1
|
Jauregi‐Zinkunegi A, Gleason CE, Bendlin B, Okonkwo O, Hermann BP, Blennow K, Zetterberg H, Hogervorst E, Johnson SC, Langhough R, Mueller KD, Bruno D. Menopausal hormone therapy is associated with worse levels of Alzheimer's disease biomarkers in APOE ε4-carrying women: An observational study. Alzheimers Dement 2025; 21:e14456. [PMID: 39783876 PMCID: PMC11848176 DOI: 10.1002/alz.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Menopausal hormone therapy (MHT), along with the apolipoprotein E (APOE) ε4 allele, has been suggested as a possible risk factor for Alzheimer's disease (AD). However, the relationship between MHT and cerebrospinal fluid (CSF) biomarkers is unknown: we investigated this association, and whether APOE ε4 carrier status moderates it. METHODS In an observational study of 136 cognitively unimpaired female participants (Mage = 66.0; standard deviation = 6.3), we examined whether MHT use alone or in interaction with APOE ε4 carrier status was associated with CSF levels of phosphorylated tau (p-tau), amyloid beta (Aβ)40, Aβ42, p-tau/Aβ42, and Aβ42/40 ratios. RESULTS Significant interactions were found between APOE ε4 and MHT use for CSF biomarkers. APOE ε4 carriers who were MHT users showed worse levels of CSF p-tau/Aβ42 and Aβ42/40 ratios than all other users and non-users. DISCUSSION The presence of both APOE ε4 and MHT may be associated with elevated amyloid deposition and AD pathology in this sample of participants who demonstrated high familial AD risk. HIGHLIGHTS Significant interactions were found between apolipoprotein E (APOE) ε4 and menopausal hormone therapy (MHT) use for cerebrospinal fluid (CSF) phosphorylated tau (p-tau)/amyloid beta (Aβ)42 and Aβ42/40 ratios. APOE ε4 carriers who were MHT users showed worse levels of CSF biomarkers than non-users and non-carriers, both users and non-users. Younger age at MHT initiation was associated with worse levels of the p-tau/Aβ42 and Aβ42/40 ratios in carriers only. The presence of both APOE ε4 carriage and MHT use may be associated with elevated amyloid deposition and AD pathology. Further studies with larger sample sizes are necessary to confirm the differences observed in the current study.
Collapse
Affiliation(s)
| | - Carey E. Gleason
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Geriatric Research, Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Barbara Bendlin
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseInstitute of Neurology, UCLLondonUK
- UK Dementia Research Institute, UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Science ParkHong KongChina
| | - Eef Hogervorst
- School of Sports Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Geriatric Research, Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Rebecca Langhough
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Kimberly D. Mueller
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Communication Sciences and DisordersUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Davide Bruno
- School of PsychologyLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
2
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2025; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Christensen A, McGill CJ, Qian W, Pike CJ. Effects of obesogenic diet and 17β-estradiol in female mice with APOE 3/3, 3/4, and 4/4 genotypes. Front Aging Neurosci 2024; 16:1415072. [PMID: 39347015 PMCID: PMC11427389 DOI: 10.3389/fnagi.2024.1415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The main genetic risk factor for Alzheimer's disease (AD) is the apolipoprotein E ε4 allele (APOE4). AD risk associated with APOE4 disproportionately affects women. Furthermore, human and rodent studies indicate that the cognitive deficits associated with APOE4 are greater in females. One modifiable AD risk factor is obesity during middle age. Given that approximately two-thirds of US adults are overweight, it is important to understand how obesity affects AD risk, how it interacts with APOE4, and the extent to which its detrimental effects can be mitigated with therapeutics. One intervention study for women is estrogen-based hormone therapy, which can exert numerous health benefits when administered in early middle age. No experimental studies have examined the interactions among APOE4, obesity, and hormone therapy in aging females. To begin to explore these issues, we considered how obesity outcomes are affected by treatment with estradiol at the onset of middle age in female mice with human APOE3 and APOE4. Furthermore, to explore how gene dosage affects outcomes, we compared mice homozygous for APOE3 (3/3) and homozygous (4/4) or hemizygous (3/4) for APOE4. Mice were examined over a 4-month period that spans the transition into reproductive senescence, a normal age-related change that models many aspects of human perimenopause. Beginning at 5 months of age, mice were maintained on a control diet (10% fat) or high-fat diet (HFD; 60% fat). After 8 weeks, by which time obesity was present in all HFD groups, mice were implanted with an estradiol or vehicle capsule that was maintained for the final 8 weeks. Animals were assessed on a range of metabolic and neural measures. Overall, APOE4 was associated with poorer metabolic function and cognitive performance. However, an obesogenic diet induced relatively greater impairments in metabolic function and cognitive performance in APOE3/3 mice. Estradiol treatment improved metabolic and cognitive outcomes across all HFD groups, with APOE4/4 generally exhibiting the greatest benefit. APOE3/4 mice were intermediate to the homozygous genotypes on many measures but also exhibited unique profiles. Together, these findings highlight the importance of the APOE genotype as a modulator of the risks associated with obesity and the beneficial outcomes of estradiol.
Collapse
Affiliation(s)
| | | | | | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Lee BH, Cevizci M, Lieblich SE, Ibrahim M, Wen Y, Eid RS, Lamers Y, Duarte-Guterman P, Galea LAM. Exploring the parity paradox: Differential effects on neuroplasticity and inflammation by APOEe4 genotype at middle age. Brain Behav Immun 2024; 120:54-70. [PMID: 38772427 DOI: 10.1016/j.bbi.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Female sex and Apolipoprotein E (APOE) ε4 genotype are top non-modifiable risk factors for Alzheimer's disease (AD). Although female-unique experiences like parity (pregnancy and motherhood) have positive effects on neuroplasticity at middle age, previous pregnancy may also contribute to AD risk. To explore these seemingly paradoxical long-term effects of parity, we investigated the impact of parity with APOEε4 genotype by examining behavioural and neural biomarkers of brain health in middle-aged female rats. Our findings show that primiparous (parous one time) hAPOEε4 rats display increased use of a non-spatial cognitive strategy and exhibit decreased number and recruitment of new-born neurons in the ventral dentate gyrus of the hippocampus in response to spatial working memory retrieval. Furthermore, primiparity and hAPOEε4 genotype synergistically modulate inflammatory markers in the ventral hippocampus. Collectively, these findings demonstrate that previous parity in hAPOEε4 rats confers an added risk to present with reduced activity and engagement of the hippocampus as well as elevated pro-inflammatory signaling, and underscore the importance of considering female-specific factors and genotype in health research.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Muna Ibrahim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Rand S Eid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Lamers
- Food Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
5
|
Crestol A, de Lange AMG, Schindler L, Subramaniapillai S, Nerland S, Oppenheimer H, Westlye LT, Andreassen OA, Agartz I, Tamnes CK, Barth C. Linking menopause-related factors, history of depression, APOE ε4, and proxies of biological aging in the UK biobank cohort. Horm Behav 2024; 164:105596. [PMID: 38944998 PMCID: PMC11372440 DOI: 10.1016/j.yhbeh.2024.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.
Collapse
Affiliation(s)
- Arielle Crestol
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ann-Marie G de Lange
- Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Louise Schindler
- Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sivaniya Subramaniapillai
- Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hannah Oppenheimer
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm Health Care Services, Karolinska Institute, Stockholm County Council, Stockholm, Sweden; Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian K Tamnes
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
6
|
Wang YT, Therriault J, Tissot C, Servaes S, Rahmouni N, Macedo AC, Fernandez-Arias J, Mathotaarachchi SS, Stevenson J, Lussier FZ, Benedet AL, Pascoal TA, Ashton NJ, Zetterberg H, Blennow K, Gauthier S, Rosa-Neto P. Hormone therapy is associated with lower Alzheimer's disease tau biomarkers in post-menopausal females -evidence from two independent cohorts. Alzheimers Res Ther 2024; 16:162. [PMID: 39034389 PMCID: PMC11265084 DOI: 10.1186/s13195-024-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Females represent approximately 70% of the Alzheimer's disease (AD) cases and the literature has proposed a connection between the decreased estrogen levels during menopause and an increased AD risk. Previous investigations have predominantly focused on assessing how hormone therapy (HT) affects the likelihood of AD development and cognitive deterioration. However, as the research framework has shifted toward a biomarker-defined AD and alterations in specific biomarkers could take place years before cognitive decline becomes discernible, it is crucial to examine how HT influences AD biomarkers. The main goal of this study was to evaluate the impact of HT on AD biomarker-informed pathophysiology in both cognitively unimpaired (CU) and cognitively impaired (CI) post-menopausal females across the aging and AD spectrum. METHODS This cross-sectional study included post-menopausal females without HT history (HT-) and with HT (HT+) at the time of PET imaging assessment from two cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) cohort, and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Participants underwent magnetic resonance imaging (MRI), positron emission tomography (PET) and biofluid collection. Voxel-based t-tests were performed to assess the differences in amyloid-β (Aβ) and tau neurofibrillary tangles (NFTs) loads between HT- and HT + females. Linear regression models with interaction terms were also conducted to examine the interactive effects of HT and Aβ-PET on regional tau-PET. RESULTS HT + females demonstrated significantly lower tau-PET standardized uptake value ratio (SUVR) in Braak I-II ROIs (P < 0.05, Hedges' g = 0.73), Braak III-IV ROIs (P < 0.0001, Hedges' g = 0.74) and Braak V-VI ROIs (P < 0.0001, Hedges' g = 0.69) compared to HT- females. HT + females also showed significantly lower CSF p-tau181 (P < 0.001) and plasma p-tau181 (P < 0.0001) concentrations. Additionally, results from multivariate linear regression models indicated that HT interacts with cortical Aβ and is associated with lower regional NFT load. CONCLUSIONS Overall, findings from this observational study suggest that HT is associated with lower tau neuroimaging and fluid biomarkers in postmenopausal females. Due to the close link between tau and cognition, this study highlights the need for large randomized controlled trials designed to systemically study the influences of HT on AD biomarkers and disease progression.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Arthur Cassa Macedo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Sulantha S Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Firoza Z Lussier
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada.
