amusia have provided valuable knowledge about the structure and function of specific brain regions and white matter pathways that are crucial for music perception, highlighting the role of the right frontotemporal network in this process. In this chapter, we provide an overview on the neural basis of music processing in a healthy brain and review evidence obtained from the studies of congenital and acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre, The University of Queensland, Herston, QLD, Australia; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Hoddinott JD, Schuit D, Grahn JA. Comparisons between short-term memory systems for verbal and rhythmic stimuli. Neuropsychologia 2021; 163:108080. [PMID: 34728240 DOI: 10.1016/j.neuropsychologia.2021.108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Auditory short-term memory is often conceived of as a unitary capacity, with memory for different auditory materials (such as syllables, pitches, rhythms) posited to rely on similar neural mechanisms. One spontaneous behavior observed in short-term memory studies is 'chunking'. For example, individuals often recount digit sequences in groups, or chunks, of 3-4 digits, and chunking is associated with better performance. Chunking may also operate in musical rhythm, with beats acting as potential chunk boundaries for tones in rhythmic sequences. Similar to chunking, beat-based structure in rhythms also improves performance. Thus, it is possible that beat processing relies on the same mechanisms that underlie chunking of verbal material. The current fMRI study examined whether beat perception is indeed a type of chunking, measuring brain responses to chunked and 'unchunked' letter sequences relative to beat-based and non-beat-based rhythmic sequences. Participants completed a sequence discrimination task, and comparisons between stimulus encoding, maintenance, and discrimination were made for both rhythmic and verbal sequences. Overall, rhythm and verbal short-term memory networks overlapped substantially. When contrasting rhythmic and verbal conditions, rhythms activated basal ganglia, supplementary motor area, and anterior insula more than letter strings did, during both encoding and discrimination. Verbal letter strings activated bilateral auditory cortex more than rhythms did during encoding, and parietal cortex, precuneus, and middle frontal gyri more than rhythms did during discrimination. Importantly, there was a significant interaction in the basal ganglia during encoding: activation for beat-based rhythms was greater than for non-beat-based rhythms, but verbal chunked and unchunked conditions did not differ. The interaction indicates that beat perception is not simply a case of chunking, suggesting a dissociation between beat processing and chunking-based grouping mechanisms.
Collapse
Affiliation(s)
- Joshua D Hoddinott
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Dirk Schuit
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Jessica A Grahn
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario Canada.
| |
Collapse
|
26
|
Anderson KS, Gosselin N, Sadikot AF, Laguë-Beauvais M, Kang ESH, Fogarty AE, Marcoux J, Dagher J, de Guise E. Pitch and Rhythm Perception and Verbal Short-Term Memory in Acute Traumatic Brain Injury. Brain Sci 2021; 11:1173. [PMID: 34573194 PMCID: PMC8469559 DOI: 10.3390/brainsci11091173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Music perception deficits are common following acquired brain injury due to stroke, epilepsy surgeries, and aneurysmal clipping. Few studies have examined these deficits following traumatic brain injury (TBI), resulting in an under-diagnosis in this population. We aimed to (1) compare TBI patients to controls on pitch and rhythm perception during the acute phase; (2) determine whether pitch and rhythm perception disorders co-occur; (3) examine lateralization of injury in the context of pitch and rhythm perception; and (4) determine the relationship between verbal short-term memory (STM) and pitch and rhythm perception. Music perception was examined using the Scale and Rhythm tests of the Montreal Battery of Evaluation of Amusia, in association with CT scans to identify lesion laterality. Verbal short-term memory was examined using Digit Span Forward. TBI patients had greater impairment than controls, with 43% demonstrating deficits in pitch perception, and 40% in rhythm perception. Deficits were greater with right hemisphere damage than left. Pitch and rhythm deficits co-occurred 31% of the time, suggesting partly dissociable networks. There was a dissociation between performance on verbal STM and pitch and rhythm perception 39 to 42% of the time (respectively), with most individuals (92%) demonstrating intact verbal STM, with impaired pitch or rhythm perception. The clinical implications of music perception deficits following TBI are discussed.
