1
|
Szabó Á, Galla Z, Spekker E, Szűcs M, Martos D, Takeda K, Ozaki K, Inoue H, Yamamoto S, Toldi J, Ono E, Vécsei L, Tanaka M. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. FRONT BIOSCI-LANDMRK 2025; 30:25706. [PMID: 39862084 DOI: 10.31083/fbl25706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUNDS Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced by the aadat (kat2) gene-encoded mitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of deleting the KYN enzyme gene. METHODS In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion, memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-type mice. RESULTS Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension, anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid, and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole pathway metabolite. CONCLUSIONS This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Eleonóra Spekker
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Keiko Takeda
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinuyo Ozaki
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Hiromi Inoue
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sayo Yamamoto
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| |
Collapse
|
2
|
Cauda F, Manuello J, Crocetta A, Duca S, Costa T, Liloia D. Meta-analytic connectivity perturbation analysis (MACPA): a new method for enhanced precision in fMRI connectivity analysis. Brain Struct Funct 2024; 230:17. [PMID: 39718568 DOI: 10.1007/s00429-024-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
Co-activation of distinct brain areas provides a valuable measure of functional interaction, or connectivity, between them. One well-validated way to investigate the co-activation patterns of a precise area is meta-analytic connectivity modeling (MACM), which performs a seed-based meta-analysis on task-based functional magnetic resonance imaging (task-fMRI) data. While MACM stands as a powerful automated tool for constructing robust models of whole-brain human functional connectivity, its inherent limitation lies in its inability to capture the distinct interrelationships among multiple brain regions. Consequently, the connectivity patterns highlighted through MACM capture the direct relationship of the seed region with third brain regions, but also a (less informative) residual relationship between the third regions themselves. As a consequence of this, this technique does not allow to evaluate to what extent the observed connectivity pattern is really associated with the fact that the seed region is activated, or it just reflects spurious co-activations unrelated with it. In order to overcome this methodological gap, we introduce a meta-analytic Bayesian-based method, called meta-analytic connectivity perturbation analysis (MACPA), that allows to identify the unique contribution of a seed region in shaping whole-brain connectivity. We validate our method by analyzing one of the most complex and dynamic structures of the human brain, the amygdala, indicating that MACPA may be especially useful for delineating region-wise co-activation networks.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy.
- Move'N'Brains Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Tanaka M, Vécsei L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024; 12:1083. [PMID: 38791045 PMCID: PMC11117868 DOI: 10.3390/biomedicines12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Welcome to Biomedicines' 10th Anniversary Special Issue, a journey through the human mind's labyrinth and complex neurological pathways [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Tanaka M, Vécsei L. From Lab to Life: Exploring Cutting-Edge Models for Neurological and Psychiatric Disorders. Biomedicines 2024; 12:613. [PMID: 38540226 PMCID: PMC10968028 DOI: 10.3390/biomedicines12030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Neuroscience, neurology, and psychiatry are rapidly evolving fields that aim to understand the complex mechanisms underlying brain function and dysfunction, as well as to develop effective interventions for various neurological and psychiatric disorders [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Liloia D, Cauda F, Uddin LQ, Manuello J, Mancuso L, Keller R, Nani A, Costa T. Revealing the Selectivity of Neuroanatomical Alteration in Autism Spectrum Disorder via Reverse Inference. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1075-1083. [PMID: 35131520 DOI: 10.1016/j.bpsc.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although neuroimaging research has identified atypical neuroanatomical substrates in individuals with autism spectrum disorder (ASD), it is at present unclear whether and to what extent disorder-selective gray matter alterations occur in this spectrum of conditions. In fact, a growing body of evidence shows a substantial overlap between the pathomorphological changes across different brain diseases, which may complicate identification of reliable neural markers and differentiation of the anatomical substrates of distinct psychopathologies. METHODS Using a novel data-driven and Bayesian methodology with published voxel-based morphometry data (849 peer-reviewed experiments and 22,304 clinical subjects), this study performs the first reverse inference investigation to explore the selective structural brain alteration profile of ASD. RESULTS We found that specific brain areas exhibit a >90% probability of gray matter alteration selectivity for ASD: the bilateral precuneus (Brodmann area 7), right inferior occipital gyrus (Brodmann area 18), left cerebellar lobule IX and Crus II, right cerebellar lobule VIIIA, and right Crus I. Of note, many brain voxels that are selective for ASD include areas that are posterior components of the default mode network. CONCLUSIONS The identification of these spatial gray matter alteration patterns offers new insights into understanding the complex neurobiological underpinnings of ASD and opens attractive prospects for future neuroimaging-based interventions.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