- Montreal Neurological Institute, Montreal, QC, Canada.
- The McGill University Research Centre for Studies in Aging, 6875 LaSalle Boulevard, H4H 1R3, Montreal, QC, Canada.
| |
Collapse
|
7
|
Wugalter KA, Schroeder RA, Thurston RC, Wu M, Aizenstein HJ, Cohen AD, Kamboh MI, Karikari TK, Derby CA, Maki PM. Associations of endogenous estrogens, plasma Alzheimer's disease biomarkers, and APOE4 carrier status on regional brain volumes in postmenopausal women. Front Aging Neurosci 2024; 16:1426070. [PMID: 39044806 PMCID: PMC11263297 DOI: 10.3389/fnagi.2024.1426070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Background Women carrying the APOE4 allele are at greater risk of developing Alzheimer's disease (AD) from ages 65-75 years compared to men. To better understand the elevated risk conferred by APOE4 carrier status among midlife women, we investigated the separate and interactive associations of endogenous estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain volumes in a sample of late midlife postmenopausal women. Methods Participants were enrolled in MsBrain, a cohort study of postmenopausal women (n = 171, mean age = 59.4 years, mean MoCA score = 26.9; race = 83.2% white, APOE4 carriers = 40). Serum estrone (E1) and estradiol (E2) levels were assessed using liquid chromatography-tandem mass spectrometry. APOE genotype was determined using TaqMan SNP genotyping assays. Plasma AD biomarkers were measured using single molecule array technology. Cortical volume was measured and segmented by FreeSurfer software using individual T1w MPRAGE images. Multiple linear regression models were conducted to determine whether separate and interactive associations between endogenous estrogen levels, plasma AD biomarkers (Aβ42/Aβ40, Aβ42/p-tau181), and APOE4 carrier status predict regional brain volume (21 regions per hemisphere, selected a priori); and, whether significant interactive associations between estrogens and AD biomarkers on brain volume differed by APOE4 carrier status. Results There was no main effect of APOE4 carrier status on regional brain volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did not associate with regional brain volumes, except for positive associations with left caudal middle frontal gyrus and fusiform volumes. The interactive association of estrogens and APOE4 carrier status on brain volume was not significant for any region. The interactive association of estrogens and plasma AD biomarkers predicted brain volume of several regions. Higher E1 and E2 were more strongly associated with greater regional brain volumes among women with a poorer AD biomarker profile (lower Aβ42/40, lower Aβ42/p-tau181 ratios). In APOE4-stratified analyses, these interactions were driven by non-APOE4 carriers. Conclusion We demonstrate that the brain volumes of postmenopausal women with poorer AD biomarker profiles benefit most from higher endogenous estrogen levels. These findings are driven by non-APOE4 carriers, suggesting that APOE4 carriers may be insensitive to the favorable effects of estrogens on brain volume in the postmenopause.
Collapse
Affiliation(s)
- Katrina A. Wugalter
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rachel A. Schroeder
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rebecca C. Thurston
- Departments of Psychiatry, Epidemiology, Psychology, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Ilyas Kamboh
- Departments of Psychiatry, Human Genetics, and Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas K. Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carol A. Derby
- The Saul R. Korey Department of Neurology, Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M. Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Magalhães TNC, Hicks TH, Jackson TB, Ballard HK, Herrejon IA, Bernard JA. Sex-steroid hormones relate to cerebellar structure and functional connectivity across adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600454. [PMID: 38979355 PMCID: PMC11230255 DOI: 10.1101/2024.06.24.600454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Aging involves complex biological changes that affect disease susceptibility and aging trajectories. Although females typically live longer than males, they have a higher susceptibility to diseases like Alzheimer's, speculated to be influenced by menopause, and reduced ovarian hormone production. Understanding sex-specific differences is crucial for personalized medical interventions and gender equality in health. Our study aims to elucidate sex differences in regional cerebellar structure and connectivity during normal aging by investigating both structural and functional connectivity variations, with a focus on investigating these differences in the context of sex-steroid hormones. The study included 138 participants (mean age = 57(13.3) years, age range = 35-86 years, 54% women). The cohort was divided into three groups: 38 early middle-aged individuals (EMA) (mean age = 41(4.7) years), 48 late middle-aged individuals (LMA) (mean age = 58(4) years), and 42 older adults (OA) (mean age = 72(6.3) years). All participants underwent MRI scans, and saliva samples were collected for sex-steroid hormone quantification (17β-estradiol (E), progesterone (P), and testosterone (T)). We found less connectivity in females between Lobule I-IV and the cuneus, and greater connectivity in females between Crus I, Crus II, and the precuneus with increased age. Higher 17β-estradiol levels were linked to greater connectivity in Crus I and Crus II cerebellar subregions. Analyzing all participants together, testosterone was associated with both higher and lower connectivity in Lobule I-IV and Crus I, respectively, while higher progesterone levels were linked to lower connectivity in females. Structural differences were observed, with EMA males having larger volumes compared to LMA and OA groups, particularly in the right I-IV, right Crus I, right V, and right VI. EMA females showed higher volumes in the right lobules V and VI. These results highlight the significant role of sex hormones in modulating cerebellar connectivity and structure across adulthood, emphasizing the need to consider sex and hormonal status in neuroimaging studies to better understand age-related cognitive decline and neurological disorders.
Collapse
Affiliation(s)
- Thamires N C Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tracey H Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - T Bryan Jackson
- Vanderbilt Memory & Alzheimer's Center, Nashville, Tennessee, United States of America
| | - Hannah K Ballard
- Department of Psychological Sciences, William Marsh Rice University, Houston, Texas, United States of America
| | - Ivan A Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Psychological Sciences, William Marsh Rice University, Houston, Texas, United States of America
| |
Collapse
|
10
|
Cao Q, Zhang J, Hao X, Du S, Ao L, Zhu H, Huang W. The association between testosterone and serum soluble klotho in the females: evidence from the NHANES database. Front Endocrinol (Lausanne) 2024; 15:1335611. [PMID: 38818507 PMCID: PMC11137665 DOI: 10.3389/fendo.2024.1335611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Objective This research aimed to elucidate the relationship between testosterone levels and serum soluble klotho (S-klotho) concentrations in females aged 40-79 years using the National Health and Nutrition Examination Survey (NHANES) dataset. Design Associations between testosterone and S-klotho were assessed through multivariable linear regression methodologies, spanning nonadjusted, minimally adjusted, and fully adjusted models. Settings The investigation was conducted as a cross-sectional analysis utilizing the NHANES database. Participants From 20,146 NHANES participants between 2013 and 2016, 2,444 females met the stipulated inclusion and exclusion criteria. Results Free androgen index (FAI) showcased a negative correlation with S-klotho levels across all regression models (nonadjusted: β -7.08, 95% CI -13.39- -0.76; minimally adjusted: β -9.73, 95% CI -16.6- -2.84; fully adjusted: β -7.63, 95% CI -14.75-0.51). Conversely, total testosterone did not exhibit significant associations with S-klotho across the models. In the nonadjusted model, estradiol was positively associated with S-klotho concentrations (β 0.14, 95% CI 0.05-0.23), but this significance was not retained in subsequent regression models. Conclusion Findings suggest that in U.S. females aged 40-79 years, FAI negatively correlates with S-klotho concentrations, while there is the lack of significant associations for total testosterone and estradiol.