Collapse
Affiliation(s)
- Kirsten S Anderson
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montreal, QC H3S 1M9, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), and Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H2V2S9, Canada
| | - Nathalie Gosselin
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), and Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H2V2S9, Canada
| | - Abbas F Sadikot
- Neurology and Neurosurgery Department, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Maude Laguë-Beauvais
- Neurology and Neurosurgery Department, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Traumatic Brain Injury Program, McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Esther S H Kang
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Alexandra E Fogarty
- Department of Neurology, Division of Physical Medicine and Rehabilitation, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Judith Marcoux
- Neurology and Neurosurgery Department, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Traumatic Brain Injury Program, McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Jehane Dagher
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montreal, QC H3S 1M9, Canada
- Traumatic Brain Injury Program, McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Elaine de Guise
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montreal, QC H3S 1M9, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
27
|
Listeners with congenital amusia are sensitive to context uncertainty in melodic sequences. Neuropsychologia 2021; 158:107911. [PMID: 34102187 DOI: 10.1016/j.neuropsychologia.2021.107911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
In typical listeners, the perceptual salience of a surprising auditory event depends on the uncertainty of its context. For example, in melodies, pitch deviants are more easily detected and generate larger neural responses when the context is highly predictable than when it is less so. However, it is not known whether amusic listeners with abnormal pitch processing are sensitive to the degree of uncertainty of pitch sequences and, if so, whether they are to a different extent than typical non-musician listeners. To answer this question, we manipulated the uncertainty of short melodies while participants with and without congenital amusia underwent EEG recordings in a passive listening task. Uncertainty was manipulated by presenting melodies with different levels of complexity and familiarity, under the assumption that simpler and more familiar patterns would enhance pitch predictability. We recorded mismatch negativity (MMN) responses to pitch, intensity, timbre, location, and rhythm deviants as a measure of auditory surprise. In both participant groups, we observed reduced MMN amplitudes and longer peak latencies for all sound features with increasing levels of complexity, and putative familiarity effects only for intensity deviants. No significant group-by-complexity or group-by-familiarity interactions were detected. However, in contrast to previous studies, pitch MMN responses in amusics were disrupted in high complexity and unfamiliar melodies. The present results thus indicate that amusics are sensitive to the uncertainty of melodic sequences and that preattentive auditory change detection is greatly spared in this population across sound features and levels of predictability. However, our findings also hint at pitch-specific impairments in this population when uncertainty is high, thus suggesting that pitch processing under high uncertainty conditions requires an intact frontotemporal loop.
Collapse
|
28
|
Jin Z, Huyang S, Jiang L, Yan Y, Xu M, Wang J, Li Q, Wu D. Increased Resting-State Interhemispheric Functional Connectivity of Posterior Superior Temporal Gyrus and Posterior Cingulate Cortex in Congenital Amusia. Front Neurosci 2021; 15:653325. [PMID: 33994929 PMCID: PMC8120159 DOI: 10.3389/fnins.2021.653325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Interhemispheric connectivity of the two cerebral hemispheres is crucial for a broad repertoire of cognitive functions including music and language. Congenital amusia has been reported as a neurodevelopment disorder characterized by impaired music perception and production. However, little is known about the characteristics of the interhemispheric functional connectivity (FC) in amusia. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in amusia at resting-state. Thirty amusics and 29 matched participants underwent a resting-state functional magnetic resonance imaging (fMRI) scanning. An automated VMHC approach was used to analyze the fMRI data. Compared to the control group, amusics showed increased VMHC within the posterior part of the default mode network (DMN) mainly in the posterior superior temporal gyrus (pSTG) and posterior cingulate cortex (PCC). Correlation analyses revealed negative correlations between the VMHC value in pSTG/PCC and the music perception ability among amusics. Further ROC analyses showed that the VMHC value of pSTG/PCC showed a good sensibility/specificity to differentiate the amusics from the controls. These findings provide a new perspective for understanding the neural basis of congenital amusia and imply the immature state of DMN may be a credible neural marker of amusia.