6
|
Costa T, Manuello J, Cauda F, Liloia D. Retrospective Bayesian Evidence of Null Effect in Two Decades of Alzheimer's Disease Clinical Trials. J Alzheimers Dis 2023; 91:531-535. [PMID: 36442201 DOI: 10.3233/jad-220942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite intense research on Alzheimer's disease, no validated treatment able to reverse symptomatology or stop disease progression exists. A recent systematic review by Kim and colleagues evaluated possible reasons behind the failure of the majority of the clinical trials. As the focus was on methodological factors, no statistical trends were examined in detail. Here, we aim to complete this picture leveraging on Bayesian analysis. In particular, we tested whether the failure of those clinical trials was essentially due to insufficient statistical power or to lack of a true effect. The strong Bayes' Factor obtained supported the latter hypothesis.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders. Brain Imaging Behav 2023; 17:257-269. [PMID: 36633738 PMCID: PMC10049951 DOI: 10.1007/s11682-022-00754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
Social and non-social deficits in autism spectrum disorders (ASD) persist into adulthood and may share common regions of aberrant neural activations. The current meta-analysis investigated activation differences between ASD and neurotypical controls irrespective of task type. Activation likelihood estimation meta-analyses were performed to examine consistent hypo-activated and/or hyper-activated regions for all tasks combined, and for social and non-social tasks separately; meta-analytic connectivity modelling and behavioral/paradigm analyses were performed to examine co-activated regions and associated behaviors. One hundred studies (mean age range = 18-41 years) were included. For all tasks combined, the ASD group showed significant (p < .05) hypo-activation in one cluster around the left amygdala (peak - 26, -2, -20, volume = 1336 mm3, maximum ALE = 0.0327), and this cluster co-activated with two other clusters around the right cerebellum (peak 42, -56, -22, volume = 2560mm3, maximum ALE = 0.049) Lobule VI/Crus I and the left fusiform gyrus (BA47) (peak - 42, -46, -18, volume = 1616 mm3, maximum ALE = 0.046) and left cerebellum (peak - 42, -58, -20, volume = 1616mm3, maximum ALE = 0.033) Lobule VI/Crus I. While the left amygdala was associated with negative emotion (fear) (z = 3.047), the left fusiform gyrus/cerebellum Lobule VI/Crus I cluster was associated with language semantics (z = 3.724) and action observation (z = 3.077). These findings highlight the left amygdala as a region consistently hypo-activated in ASD and suggest the potential involvement of fusiform gyrus and cerebellum in social cognition in ASD. Future research should further elucidate if and how amygdala-fusiform/cerebellar connectivity relates to social and non-social cognition in adults with ASD.
Collapse
|
8
|
Mondok C, Wiener M. Selectivity of timing: A meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front Hum Neurosci 2023; 16:1000995. [PMID: 36684845 PMCID: PMC9851378 DOI: 10.3389/fnhum.2022.1000995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Over the last few decades, many researchers have investigated time perception and how it is processed in the brain. Past studies have identified cortical and subcortical regions that play an important role in implicit and/or explicit timing tasks. In regard to timing, different regions appear to have roles of varying importance depending on the duration (sub-second vs. supra-second), type of task (such as involving motor responses or passively observing stimuli), and modality (such as auditory, visual, and sensorimotor) resulting in the literature reporting divergent results that are contingent on the specifics of the task. This meta-analysis aims at identifying regions that show activation only for explicit timing tasks through reverse inference. As such, two datasets (the first including studies that involved explicit timing tasks while the second did not) were compared using the activation likelihood estimation (ALE) algorithm. Reverse inference was implemented through Bayes factor modeling, which allowed for the comparison of the activated regions between the two ALE-maps. Results showed a constellation of regions that exhibited selective activation likelihood in explicit timing tasks with the largest posterior probability of activation resulting in the left supplementary motor area (SMA) and the bilateral insula. Some areas that have been dubbed critical for time perception in past studies (i.e., the cerebellum) did not exhibit prevalent activation after analyses.