Collapse
Affiliation(s)
- Qi Cao
- Department of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiani Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaohu Hao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyu Du
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lu Ao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huili Zhu
- Department of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wei Huang
- Department of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhang YN, Chen XL, Guo LY, Jiang PR, Lu H, Pan K, Guo L, Hu YT, Bao AM. Downregulation of peripheral luteinizing hormone rescues ovariectomy-associated cognitive deficits in APP/PS1 mice. Neurobiol Aging 2024; 135:60-69. [PMID: 38185053 DOI: 10.1016/j.neurobiolaging.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease (AD) is more prevalent in women than men, supposing due to the decline of estrogens in menopause, accompanied by increased gonadotropins such as luteinizing hormone (LH). We and others found that the transcription factor early growth response-1 (EGR1) regulates cholinergic function including the expression of acetylcholinesterase (AChE) and plays a significant role in cognitive decline of AD. Here we investigated in APP/PS1 mice by ovariectomy (OVX) and estradiol (E2) supplementation or inhibition of LH the effect on hippocampus-related cognition and related molecular changes. We found that OVX-associated cognitive impairment was accompanied by increased dorsal hippocampal EGR1 expression, which was rescued by downregulating peripheral LH rather than by supplementing E2. We also found in postmortem AD brains a higher expression of pituitary LH-mRNA and higher EGR1 expression in the posterior hippocampus. Both, in human and mice, there was a significant positive correlation between respectively posterior/dorsal hippocampal EGR1 and peripheral LH expression. We conclude that peripheral increased LH and increased posterior hippocampal EGR1 plays a significant role in AD pathology.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Lu Chen
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Ling-Yu Guo
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Pei-Ran Jiang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Brain Bank for Health and Disease, Hangzhou, China
| | - Hui Lu
- National Brain Bank for Health and Disease, Hangzhou, China
| | - Kai Pan
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lei Guo
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
12
|
Ambikairajah A, Khondoker M, Morris E, de Lange AG, Saleh RNM, Minihane AM, Hornberger M. Investigating the synergistic effects of hormone replacement therapy, apolipoprotein E and age on brain health in the UK Biobank. Hum Brain Mapp 2024; 45:e26612. [PMID: 38339898 PMCID: PMC10836173 DOI: 10.1002/hbm.26612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Global prevalence of Alzheimer's Disease has a strong sex bias, with women representing approximately two-thirds of the patients. Yet, the role of sex-specific risk factors during midlife, including hormone replacement therapy (HRT) and their interaction with other major risk factors for Alzheimer's Disease, such as apolipoprotein E (APOE)-e4 genotype and age, on brain health remains unclear. We investigated the relationship between HRT (i.e., use, age of initiation and duration of use) and brain health (i.e., cognition and regional brain volumes). We then consider the multiplicative effects of HRT and APOE status (i.e., e2/e2, e2/e3, e3/e3, e3/e4 and e4/e4) via a two-way interaction and subsequently age of participants via a three-way interaction. Women from the UK Biobank with no self-reported neurological conditions were included (N = 207,595 women, mean age = 56.25 years, standard deviation = 8.01 years). Generalised linear regression models were computed to quantify the cross-sectional association between HRT and brain health, while controlling for APOE status, age, time since attending centre for completing brain health measure, surgical menopause status, smoking history, body mass index, education, physical activity, alcohol use, ethnicity, socioeconomic status, vascular/heart problems and diabetes diagnosed by doctor. Analyses of structural brain regions further controlled for scanner site. All brain volumes were normalised for head size. Two-way interactions between HRT and APOE status were modelled, in addition to three-way interactions including age. Results showed that women with the e4/e4 genotype who have used HRT had 1.82% lower hippocampal, 2.4% lower parahippocampal and 1.24% lower thalamus volumes than those with the e3/e3 genotype who had never used HRT. However, this interaction was not detected for measures of cognition. No clinically meaningful three-way interaction between APOE, HRT and age was detected when interpreted relative to the scales of the cognitive measures used and normative models of ageing for brain volumes in this sample. Differences in hippocampal volume between women with the e4/e4 genotype who have used HRT and those with the e3/e3 genotype who had never used HRT are equivalent to approximately 1-2 years of hippocampal atrophy observed in typical health ageing trajectories in midlife (i.e., 0.98%-1.41% per year). Effect sizes were consistent within APOE e4/e4 group post hoc sensitivity analyses, suggesting observed effects were not solely driven by APOE status and may, in part, be attributed to HRT use. Although, the design of this study means we cannot exclude the possibility that women who have used HRT may have a predisposition for poorer brain health.
Collapse
Affiliation(s)
- Ananthan Ambikairajah
- Discipline of Psychology, Faculty of HealthUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Centre for Ageing Research and Translation, Faculty of HealthUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- National Centre for Epidemiology and Population HealthAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | | | - Ann‐Marie G. de Lange
- Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Rasha N. M. Saleh
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- Department of Clinical and Chemical Pathology, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Anne Marie Minihane
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- Norwich Institute of Healthy AgeingNorwichUK
| | | |
Collapse
|
13
|
Barth C, Crestol A, de Lange AMG, Galea LAM. Sex steroids and the female brain across the lifespan: insights into risk of depression and Alzheimer's disease. Lancet Diabetes Endocrinol 2023; 11:926-941. [PMID: 37865102 DOI: 10.1016/s2213-8587(23)00224-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/23/2023]
Abstract
Despite widespread sex differences in prevalence and presentation of numerous illnesses affecting the human brain, there has been little focus on the effect of endocrine ageing. Most preclinical studies have focused on males only, and clinical studies often analyse data by covarying for sex, ignoring relevant differences between the sexes. This sex- (and gender)-neutral approach is biased and contributes to the absence of targeted treatments and services for all sexes (and genders). Female health has been historically understudied, with grave consequences for their wellbeing and health equity. In this Review, we spotlight female brain health across the lifespan by informing on the role of sex steroids, particularly oestradiol, on the female brain and on risk for diseases more prevalent in females, such as depression and Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychology, University of Oslo, Oslo, Norway
| | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
14
|
Gregory S, Booi L, Jenkins N, Bridgeman K, Muniz-Terrera G, Farina FR. Hormonal contraception and risk for cognitive impairment or Alzheimer's disease and related dementias in young women: a scoping review of the evidence. Front Glob Womens Health 2023; 4:1289096. [PMID: 38025979 PMCID: PMC10679746 DOI: 10.3389/fgwh.2023.1289096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Women are significantly more likely to develop Alzheimer's disease and related dementias (ADRD) than men. Suggestions to explain the sex differences in dementia incidence have included the influence of sex hormones with little attention paid to date as to the effect of hormonal contraception on brain health. The aim of this scoping review is to evaluate the current evidence base for associations between hormonal contraceptive use by women and non-binary people in early adulthood and brain health outcomes. Methods A literature search was conducted using EMBASE, Medline and Google Scholar, using the keywords "hormonal contraception" OR "contraception" OR "contraceptive" AND "Alzheimer*" OR "Brain Health" OR "Dementia". Results Eleven papers were identified for inclusion in the narrative synthesis. Studies recruited participants from the UK, USA, China, South Korea and Indonesia. Studies included data from women who were post-menopausal with retrospective data collection, with only one study contemporaneously collecting data from participants during the period of hormonal contraceptive use. Studies reported associations between hormonal contraceptive use and a lower risk of ADRD, particularly Alzheimer's disease (AD), better cognition and larger grey matter volume. Some studies reported stronger associations with longer duration of hormonal contraceptive use, however, results were inconsistent. Four studies reported no significant associations between hormonal contraceptive use and measures of brain health, including brain age on MRI scans and risk of AD diagnosis. Discussion Further research is needed on young adults taking hormonal contraceptives, on different types of hormonal contraceptives (other than oral) and to explore intersections between sex, gender, race and ethnicity. Systematic Review Registration https://doi.org/10.17605/OSF.IO/MVX63, identifier: OSF.io: 10.17605/OSF.IO/MVX63.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Booi
- Memory and Aging Center, Global Brain Health Institute, Trinity College, Dublin, Ireland
- Centre for Dementia Research, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Natalie Jenkins
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Francesca R. Farina
- Memory and Aging Center, Global Brain Health Institute, Trinity College, Dublin, Ireland
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Duarte-Guterman P, Richard JE, Lieblich SE, Eid RS, Lamers Y, Galea LAM. Cellular and molecular signatures of motherhood in the adult and ageing rat brain. Open Biol 2023; 13:230217. [PMID: 37989220 PMCID: PMC10681025 DOI: 10.1098/rsob.230217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Pregnancy is marked by robust changes, including brain changes to volume, structure, connectivity and neuroplasticity. Although some brain changes are restricted to pregnancy and the postpartum, others are long-lasting. Few studies have examined possible mechanisms of these changes or the effects of multiple pregnancies. We characterized various cellular and molecular signatures of parity (nulliparous, primiparous, biparous) in the rat hippocampus. We investigated density of neural stems cells (Sox2), microglia (Iba-1) and levels of a synaptic protein (PSD-95), cell signalling pathways, neuroinflammation, and the tryptophan-kynurenine (TRP-KYN) pathway, one week after weaning their pups from the last pregnancy (age of dam: seven months) and in middle-age (age of dam: 13 months). Parity increased PSD-95 levels in both age groups and prevented the age-related decrease in neural stem cell density observed in nulliparous rats. Biparity increased cell signalling phosphoproteins (pp70S6K, S6RP) and number of microglia in the dentate gyrus, regardless of age. Parity resulted in transient changes to the TRP-KYN system. Thus, previous parity has lasting effects on synaptic plasticity with fewer lasting effects on inflammation and cell signalling phosphoproteins in the whole hippocampus.