Collapse
Affiliation(s)
- Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sizhu Huyang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lichen Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yajun Yan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Xu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinyu Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qixiong Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| |
Collapse
|
29
|
Couvignou M, Kolinsky R. Comorbidity and cognitive overlap between developmental dyslexia and congenital amusia in children. Neuropsychologia 2021; 155:107811. [PMID: 33647287 DOI: 10.1016/j.neuropsychologia.2021.107811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022]
Abstract
Developmental dyslexia and congenital amusia are two specific neurodevelopmental disorders that affect reading and music perception, respectively. Similarities at perceptual, cognitive, and anatomical levels raise the possibility that a common factor is at play in their emergence, albeit in different domains. However, little consideration has been given to what extent they can co-occur. A first adult study suggested a 30% amusia rate in dyslexia and a 25% dyslexia rate in amusia (Couvignou et al., Cognitive Neuropsychology 2019). We present newly acquired data from 38 dyslexic and 38 typically developing children. These were assessed with literacy and phonological tests, as well as with three musical tests: the Montreal Battery of Evaluation of Musical Abilities, a pitch and time change detection task, and a singing task. Overall, about 34% of the dyslexic children were musically impaired, a proportion that is significantly higher than both the estimated 1.5-4% prevalence of congenital amusia in the general population and the rate of 5% observed within the control group. They were mostly affected in the pitch dimension, both in terms of perception and production. Correlations and prediction links were found between pitch processing skills and language measures after partialing out confounding factors. These findings are discussed with regard to cognitive and neural explanatory hypotheses of a comorbidity between dyslexia and amusia.
Collapse
Affiliation(s)
- Manon Couvignou
- Unité de Recherche en Neurosciences Cognitives (Unescog), Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Régine Kolinsky
- Unité de Recherche en Neurosciences Cognitives (Unescog), Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium; Fonds de La Recherche Scientifique-FNRS (FRS-FNRS), Brussels, Belgium
| |
Collapse
|
30
|
Mas-Herrero E, Maini L, Sescousse G, Zatorre RJ. Common and distinct neural correlates of music and food-induced pleasure: A coordinate-based meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 2021; 123:61-71. [PMID: 33440196 DOI: 10.1016/j.neubiorev.2020.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022]
Abstract
Neuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g., food) in its ability to engage the brain's reward circuitry. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions, including the ventromedial prefrontal cortex, ventral striatum, and insula. Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.
Collapse
Affiliation(s)
- Ernest Mas-Herrero
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907, Barcelona, Spain; Department of Cognition, Development and Education Psychology, University of Barcelona, 08035, Barcelona, Spain.
| | - Larissa Maini
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center - INSERM U1028 - CNRS UMR5292, PSYR2 Team, University of Lyon, Lyon, France
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada.
| |
Collapse
|
31
|
Jasmin K, Dick F, Stewart L, Tierney AT. Altered functional connectivity during speech perception in congenital amusia. eLife 2020; 9:e53539. [PMID: 32762842 PMCID: PMC7449693 DOI: 10.7554/elife.53539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N = 15) and controls (N = 15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions and suggest a compensatory mechanism.