Collapse
|
9
|
Mancuso L, Cavuoti-Cabanillas S, Liloia D, Manuello J, Buzi G, Cauda F, Costa T. Tasks activating the default mode network map multiple functional systems. Brain Struct Funct 2022; 227:1711-1734. [PMID: 35179638 PMCID: PMC9098625 DOI: 10.1007/s00429-022-02467-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Recent developments in network neuroscience suggest reconsidering what we thought we knew about the default mode network (DMN). Although this network has always been seen as unitary and associated with the resting state, a new deconstructive line of research is pointing out that the DMN could be divided into multiple subsystems supporting different functions. By now, it is well known that the DMN is not only deactivated by tasks, but also involved in affective, mnestic, and social paradigms, among others. Nonetheless, it is starting to become clear that the array of activities in which it is involved, might also be extended to more extrinsic functions. The present meta-analytic study is meant to push this boundary a bit further. The BrainMap database was searched for all experimental paradigms activating the DMN, and their activation likelihood estimation maps were then computed. An additional map of task-induced deactivations was also created. A multidimensional scaling indicated that such maps could be arranged along an anatomo-psychological gradient, which goes from midline core activations, associated with the most internal functions, to that of lateral cortices, involved in more external tasks. Further multivariate investigations suggested that such extrinsic mode is especially related to reward, semantic, and emotional functions. However, an important finding was that the various activation maps were often different from the canonical representation of the resting-state DMN, sometimes overlapping with it only in some peripheral nodes, and including external regions such as the insula. Altogether, our findings suggest that the intrinsic-extrinsic opposition may be better understood in the form of a continuous scale, rather than a dichotomy.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | | | - Donato Liloia
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Giulia Buzi
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Franco Cauda
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| |
Collapse
|
10
|
Costa T, Manuello J, Ferraro M, Liloia D, Nani A, Fox PT, Lancaster J, Cauda F. BACON: A tool for reverse inference in brain activation and alteration. Hum Brain Mapp 2021; 42:3343-3351. [PMID: 33991154 PMCID: PMC8249901 DOI: 10.1002/hbm.25452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 04/10/2021] [Indexed: 01/17/2023] Open
Abstract
Over the past decades, powerful MRI‐based methods have been developed, which yield both voxel‐based maps of the brain activity and anatomical variation related to different conditions. With regard to functional or structural MRI data, forward inferences try to determine which areas are involved given a mental function or a brain disorder. A major drawback of forward inference is its lack of specificity, as it suggests the involvement of brain areas that are not specific for the process/condition under investigation. Therefore, a different approach is needed to determine to what extent a given pattern of cerebral activation or alteration is specifically associated with a mental function or brain pathology. In this study, we present a new tool called BACON (Bayes fACtor mOdeliNg) for performing reverse inference both with functional and structural neuroimaging data. BACON implements the Bayes' factor and uses the activation likelihood estimation derived‐maps to obtain posterior probability distributions on the evidence of specificity with regard to a particular mental function or brain pathology.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Mario Ferraro
- FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy.,Department of Physics, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Jack Lancaster
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Nani A, Manuello J, Mancuso L, Liloia D, Costa T, Vercelli A, Duca S, Cauda F. The pathoconnectivity network analysis of the insular cortex: A morphometric fingerprinting. Neuroimage 2021; 225:117481. [PMID: 33122115 DOI: 10.1016/j.neuroimage.2020.117481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Brain disorders tend to impact on many different regions in a typical way: alterations do not spread randomly; rather, they seem to follow specific patterns of propagation that show a strong overlap between different pathologies. The insular cortex is one of the brain areas more involved in this phenomenon, as it seems to be altered by a wide range of brain diseases. On these grounds we thoroughly investigated the impact of brain disorders on the insular cortices analyzing the patterns of their structural co-alteration. We therefore investigated, applying a network analysis approach to meta-analytic data, 1) what pattern of gray matter alteration is associated with each of the insular cortex parcels; 2) whether or not this pattern correlates and overlaps with its functional meta-analytic connectivity; and, 3) the behavioral profile related to each insular co-alteration pattern. All the analyses were repeated considering two solutions: one with two clusters and another with three. Our study confirmed that the insular cortex is one of the most altered cerebral regions among the cortical areas, and exhibits a dense network of co-alteration including a prevalence of cortical rather than sub-cortical brain regions. Regions of the frontal lobe are the most involved, while occipital lobe is the less affected. Furthermore, the co-alteration and co-activation patterns greatly overlap each other. These findings provide significant evidence that alterations caused by brain disorders are likely to be distributed according to the logic of network architecture, in which brain hubs lie at the center of networks composed of co-altered areas. For the first time, we shed light on existing differences between insula sub-regions even in the pathoconnectivity domain.
Collapse
Affiliation(s)
- Andrea Nani
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Jordi Manuello
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Donato Liloia
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Tommaso Costa
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy.
| | - Alessandro Vercelli
- Neuroscience Institute of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy; Department of Neuroscience, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Franco Cauda
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
12
|
Palaniyappan L, Sukumar N. Reconsidering brain tissue changes as a mechanistic focus for early intervention in psychiatry. J Psychiatry Neurosci 2020; 44:373-378. [PMID: 33119489 PMCID: PMC7595740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2024] Open
Affiliation(s)
- Lena Palaniyappan
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| | - Niron Sukumar
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| |
Collapse
|
13
|
Palaniyappan L, Sukumar N. Reconsidering brain tissue changes as a mechanistic focus for early intervention in psychiatry. J Psychiatry Neurosci 2020; 45. [PMID: 33119489 PMCID: PMC7595740 DOI: 10.1503/jpn.200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Lena Palaniyappan
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| | - Niron Sukumar
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| |
Collapse
|