Collapse
Affiliation(s)
- P. Duarte-Guterman
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - J. E. Richard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - S. E. Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. S. Eid
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Y. Lamers
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L. A. M. Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Korbmacher M, Gurholt TP, de Lange AMG, van der Meer D, Beck D, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Bio-psycho-social factors' associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants. Front Psychol 2023; 14:1117732. [PMID: 37359862 PMCID: PMC10288151 DOI: 10.3389/fpsyg.2023.1117732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6-82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions' influence on brain age in future studies.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ann-Marie G. de Lange
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Wrigglesworth J, Harding IH, Islam RM, Ward PGD, Woods RL, Bell RJ, McNeil JJ, Storey E, Egan G, Murray AM, Trevaks RE, Ward SA, Davis SR, Ryan J. The association between sex hormones and the change in brain-predicted age difference in older women. Clin Endocrinol (Oxf) 2023; 98:692-699. [PMID: 36807922 PMCID: PMC10073334 DOI: 10.1111/cen.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/17/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE The role of circulating sex hormones on structural brain ageing is yet to be established. This study explored whether concentrations of circulating sex hormones in older women are associated with the baseline and longitudinal changes in structural brain ageing, defined by the brain-predicted age difference (brain-PAD). DESIGN Prospective cohort study using data from NEURO and Sex Hormones in Older Women; substudies of the ASPirin in Reducing Events in the Elderly clinical trial. PATIENTS Community-dwelling older women (aged 70+ years). MEASUREMENTS Oestrone, testosterone, dehydroepiandrosterone (DHEA), and sex-hormone binding globulin (SHBG) were quantified from plasma samples collected at baseline. T1-weighted magnetic resonance imaging was performed at baseline, 1 and 3 years. Brain age was derived from whole brain volume using a validated algorithm. RESULTS The sample comprised of 207 women not taking medications known to influence sex hormone concentrations. A statistically higher baseline brain-PAD (older brain age relative to chronological age) was seen for women in the highest DHEA tertile compared with the lowest in the unadjusted analysis (p = .04). This was not significant when adjusted for chronological age, and potential confounding health and behavioural factors. Oestrone, testosterone and SHBG were not associated with brain-PAD cross-sectionally, nor were any of the examined sex hormones or SHBG associated with brain-PAD longitudinally. CONCLUSION No strong evidence of an association between circulating sex hormones and brain-PAD. Given there is prior evidence to suggests sex hormones may be important for brain ageing, further studies of circulating sex hormones and brain health in postmenopausal women are warranted.
Collapse
Affiliation(s)
- Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Ian H. Harding
- Monash Biomedical Imaging, Monash University, Melbourne, 3800, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne Victoria, Australia
| | - Rakibul M. Islam
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Phillip G. D. Ward
- Monash Biomedical Imaging, Monash University, Melbourne, 3800, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, 3800, Victoria Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australia
| | - Robyn L. Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Robin J. Bell
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, 3800, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australia
| | - Anne M. Murray
- Berman Centre for Outcomes & Clinical Research, Hennepin Healthcare Research Institute, Hennepin, Minneapolis, MN, 55404, USA
- Department of Medicine, Division of Geriatrics, Hennepin Healthcare, University of Minnesota, Minneapolis, MN, 55404, USA
| | - Ruth E. Trevaks
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Stephanie A. Ward
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, New South Wales, Australia
- Department of Geriatric Medicine, Prince of Wales Hospital, Randwick, 2031, New South Wales, Australia
| | - Susan R. Davis
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
- Department of Endocrinology and Diabetes, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| |
Collapse
|
18
|
Cumplido-Mayoral I, García-Prat M, Operto G, Falcon C, Shekari M, Cacciaglia R, Milà-Alomà M, Lorenzini L, Ingala S, Meije Wink A, Mutsaerts HJMM, Minguillón C, Fauria K, Molinuevo JL, Haller S, Chetelat G, Waldman A, Schwarz AJ, Barkhof F, Suridjan I, Kollmorgen G, Bayfield A, Zetterberg H, Blennow K, Suárez-Calvet M, Vilaplana V, Gispert JD. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex. eLife 2023; 12:e81067. [PMID: 37067031 PMCID: PMC10181824 DOI: 10.7554/elife.81067] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Marina García-Prat
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
| | - Sven Haller
- CIRD Centre d'Imagerie Rive DroiteGenevaSwitzerland
| | - Gael Chetelat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and BrainCyceronFrance
| | - Adam Waldman
- Centre for Dementia Prevention, Edinburgh Imaging, and UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institutes of Neurology and Healthcare Engineering, University College LondonLondonUnited Kingdom
| | | | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
- Servei de Neurologia, Hospital del MarBarcelonaSpain
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de CatalunyaBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
| | | | | | | | | |
Collapse
|
19
|
Long Y, Ouyang X, Yan C, Wu Z, Huang X, Pu W, Cao H, Liu Z, Palaniyappan L. Evaluating test-retest reliability and sex-/age-related effects on temporal clustering coefficient of dynamic functional brain networks. Hum Brain Mapp 2023; 44:2191-2208. [PMID: 36637216 PMCID: PMC10028647 DOI: 10.1002/hbm.26202] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/25/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023] Open
Abstract
The multilayer dynamic network model has been proposed as an effective method to understand the brain function. In particular, derived from the definition of clustering coefficient in static networks, the temporal clustering coefficient provides a direct measure of the topological stability of dynamic brain networks and shows potential in predicting altered brain functions. However, test-retest reliability and demographic-related effects on this measure remain to be evaluated. Using a data set from the Human Connectome Project (157 male and 180 female healthy adults; 22-37 years old), the present study investigated: (1) the test-retest reliability of temporal clustering coefficient across four repeated resting-state functional magnetic resonance imaging scans as measured by intraclass correlation coefficient (ICC); and (2) sex- and age-related effects on temporal clustering coefficient. The results showed that (1) the temporal clustering coefficient had overall moderate test-retest reliability (ICC > 0.40 over a wide range of densities) at both global and subnetwork levels, (2) female subjects showed significantly higher temporal clustering coefficient than males at both global and subnetwork levels, particularly within the default-mode and subcortical regions, and (3) temporal clustering coefficient of the subcortical subnetwork was positively correlated with age in young adults. The results of sex effects were robustly replicated in an independent REST-meta-MDD data set, while the results of age effects were not. Our findings suggest that the temporal clustering coefficient is a relatively reliable and reproducible approach for identifying individual differences in brain function, and provide evidence for demographically related effects on the human brain dynamic connectomes.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xuan Ouyang
- Department of Psychiatry, and National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chaogan Yan
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression Research, Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Zhipeng Wu
- Department of Psychiatry, and National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xiaojun Huang
- Department of PsychiatryJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Weidan Pu
- Medical Psychological InstituteThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Hengyi Cao
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
- Division of Psychiatry ResearchZucker Hillside HospitalGlen OaksNew YorkUSA
| | - Zhening Liu
- Department of Psychiatry, and National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Lena Palaniyappan
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
20
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Novakova Martinkova J, Ferretti MT, Ferrari A, Lerch O, Matuskova V, Secnik J, Hort J. Longitudinal progression of choroid plexus enlargement is associated with female sex, cognitive decline and ApoE E4 homozygote status. Front Psychiatry 2023; 14:1039239. [PMID: 36970283 PMCID: PMC10031049 DOI: 10.3389/fpsyt.2023.1039239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Choroid plexus (CP)-related mechanisms have been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. In this pilot study, we aimed to elucidate the association between longitudinal changes in CP volume, sex and cognitive impairment. Methods We assessed longitudinal changes in CP volume in a cohort of n = 613 subjects across n = 2,334 datapoints from ADNI 2 and ADNI-GO, belonging to cognitively unimpaired (CN), stable mild cognitive impairment (MCI), clinically diagnosed Alzheimer's disease dementia (AD) or convertor (to either AD or MCI) subgroups. CP volume was automatically segmented and used as a response variable in linear mixed effect models with random intercept clustered by patient identity. Temporal effects of select variables were assessed by interactions and subgroup analyses. Results We found an overall significant increase of CP volume in time (14.92 mm3 per year, 95% confidence interval, CI (11.05, 18.77), p < 0.001). Sex-disaggregated results showed an annual rate of increase 9.48 mm3 in males [95% CI (4.08, 14.87), p < 0.001], and 20.43 mm3 in females [95% CI (14.91, 25.93), p < 0.001], indicating more than double the rate of increase in females, which appeared independent of other temporal variables. The only diagnostic group with a significant CP increase as compared to CN was the convertors group, with an increase of 24.88 mm3/year [95% CI (14, 35.82), p < 0.001]. ApoE exhibited a significant temporal effect, with the E4 homozygote group's CP increasing at more than triple the rate of non-carrier or heterozygote groups [40.72, 95% CI (25.97, 55.46), p < 0.001 vs. 12.52, 95% CI (8.02, 17.02), p < 0.001 for ApoE E4 homozygotes and E4 non-carriers, respectively], and may have modified the diagnostic group relationship. Conclusion Our results contribute to potential mechanisms for sex differences in cognitive impairment with a novel finding of twice the annual choroid plexus enlargement in females and provide putative support for CP-related mechanisms of cognitive deterioration and its relationship to ApoE E4.