Collapse
Affiliation(s)
- Kyle Jasmin
- Department of Psychological Sciences, Birkbeck University of LondonLondonUnited Kingdom
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck University of LondonLondonUnited Kingdom
- Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| | - Lauren Stewart
- Department of Psychology, Goldsmiths University of LondonLondonUnited Kingdom
| | - Adam Taylor Tierney
- Department of Psychological Sciences, Birkbeck University of LondonLondonUnited Kingdom
| |
Collapse
|
32
|
Graves JE, Pralus A, Fornoni L, Oxenham AJ, Caclin A, Tillmann B. Short- and long-term memory for pitch and non-pitch contours: Insights from congenital amusia. Brain Cogn 2019; 136:103614. [PMID: 31546175 PMCID: PMC6953621 DOI: 10.1016/j.bandc.2019.103614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Congenital amusia is a neurodevelopmental disorder characterized by deficits in music perception, including discriminating and remembering melodies and melodic contours. As non-amusic listeners can perceive contours in dimensions other than pitch, such as loudness and brightness, our present study investigated whether amusics' pitch contour deficits also extend to these other auditory dimensions. Amusic and control participants performed an identification task for ten familiar melodies and a short-term memory task requiring the discrimination of changes in the contour of novel four-tone melodies. For both tasks, melodic contour was defined by pitch, brightness, or loudness. Amusic participants showed some ability to extract contours in all three dimensions. For familiar melodies, amusic participants showed impairment in all conditions, perhaps reflecting the fact that the long-term memory representations of the familiar melodies were defined in pitch. In the contour discrimination task with novel melodies, amusic participants exhibited less impairment for loudness-based melodies than for pitch- or brightness-based melodies, suggesting some specificity of the deficit for spectral changes, if not for pitch alone. The results suggest pitch and brightness may not be processed by the same mechanisms as loudness, and that short-term memory for loudness contours may be spared to some degree in congenital amusia.
Collapse
Affiliation(s)
- Jackson E Graves
- Lyon Neuroscience Research Center (CRNL), CNRS, UMR 5292, Inserm U1028, Université Lyon 1, Lyon, France; Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France.
| | - Agathe Pralus
- Lyon Neuroscience Research Center (CRNL), CNRS, UMR 5292, Inserm U1028, Université Lyon 1, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center (CRNL), CNRS, UMR 5292, Inserm U1028, Université Lyon 1, Lyon, France
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Anne Caclin
- Lyon Neuroscience Research Center (CRNL), CNRS, UMR 5292, Inserm U1028, Université Lyon 1, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), CNRS, UMR 5292, Inserm U1028, Université Lyon 1, Lyon, France
| |
Collapse
|
33
|
Albouy P, Caclin A, Norman-Haignere SV, Lévêque Y, Peretz I, Tillmann B, Zatorre RJ. Decoding Task-Related Functional Brain Imaging Data to Identify Developmental Disorders: The Case of Congenital Amusia. Front Neurosci 2019; 13:1165. [PMID: 31736698 PMCID: PMC6831619 DOI: 10.3389/fnins.2019.01165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Machine learning classification techniques are frequently applied to structural and resting-state fMRI data to identify brain-based biomarkers for developmental disorders. However, task-related fMRI has rarely been used as a diagnostic tool. Here, we used structural MRI, resting-state connectivity and task-based fMRI data to detect congenital amusia, a pitch-specific developmental disorder. All approaches discriminated amusics from controls in meaningful brain networks at similar levels of accuracy. Interestingly, the classifier outcome was specific to deficit-related neural circuits, as the group classification failed for fMRI data acquired during a verbal task for which amusics were unimpaired. Most importantly, classifier outputs of task-related fMRI data predicted individual behavioral performance on an independent pitch-based task, while this relationship was not observed for structural or resting-state data. These results suggest that task-related imaging data can potentially be used as a powerful diagnostic tool to identify developmental disorders as they allow for the prediction of symptom severity.
Collapse
Affiliation(s)
- Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
| | - Anne Caclin
- INSERM, U1028, CNRS, UMR 5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon, France.,University Lyon 1, Lyon, France
| | - Sam V Norman-Haignere
- Zuckerman Institute of Mind, Brain and Behavior, Columbia University, New York, NY, United States.,CNRS, Laboratoire des Sytèmes Perceptifs, Département d'Études Cognitives, ENS, PSL University, Paris, France
| | - Yohana Lévêque
- University Lyon 1, Lyon, France.,CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Lyon, France
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
| | - Barbara Tillmann
- University Lyon 1, Lyon, France.,CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Lyon, France
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
| |
Collapse
|
34
|
Sihvonen AJ, Särkämö T, Rodríguez-Fornells A, Ripollés P, Münte TF, Soinila S. Neural architectures of music - Insights from acquired amusia. Neurosci Biobehav Rev 2019; 107:104-114. [PMID: 31479663 DOI: 10.1016/j.neubiorev.2019.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
The ability to perceive and produce music is a quintessential element of human life, present in all known cultures. Modern functional neuroimaging has revealed that music listening activates a large-scale bilateral network of cortical and subcortical regions in the healthy brain. Even the most accurate structural studies do not reveal which brain areas are critical and causally linked to music processing. Such questions may be answered by analysing the effects of focal brain lesions in patients´ ability to perceive music. In this sense, acquired amusia after stroke provides a unique opportunity to investigate the neural architectures crucial for normal music processing. Based on the first large-scale longitudinal studies on stroke-induced amusia using modern multi-modal magnetic resonance imaging (MRI) techniques, such as advanced lesion-symptom mapping, grey and white matter morphometry, tractography and functional connectivity, we discuss neural structures critical for music processing, consider music processing in light of the dual-stream model in the right hemisphere, and propose a neural model for acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Department of Neurosciences, University of Helsinki, Finland; Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland.