Collapse
Affiliation(s)
- Julie Novakova Martinkova
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | | | - Ondrej Lerch
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Veronika Matuskova
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Juraj Secnik
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Jakub Hort
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | |
Collapse
|
22
|
Holm MC, Leonardsen EH, Beck D, Dahl A, Kjelkenes R, de Lange AMG, Westlye LT. Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort. Dev Cogn Neurosci 2023; 60:101220. [PMID: 36841180 PMCID: PMC9972398 DOI: 10.1016/j.dcn.2023.101220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The temporal characteristics of adolescent neurodevelopment are shaped by a complex interplay of genetic, biological, and environmental factors. Using a large longitudinal dataset of children aged 9-13 from the Adolescent Brain Cognitive Development (ABCD) study we tested the associations between pubertal status and brain maturation. Brain maturation was assessed using brain age prediction based on convolutional neural networks and minimally processed T1-weighted structural MRI data. Brain age prediction provided highly accurate and reliable estimates of individual age, with an overall mean absolute error of 0.7 and 1.4 years at the two timepoints respectively, and an intraclass correlation of 0.65. Linear mixed effects (LME) models accounting for age and sex showed that on average, a one unit increase in pubertal maturational level was associated with a 2.22 months higher brain age across time points (β = 0.10, p < .001). Moreover, annualized change in pubertal development was weakly related to the rate of change in brain age (β = .047, p = 0.04). These results demonstrate a link between sexual development and brain maturation in early adolescence, and provides a basis for further investigations of the complex sociobiological impacts of puberty on life outcomes.
Collapse
Affiliation(s)
- Madelene C Holm
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Esten H Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rikka Kjelkenes
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| |
Collapse
|
23
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
24
|
Saleh RNM, Hornberger M, Ritchie CW, Minihane AM. Hormone replacement therapy is associated with improved cognition and larger brain volumes in at-risk APOE4 women: results from the European Prevention of Alzheimer's Disease (EPAD) cohort. Alzheimers Res Ther 2023; 15:10. [PMID: 36624497 PMCID: PMC9830747 DOI: 10.1186/s13195-022-01121-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/08/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The risk of dementia is higher in women than men. The metabolic consequences of estrogen decline during menopause accelerate neuropathology in women. The use of hormone replacement therapy (HRT) in the prevention of cognitive decline has shown conflicting results. Here we investigate the modulating role of APOE genotype and age at HRT initiation on the heterogeneity in cognitive response to HRT. METHODS The analysis used baseline data from participants in the European Prevention of Alzheimer's Dementia (EPAD) cohort (total n= 1906, women= 1178, 61.8%). Analysis of covariate (ANCOVA) models were employed to test the independent and interactive impact of APOE genotype and HRT on select cognitive tests, such as MMSE, RBANS, dot counting, Four Mountain Test (FMT), and the supermarket trolley test (SMT), together with volumes of the medial temporal lobe (MTL) regions by MRI. Multiple linear regression models were used to examine the impact of age of HRT initiation according to APOE4 carrier status on these cognitive and MRI outcomes. RESULTS APOE4 HRT users had the highest RBANS delayed memory index score (P-APOE*HRT interaction = 0.009) compared to APOE4 non-users and to non-APOE4 carriers, with 6-10% larger entorhinal (left) and amygdala (right and left) volumes (P-interaction= 0.002, 0.003, and 0.005 respectively). Earlier introduction of HRT was associated with larger right (standardized β= -0.555, p=0.035) and left hippocampal volumes (standardized β= -0.577, p=0.028) only in APOE4 carriers. CONCLUSION HRT introduction is associated with improved delayed memory and larger entorhinal and amygdala volumes in APOE4 carriers only. This may represent an effective targeted strategy to mitigate the higher life-time risk of AD in this large at-risk population subgroup. Confirmation of findings in a fit for purpose RCT with prospective recruitment based on APOE genotype is needed to establish causality.
Collapse
Affiliation(s)
- Rasha N M Saleh
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | | | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
25
|
Galea LA, Lee BH, de leon RG, Rajah MN, Einstein G. Beyond sex and gender differences: The case for women's health research. PRINCIPLES OF GENDER-SPECIFIC MEDICINE 2023:699-711. [DOI: 10.1016/b978-0-323-88534-8.00045-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Hill SE, Mengelkoch S. Moving beyond the mean: Promising research pathways to support a precision medicine approach to hormonal contraception. Front Neuroendocrinol 2023; 68:101042. [PMID: 36332783 DOI: 10.1016/j.yfrne.2022.101042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Women's psychological and behavioral responses to hormonal contraceptive (HC) treatment can be highly variable. One of the great challenges to researchers seeking to improve the experiences of women who use HCs is to identify the sources of this variability to minimize unpleasant psychobehavioral side-effects. In the following, we provide recommendations for programs of research aimed at identifying sources of heterogeneity in women's experiences with HC. First, we review research demonstrating person- and prescription- based heterogeneity in women's psychobehavioral responses to HCs. Next, we identify several promising person- and prescription- based sources of this heterogeneity that warrant future research. We close with a discussion of research approaches that are particularly well-suited to address the research questions raised in article. Together, this review provides researchers with several promising research pathways to help support the development of a precision medicine approach to HC treatment.
Collapse
|
27
|
Mao L, Wang L, Bennett S, Xu J, Zou J. Effects of follicle-stimulating hormone on fat metabolism and cognitive impairment in women during menopause. Front Physiol 2022; 13:1043237. [PMID: 36545281 PMCID: PMC9760686 DOI: 10.3389/fphys.2022.1043237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid metabolism disorder is a common pathological manifestation of menopausal women, and is also an important risk factor for many diseases at this stage of life. Epidemiological studies have shown that high levels of follicle-stimulating hormone (FSH) in menopausal women are closely associated with changes in body composition, central obesity, and cognitive decline. Exogenous FSH causes growth and proliferation of adipose, whereas blockage of the FSH signaling pathway leads to decline in adipose. Mechanistically, FSH, FSH receptor (FSHR), G protein coupling, gene mutation and other pathways are involved in adipogenesis and cognitive impairment. Here, we review the critical role and potential interactions of FSH in adipogenesis and cognitive impairment in menopausal women. Further understanding of the exact mechanisms of FSH aggravating obesity and cognitive impairment may provide a new perspective for promoting healthy aging in menopausal women.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
28
|
McCoy SS, Hetzel S, VanWormer JJ, Bartels CM. Sex hormones, body mass index, and related comorbidities associated with developing Sjögren's disease: a nested case-control study. Clin Rheumatol 2022; 41:3065-3074. [PMID: 35701626 PMCID: PMC9610811 DOI: 10.1007/s10067-022-06226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Sjögren's disease (SjD), a highly female predominant systemic autoimmune disease, peaks in perimenopause. Prior studies lack details on timing or type of sex hormone exposure. We examined SjD risk using endogenous and exogenous hormone exposure and related comorbidities. METHODS We performed a retrospective case-control study of adult women, nested within a population cohort. Cases had SjD diagnosed by a rheumatology provider or two SjD diagnoses from a non-rheumatology provider with a positive anti-SSA antibody or salivary gland biopsy. Cases were age-matched to three SjD-free controls. We calculated modified composite estrogen scores (mCES) and collected demographics, comorbidities, and endogenous and exogenous hormone exposures. Risk ratios were adjusted for demographics. RESULTS Of 546 SjD cases and 1637 age-matched controls, mCES was not significantly associated with SjD in adjusted models. The top individual hormone exposures associated with SjD included estrogen replacement therapy (ERT; RR 1.78 [95% CI 1.47-2.14]), polycystic ovarian syndrome (1.65 [1.28-2.12]), and hysterectomy without bilateral oophorectomy (1.51 [1.13-2.03]). We identified comorbidities preceding SjD including fibromyalgia, pulmonary disease, diabetes, lymphoma, osteoporosis, peripheral vascular disease, and renal disease. Taking comorbidities into account, we developed a predictive model for SjD that included fibromyalgia (2.50 [1.93-3.25]), osteoporosis (1.84 [1.27-2.66]), hormone replacement therapy (HRT) (1.61 [1.22-2.12]), diabetes (0.27 [0.13-0.50]), and body mass index (BMI) (0.97 [0.95-0.99]). CONCLUSIONS We report a novel algorithm to improve identifying patients at risk for SjD and describe sex hormone association with SjD. Finally, we report new comorbidities associated with SjD decrease, BMI and diabetes, and increase, lymphoma and osteoporosis.. Key Points •Given female predominance and typical perimenopausal onset, sex hormones should be considered when studying comorbidities in Sjögren's disease. •The top exposures associated with developing Sjögren's disease included fibromyalgia, osteoporosis, and use of hormone replacement therapy. Possible protective factors included prior diabetes and higher body mass index. •We used our newly identified exposures to generate a predictive algorithm, which has potential to improve diagnosis and pathogenic insights into Sjögren's disease.
Collapse
Affiliation(s)
- Sara S McCoy
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, 1685 Highland Avenue, Madison, WI, 53705-2281, USA.
| | - Scott Hetzel
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Population Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jeffrey J VanWormer
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Christie M Bartels
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, 1685 Highland Avenue, Madison, WI, 53705-2281, USA
| |
Collapse
|
29
|
Subramaniapillai S, Suri S, Barth C, Maximov II, Voldsbekk I, van der Meer D, Gurholt TP, Beck D, Draganski B, Andreassen OA, Ebmeier KP, Westlye LT, de Lange AG. Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort. Hum Brain Mapp 2022; 43:3759-3774. [PMID: 35460147 PMCID: PMC9294301 DOI: 10.1002/hbm.25882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiometabolic risk (CMR) factors are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer's disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-ϵ4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 status varied (i) between males and females, (ii) according to age at menopause in females, and (iii) across different age groups in males and females. We report sex differences in associations between BAG and all three CMRs, with stronger positive associations among males compared to females. Independent of APOE4 status, higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81 years), where greater BF% was linked to lower BAG. Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. In conclusion, the findings point to sex- and age-specific associations between CMRs and brain age. Incorporating sex as a factor of interest in studies addressing CMR may promote sex-specific precision medicine, consequently improving health care for both males and females.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of Psychology, Faculty of ScienceMcGill UniversityMontrealQuebecCanada
- Department of PsychologyUniversity of OsloOsloNorway
| | - Sana Suri
- Department of PsychiatryUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Ivan I. Maximov
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| | - Dani Beck
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ann‐Marie G. de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
30
|
McDonald BC, Van Dyk K, Deardorff RL, Bailey JN, Zhai W, Carroll JE, Root JC, Ahles TA, Mandelblatt JS, Saykin AJ. Multimodal MRI examination of structural and functional brain changes in older women with breast cancer in the first year of antiestrogen hormonal therapy. Breast Cancer Res Treat 2022; 194:113-126. [PMID: 35476252 PMCID: PMC9255382 DOI: 10.1007/s10549-022-06597-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Cancer patients are concerned about treatment-related cognitive problems. We examined effects of antiestrogen hormonal therapy on brain imaging metrics in older women with breast cancer. METHODS Women aged 60 + treated with hormonal therapy only and matched non-cancer controls (n = 29/group) completed MRI and objective and self-reported cognitive assessment at pre-treatment/enrollment and 12 months later. Gray matter was examined using voxel-based morphometry (VBM), FreeSurfer, and brain age calculations. Functional MRI (fMRI) assessed working memory-related activation. Analyses examined cross-sectional and longitudinal differences and tested associations between brain metrics, cognition, and days on hormonal therapy. RESULTS The cancer group showed regional reductions over 12 months in frontal, temporal, and parietal gray matter on VBM, reduced FreeSurfer cortical thickness in prefrontal, parietal, and insular regions, and increased working memory-related fMRI activation in frontal, cingulate, and visual association cortex. Controls showed only reductions in fusiform gyrus on VBM and FreeSurfer temporal and parietal cortex thickness. Women with breast cancer showed higher estimated brain age and lower regional gray matter volume than controls at both time points. The cancer group showed a trend toward lower performance in attention, processing speed, and executive function at follow-up. There were no significant associations between brain imaging metrics and cognition or days on hormonal therapy. CONCLUSION Older women with breast cancer showed brain changes in the first year of hormonal therapy. Increased brain activation during working memory processing may be a sign of functional compensation for treatment-related structural changes. This hypothesis should be tested in larger samples over longer time periods. CLINICALTRIALS GOV IDENTIFIER NCT03451383.
Collapse
Affiliation(s)
- Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine and Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| | - Kathleen Van Dyk
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine and UCLA Jonnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Rachael L Deardorff
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine and Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Jessica N Bailey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine and Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Wanting Zhai
- Georgetown University and Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith E Carroll
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine and UCLA Jonnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - James C Root
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tim A Ahles
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanne S Mandelblatt
- Georgetown University and Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine and Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
31
|
Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev 2022; 133:104475. [PMID: 34864004 PMCID: PMC8807930 DOI: 10.1016/j.neubiorev.2021.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
PAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence.
Collapse
Affiliation(s)
- Jodi L. Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.,Corresponding author: Jodi L. Pawluski, University of Rennes 1, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Hoekzema Lab, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology & Department of Neuroscience Columbus, OH, USA
| | - Joseph S. Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Beck D, de Lange AG, Pedersen ML, Alnæs D, Maximov II, Voldsbekk I, Richard G, Sanders A, Ulrichsen KM, Dørum ES, Kolskår KK, Høgestøl EA, Steen NE, Djurovic S, Andreassen OA, Nordvik JE, Kaufmann T, Westlye LT. Cardiometabolic risk factors associated with brain age and accelerate brain ageing. Hum Brain Mapp 2022; 43:700-720. [PMID: 34626047 PMCID: PMC8720200 DOI: 10.1002/hbm.25680] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Ann‐Marie G. de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- LREN, Centre for Research in Neurosciences‐Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Mads L. Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Bjørknes CollegeOsloNorway
| | - Ivan I. Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Anne‐Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Kristine M. Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Erlend S. Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Knut K. Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Einar A. Høgestøl
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Srdjan Djurovic
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of Psychiatry and PsychotherapyUniversity of TübingenTubingenGermany
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| |
Collapse
|
33
|
Schindler LS, Subramaniapillai S, Barth C, van der Meer D, Pedersen ML, Kaufmann T, Maximov II, Linge J, Leinhard OD, Beck D, Gurholt TP, Voldsbekk I, Suri S, Ebmeier KP, Draganski B, Andreassen OA, Westlye LT, de Lange AMG. Associations between abdominal adipose tissue, reproductive span, and brain characteristics in post-menopausal women. Neuroimage Clin 2022; 36:103239. [PMID: 36451350 PMCID: PMC9668664 DOI: 10.1016/j.nicl.2022.103239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The menopause transition involves changes in oestrogens and adipose tissue distribution, which may influence female brain health post-menopause. Although increased central fat accumulation is linked to risk of cardiometabolic diseases, adipose tissue also serves as the primary biosynthesis site of oestrogens post-menopause. It is unclear whether different types of adipose tissue play diverging roles in female brain health post-menopause, and whether this depends on lifetime oestrogen exposure, which can have lasting effects on the brain and body even after menopause. Using the UK Biobank sample, we investigated associations between brain characteristics and visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT) in 10,251 post-menopausal females, and assessed whether the relationships varied depending on length of reproductive span (age at menarche to age at menopause). To parse the effects of common genetic variation, we computed polygenic scores for reproductive span. The results showed that higher VAT and ASAT were both associated with higher grey and white matter brain age, and greater white matter hyperintensity load. The associations varied positively with reproductive span, indicating more prominent associations between adipose tissue and brain measures in females with a longer reproductive span. The effects were in general small, but could not be fully explained by genetic variation or relevant confounders. Our findings indicate that associations between abdominal adipose tissue and brain health post-menopause may partly depend on individual differences in cumulative oestrogen exposure during reproductive years, emphasising the complexity of neural and endocrine ageing processes in females.