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland
| | - Antoni Rodríguez-Fornells
- Department of Cognition, University of Barcelona, Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Institució Catalana de recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Pablo Ripollés
- Department of Psychology, New York University and Music and Audio Research Laboratory, New York University, USA
| | - Thomas F Münte
- Department of Neurology and Institute of Psychology II, University of Lübeck, Germany
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital, Department of Neurology, University of Turku, Finland
| |
Collapse
|
35
|
Verbal and Musical Short-Term Memory: Evidence for Shared Serial Order Processes? Psychol Belg 2019; 59:177-205. [PMID: 31328016 PMCID: PMC6625548 DOI: 10.5334/pb.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study explored the validity of an integrative framework for verbal and musical short-term memory (STM). Following this framework, access to domain-specific long-term knowledge bases supports the processing of musical and verbal item information in STM, while domain-general ordering processes support the representation of serial order information in the two domains. We exposed participants to verbal and musical STM tasks assessing either item information, order information, or both item and order information. Using an interindividual differences approach, we observed that performance in item-based STM tasks was not strongly associated between musical and verbal domains. In contrast, strong between-domain associations were observed for STM tasks assessing processing of verbal order and musical rhythm information. These preliminary results are overall in agreement with an integrative approach of verbal and musical STM. At the same time, the results highlight the difficulty of measuring serial order processing in the musical STM domain in a direct and specific manner.
Collapse
|
36
|
Albouy P, Peretz I, Bermudez P, Zatorre RJ, Tillmann B, Caclin A. Specialized neural dynamics for verbal and tonal memory: fMRI evidence in congenital amusia. Hum Brain Mapp 2018; 40:855-867. [PMID: 30381866 DOI: 10.1002/hbm.24416] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Behavioral and neuropsychological studies have suggested that tonal and verbal short-term memory are supported by specialized neural networks. To date however, neuroimaging investigations have failed to confirm this hypothesis. In this study, we investigated the hypothesis of distinct neural resources for tonal and verbal memory by comparing typical nonmusician listeners to individuals with congenital amusia, who exhibit pitch memory impairments with preserved verbal memory. During fMRI, amusics and matched controls performed delayed-match-to-sample tasks with tones and words and perceptual control tasks with the same stimuli. For tonal maintenance, amusics showed decreased activity in the right auditory cortex, inferior frontal gyrus (IFG) and dorso-lateral-prefrontal cortex (DLPFC). Moreover, they exhibited reduced right-lateralized functional connectivity between the auditory cortex and the IFG during tonal encoding and between the IFG and the DLPFC during tonal maintenance. In contrasts, amusics showed no difference compared with the controls for verbal memory, with activation in the left IFG and left fronto-temporal connectivity. Critically, we observed a group-by-material interaction in right fronto-temporal regions: while amusics recruited these regions less strongly for tonal memory than verbal memory, control participants showed the reversed pattern (tonal > verbal). By benefitting from the rare condition of amusia, our findings suggest specialized cortical systems for tonal and verbal short-term memory in the human brain.
Collapse
Affiliation(s)
- Philippe Albouy
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,University Lyon 1, Lyon, France.,Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Patrick Bermudez
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,University Lyon 1, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|