Collapse
Affiliation(s)
- Louise S Schindler
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Barth
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Mads L Pedersen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Voldsbekk
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Dept. of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
35
|
Udeh-Momoh C, Watermeyer T. Female specific risk factors for the development of Alzheimer's disease neuropathology and cognitive impairment: Call for a precision medicine approach. Ageing Res Rev 2021; 71:101459. [PMID: 34508876 DOI: 10.1016/j.arr.2021.101459] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) includes a long asymptomatic stage, which precedes the formal diagnosis of dementia. AD biomarker models provide a framework for precision medicine approaches during this stage. However, such approaches have ignored the possible influence of sex on cognition and brain health, despite female sex noted as a major risk factor. Since AD-related changes may emerge in midlife, intervention efforts are being redirected around this period. Midlife coincides with several endocrinological changes, such as the menopausal transition experienced by women. In this narrative review, we discuss evidence for sex-differences in AD neuropathological burden and outline key endocrinological mechanisms for both sexes, focussing on hormonal events throughout the lifespan that may influence female susceptibility to AD neuropathology and dementia onset. We further consider common non-modifiable (genetic) and modifiable (lifestyle and health) risk factors, highlighting possible sex-dependent differential effects for the AD disease course. Finally, we evaluate the studies selected for this review demonstrating sex-differences in cognitive, pathological and health factors, summarising the state of sex differences in AD risk factors. We further provide recommendations for targeted research on female-specific risk factors, to inform personalised strategies for AD-prevention and the promotion of female brain health.
Collapse
|
36
|
Voldsbekk I, Barth C, Maximov II, Kaufmann T, Beck D, Richard G, Moberget T, Westlye LT, de Lange AG. A history of previous childbirths is linked to women's white matter brain age in midlife and older age. Hum Brain Mapp 2021; 42:4372-4386. [PMID: 34118094 PMCID: PMC8356991 DOI: 10.1002/hbm.25553] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal brain adaptations occur in response to pregnancy, but little is known about how parity impacts white matter and white matter ageing trajectories later in life. Utilising global and regional brain age prediction based on multi-shell diffusion-weighted imaging data, we investigated the association between previous childbirths and white matter brain age in 8,895 women in the UK Biobank cohort (age range = 54-81 years). The results showed that number of previous childbirths was negatively associated with white matter brain age, potentially indicating a protective effect of parity on white matter later in life. Both global white matter and grey matter brain age estimates showed unique contributions to the association with previous childbirths, suggesting partly independent processes. Corpus callosum contributed uniquely to the global white matter association with previous childbirths, and showed a stronger relationship relative to several other tracts. While our findings demonstrate a link between reproductive history and brain white matter characteristics later in life, longitudinal studies are required to establish causality and determine how parity may influence women's white matter trajectories across the lifespan.
Collapse
Affiliation(s)
- Irene Voldsbekk
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Claudia Barth
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Ivan I. Maximov
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
| | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTOsloNorway
| | - Genevieve Richard
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ann‐Marie G. de Lange
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
37
|
Sanders AM, Richard G, Kolskår K, Ulrichsen KM, Kaufmann T, Alnæs D, Beck D, Dørum ES, de Lange AMG, Egil Nordvik J, Westlye LT. Linking objective measures of physical activity and capability with brain structure in healthy community dwelling older adults. Neuroimage Clin 2021; 31:102767. [PMID: 34330086 PMCID: PMC8329542 DOI: 10.1016/j.nicl.2021.102767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Maintaining high levels of daily activity and physical capability have been proposed as important constituents to promote healthy brain and cognitive aging. Studies investigating the associations between brain health and physical activity in late life have, however, mainly been based on self-reported data or measures designed for clinical populations. In the current study, we examined cross-sectional associations between physical activity, recorded by an ankle-positioned accelerometer for seven days, physical capability (grip strength, postural control, and walking speed), and neuroimaging based surrogate markers of brain health in 122 healthy older adults aged 65-88 years. We used a multimodal brain imaging approach offering complementary structural MRI based indicators of brain health: global white matter fractional anisotropy (FA) and mean diffusivity (MD) based on diffusion tensor imaging, and subcortical and global brain age based on brain morphology inferred from T1-weighted MRI data. In addition, based on the results from the main analysis, follow-up regression analysis was performed to test for association between the volume of key subcortical regions of interest (hippocampus, caudate, thalamus and cerebellum) and daily steps, and a follow-up voxelwise analysis to test for associations between walking speed and FA across the white matter Tract-Based Spatial Statistics (TBSS) skeleton. The analyses revealed a significant association between global FA and walking speed, indicating higher white matter integrity in people with higher pace. Voxelwise analysis supported widespread significant associations. We also found a significant interaction between sex and subcortical brain age on number of daily steps, indicating younger-appearing brains in more physically active women, with no significant associations among men. These results provide insight into the intricate associations between different measures of brain and physical health in old age, and corroborate established public health advice promoting physical activity.
Collapse
Affiliation(s)
- Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Knut Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Ann-Marie G de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Androvičová R, Pfaus JG, Ovsepian SV. Estrogen pendulum in schizophrenia and Alzheimer's disease: Review of therapeutic benefits and outstanding questions. Neurosci Lett 2021; 759:136038. [PMID: 34116197 DOI: 10.1016/j.neulet.2021.136038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.
Collapse
Affiliation(s)
- Renáta Androvičová
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Saak V Ovsepian
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
39
|
Bjørnebekk A, Kaufmann T, Hauger LE, Klonteig S, Hullstein IR, Westlye LT. Long-term Anabolic-Androgenic Steroid Use Is Associated With Deviant Brain Aging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:579-589. [PMID: 33811018 DOI: 10.1016/j.bpsc.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND High-dose long-term use of anabolic-androgenic steroids (AASs) may cause a range of adverse effects, including brain and cognitive abnormalities. We performed age prediction based on brain scans to test whether prolonged AAS use is associated with accentuated brain aging. METHODS T1-weighted magnetic resonance imaging (3D MPRAGE [magnetization-prepared rapid acquisition gradient-echo]) scans were obtained from male weightlifters with a history of prolonged AAS use (n = 130) or no AAS use (n = 99). We trained machine learning models on combinations of regional brain volumes, cortical thickness, and surface area in an independent training set of 1838 healthy male subjects (18-92 years of age) and predicted brain age for each participant in our study. Including cross-sectional and longitudinal (mean interval = 3.5 years, n = 76) magnetic resonance imaging data, we used linear mixed-effects models to compare the gap between chronological age and predicted brain age (the brain age gap [BAG]) for the two groups and tested for group differences in the rate of change in BAG. We tested for associations between apparent brain aging and AAS use duration, pattern of administration, and dependence. RESULTS AAS users had higher BAG compared with weightlifting control subjects, which was associated with dependency and longer history of use. Group differences in BAG could not be explained by other substance use, general cognitive abilities, or depression. While longitudinal analysis revealed no evidence of increased brain aging in the overall AAS group, accelerated brain aging was seen with longer AAS exposure. CONCLUSIONS The findings suggest that long-term high-dose AAS use may have adverse effects on brain aging, potentially linked to dependency and exaggerated use of AASs.
Collapse
Affiliation(s)
- Astrid Bjørnebekk
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Lisa E Hauger
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandra Klonteig
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingunn R Hullstein
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; K.G. Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Maximov II, van der Meer D, de Lange AMG, Kaufmann T, Shadrin A, Frei O, Wolfers T, Westlye LT. Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM) in big data analysis: U.K. Biobank 18,608 example. Hum Brain Mapp 2021; 42:3141-3155. [PMID: 33788350 PMCID: PMC8193531 DOI: 10.1002/hbm.25424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Deriving reliable information about the structural and functional architecture of the brain in vivo is critical for the clinical and basic neurosciences. In the new era of large population‐based datasets, when multiple brain imaging modalities and contrasts are combined in order to reveal latent brain structural patterns and associations with genetic, demographic and clinical information, automated and stringent quality control (QC) procedures are important. Diffusion magnetic resonance imaging (dMRI) is a fertile imaging technique for probing and visualising brain tissue microstructure in vivo, and has been included in most standard imaging protocols in large‐scale studies. Due to its sensitivity to subject motion and technical artefacts, automated QC procedures prior to scalar diffusion metrics estimation are required in order to minimise the influence of noise and artefacts. However, the QC procedures performed on raw diffusion data cannot guarantee an absence of distorted maps among the derived diffusion metrics. Thus, robust and efficient QC methods for diffusion scalar metrics are needed. Here, we introduce Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM), a computationally efficient QC method utilising structural similarity to evaluate diffusion map quality and mean diffusion metrics. As an example, we applied YTTRIUM in the context of tract‐based spatial statistics to assess associations between age and kurtosis imaging and white matter tract integrity maps in U.K. Biobank data (n = 18,608). To assess the influence of outliers on results obtained using machine learning (ML) approaches, we tested the effects of applying YTTRIUM on brain age prediction. We demonstrated that the proposed QC pipeline represents an efficient approach for identifying poor quality datasets and artefacts and increases the accuracy of ML based brain age prediction.
Collapse
Affiliation(s)
- Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,LREN, Centre for Research in Neurosciences - Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Subramaniapillai S, Rajagopal S, Snytte J, Otto AR, Einstein G, Rajah MN. Sex differences in brain aging among adults with family history of Alzheimer's disease and APOE4 genetic risk. Neuroimage Clin 2021; 30:102620. [PMID: 33857772 PMCID: PMC8065341 DOI: 10.1016/j.nicl.2021.102620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/03/2022]
Abstract
Emerging evidence suggests that Alzheimer's Disease (AD) risk factors may differentially contribute to disease trajectory in women than men. Determining the effect of AD risk factors on brain aging in women, compared to men, is critical for understanding whether there are sex differences in the pathways towards AD in cognitively intact but at-risk adults. Brain Age Gap (BAG) is a concept used increasingly as a measure of brain health; BAG is defined as the difference between predicted age (based on structural MRI) and chronological age, with negative values reflecting preserved brain health with age. Using BAG, we investigated whether there were sex differences in the brain effects of AD risk factors (i.e., family history of AD, and carrying an apolipoprotein E ε4 allele [+APOE4]) in cognitively intact adults, and if this relationship was moderated by modifiable factors (i.e. body mass index [BMI], blood pressure and physical activity). We undertook a cross-sectional study of structural MRIs from 1067 cognitively normal adults across four neuroimaging datasets. An elastic net regression model found that women with a family history of AD and +APOE4 genotype had more advanced brain aging than their male counterparts. In a sub-cohort of women with those risk factors, higher BMI was associated with less brain aging whereas lower BMI was not. In a sub-cohort of women and men with +APOE4, engaging in physical activity was more beneficial to men's brain aging than women's. Our results demonstrate that AD risk factors are associated with greater brain aging in women than men, although there may be more unexplored modifiable factors that influence this relationship. These findings suggest that the complex interplay between unmodifiable and modifiable AD risk factors can potentially protect against brain aging in women and men.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada; Brain Imaging Centre, Douglas Institute Research Centre, 6875 LaSalle Blvd Verdun, Montréal, QC H4H 1R3, Canada.
| | - Sricharana Rajagopal
- Brain Imaging Centre, Douglas Institute Research Centre, 6875 LaSalle Blvd Verdun, Montréal, QC H4H 1R3, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada; Brain Imaging Centre, Douglas Institute Research Centre, 6875 LaSalle Blvd Verdun, Montréal, QC H4H 1R3, Canada
| | - A Ross Otto
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest Hospital, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada; Tema Genus, Linköping University, TEMA-huset, Entrance 37, Room E433, Campus Valla, Linköping, Sweden
| | - M Natasha Rajah
- Brain Imaging Centre, Douglas Institute Research Centre, 6875 LaSalle Blvd Verdun, Montréal, QC H4H 1R3, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, 1033 Avenue des Pins, Montréal, QC H3A 1A1, Canada.
| |
Collapse
|
42
|
de Lange AMG, Anatürk M, Suri S, Kaufmann T, Cole JH, Griffanti L, Zsoldos E, Jensen DEA, Filippini N, Singh-Manoux A, Kivimäki M, Westlye LT, Ebmeier KP. Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study. Neuroimage 2020; 222:117292. [PMID: 32835819 PMCID: PMC8121758 DOI: 10.1016/j.neuroimage.2020.117292] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential proxy for brain integrity and health. We estimated multimodal and modality-specific brain age in the Whitehall II (WHII) MRI cohort using machine learning and imaging-derived measures of gray matter (GM) morphology, white matter microstructure (WM), and resting state functional connectivity (FC). The results showed that the prediction accuracy improved when multiple imaging modalities were included in the model (R2 = 0.30, 95% CI [0.24, 0.36]). The modality-specific GM and WM models showed similar performance (R2 = 0.22 [0.16, 0.27] and R2 = 0.24 [0.18, 0.30], respectively), while the FC model showed the lowest prediction accuracy (R2 = 0.002 [-0.005, 0.008]), indicating that the FC features were less related to chronological age compared to structural measures. Follow-up analyses showed that FC predictions were similarly low in a matched sub-sample from UK Biobank, and although FC predictions were consistently lower than GM predictions, the accuracy improved with increasing sample size and age range. Cardiovascular risk factors, including high blood pressure, alcohol intake, and stroke risk score, were each associated with brain aging in the WHII cohort. Blood pressure showed a stronger association with white matter compared to gray matter, while no differences in the associations of alcohol intake and stroke risk with these modalities were observed. In conclusion, machine-learning based brain age prediction can reduce the dimensionality of neuroimaging data to provide meaningful biomarkers of individual brain aging. However, model performance depends on study-specific characteristics including sample size and age range, which may cause discrepancies in findings across studies.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Melis Anatürk
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Ludovica Griffanti
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Daria E A Jensen
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicola Filippini
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Archana Singh-Manoux
- Epidemiology of Ageing and Neurodegenerative Diseases, Universit de Paris, INSERM U1153, Paris France; Department of Epidemiology and Public Health, University College London, London, UK
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | |
Collapse
|
43
|
de Lange AG, Barth C, Kaufmann T, Anatürk M, Suri S, Ebmeier KP, Westlye LT. The maternal brain: Region-specific patterns of brain aging are traceable decades after childbirth. Hum Brain Mapp 2020; 41:4718-4729. [PMID: 32767637 PMCID: PMC7555081 DOI: 10.1002/hbm.25152] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pregnancy involves maternal brain adaptations, but little is known about how parity influences women's brain aging trajectories later in life. In this study, we replicated previous findings showing less apparent brain aging in women with a history of childbirths, and identified regional brain aging patterns linked to parity in 19,787 middle- and older-aged women. Using novel applications of brain-age prediction methods, we found that a higher number of previous childbirths were linked to less apparent brain aging in striatal and limbic regions. The strongest effect was found in the accumbens-a key region in the mesolimbic reward system, which plays an important role in maternal behavior. While only prospective longitudinal studies would be conclusive, our findings indicate that subcortical brain modulations during pregnancy and postpartum may be traceable decades after childbirth.
Collapse
Affiliation(s)
- Ann‐Marie G. de Lange
- Department of PsychiatryUniversity of OxfordOxfordUK
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Claudia Barth
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Melis Anatürk
- Department of PsychiatryUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Sana Suri
- Department of PsychiatryUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | | | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and AddictionOslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| |
Collapse
|
44
|
de Lange AMG, Barth C, Kaufmann T, Maximov II, van der Meer D, Agartz I, Westlye LT. Women's brain aging: Effects of sex-hormone exposure, pregnancies, and genetic risk for Alzheimer's disease. Hum Brain Mapp 2020; 41:5141-5150. [PMID: 32856754 PMCID: PMC7670641 DOI: 10.1002/hbm.25180] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Sex hormones such as estrogen fluctuate across the female lifespan, with high levels during reproductive years and natural decline during the transition to menopause. Women's exposure to estrogen may influence their heightened risk of Alzheimer's disease (AD) relative to men, but little is known about how it affects normal brain aging. Recent findings from the UK Biobank demonstrate less apparent brain aging in women with a history of multiple childbirths, highlighting a potential link between sex-hormone exposure and brain aging. We investigated endogenous and exogenous sex-hormone exposure, genetic risk for AD, and neuroimaging-derived biomarkers for brain aging in 16,854 middle to older-aged women. The results showed that as opposed to parity, higher cumulative sex-hormone exposure was associated with more evident brain aging, indicating that i) high levels of cumulative exposure to sex-hormones may have adverse effects on the brain, and ii) beneficial effects of pregnancies on the female brain are not solely attributable to modulations in sex-hormone exposure. In addition, for women using hormonal replacement therapy (HRT), starting treatment earlier was associated with less evident brain aging, but only in women with a genetic risk for AD. Genetic factors may thus contribute to how timing of HRT initiation influences women's brain aging trajectories.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Claudia Barth
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institute, Stockholm, Sweden.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|