1
|
Savvidis C, Kallistrou E, Kouroglou E, Dionysopoulou S, Gavriiloglou G, Ragia D, Tsiama V, Proikaki S, Belis K, Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J Clin Oncol 2024; 15:818-834. [PMID: 39071458 PMCID: PMC11271730 DOI: 10.5306/wjco.v15.i7.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Efthymia Kallistrou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Eleni Kouroglou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Sofia Dionysopoulou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | | | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Vasiliki Tsiama
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Stella Proikaki
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Konstantinos Belis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| |
Collapse
|
2
|
Enikeev AD, Abramov PM, Elkin DS, Komelkov AV, Beliaeva AA, Silantieva DM, Tchevkina EM. Opposite Effects of CRABP1 and CRABP2 Homologs on Proliferation of Breast Cancer Cells and Their Sensitivity to Retinoic Acid. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2107-2124. [PMID: 38462454 DOI: 10.1134/s0006297923120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Resistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of resistance to RA are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied. In addition, the effects of CRABP1 and CRABP2 on cell proliferation have not been compared. Here, using a broad panel of breast cancer cell lines with different levels of RA sensitivity/resistance, we show for the first time that in the RA-sensitive cells, CRABP1 expression is restricted by methylation, and protein levels are highly variable. In the moderately-RA-resistant cell lines, high level of CRABP1 is observed both at the mRNA and protein levels, unchanged by inhibition of DNA methylation. The cell lines with maximum resistance to RA are characterized by complete repression of CRABP1 expression realized at transcriptional and posttranscriptional levels, and exogenous expression of each of the CRABP homologs has no effect on the studied characteristics. CRABP1 and CRABP2 proteins have opposing effects on proliferation and sensitivity to RA. In particular, CRABP1 stimulates and CRABP2 reduces proliferation and resistance to RA in the initially RA-sensitive cells, while in the more resistant cells the role of each homolog in both of these parameters is reversed. Overall, we have shown for the first time that CRABP proteins exert different effects on the growth and sensitivity to RA of breast cancer cells (stimulation, suppression, or no effect) depending on the baseline level of RA-sensitivity, with the effects of CRABP1 and CRABP2 homologs on the studied properties always being opposite.
Collapse
Affiliation(s)
- Adel D Enikeev
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Pavel M Abramov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Danila S Elkin
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Andrey V Komelkov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Anastasiya A Beliaeva
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Darya M Silantieva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Elena M Tchevkina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
3
|
Li Q, Wei K, Zhang X, Lv Y, Li M, Zhou C, Su S, Hou D, Hou J. TIMP1 shapes an immunosuppressive microenvironment by regulating anoikis to promote the progression of clear cell renal cell carcinoma. Aging (Albany NY) 2023; 15:8908-8929. [PMID: 37688768 PMCID: PMC10522382 DOI: 10.18632/aging.205005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The association between ccRCC and Anoikis remains to be thoroughly investigated. METHODS Anoikis-related clusters were identified using NMF. To identify prognostic anoikis-related genes (ARGs) and establish an optimal prognostic model, univariate Cox and LASSO regression were employed. The E-MTAB-1980 cohort was utilized for external validation. Multiple algorithms were used to evaluate the immune properties of the model. GO, KEGG and GSVA analyses were employed to analyze biological pathway functions. qRT-PCR was employed to measure RNA levels of specific genes. Cell Counting Kit-8, wound healing, and Transwell chamber assays were performed to determine changes in the proliferative and metastatic abilities of A498 and 786-O cells. RESULTS Based on the expression of 21 prognostic ARGs, we constructed anoikis-related clusters with different prognostic and immune characteristics. The cluster A1 showed a worse prognosis, higher infiltration of immunosuppressive cells and enrichment of several oncogenic pathways. We also calculated the Anoikis Index (AI). Patients in high AI group had a worse prognosis, higher infiltration of immunosuppressive cells and higher expression of immunosuppressive checkpoints. TIMP1 exerted a tumor-promoting role in ccRCC and was significantly associated with immunosuppressive cells and checkpoints. The downregulation of TIMP1 negatively regulated ccRCC cell proliferation and metastasis. CONCLUSIONS ARGs played crucial roles in tumorigenesis and progression and were positively associated with a poor prognosis. AI had great accuracy in predicting the prognosis and immune characteristics of ccRCC patients. TIMP1 was significantly associated with clinicopathological variables and the immunosuppressive microenvironment, which could be exploited to design novel immunotherapies for ccRCC patients.
Collapse
Affiliation(s)
- Qiang Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Kai Wei
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xi Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yang Lv
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Miao Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shifeng Su
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Daorong Hou
- Key Laboratory of Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing 211166, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| |
Collapse
|
4
|
Liu L, Yang S, Lin K, Yu X, Meng J, Ma C, Wu Z, Hao Y, Chen N, Ge Q, Gao W, Wang X, Lam EWF, Zhang L, Li F, Jin B, Jin D. Sp1 induced gene TIMP1 is related to immune cell infiltration in glioblastoma. Sci Rep 2022; 12:11181. [PMID: 35778451 PMCID: PMC9249770 DOI: 10.1038/s41598-022-14751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor immune microenvironment exerts a profound effect on the population of infiltrating immune cells. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is frequently overexpressed in a variety of cells, particularly during inflammation and tissue injury. However, its function in cancer and immunity remains enigmatic. In this study, we find that TIMP1 is substantially up-regulated during tumorigenesis through analyzing cancer bioinformatics databases, which is further confirmed by IHC tissue microarrays of clinical samples. The TIMP1 level is significantly increased in lymphocytes infiltrating the tumors and correlated with cancer progression, particularly in GBM. Notably, we find that the transcriptional factor Sp1 binds to the promoter of TIMP1 and triggers its expression in GBM. Together, our findings suggest that the Sp1-TIMP1 axis can be a potent biomarker for evaluating immune cell infiltration at the tumor sites and therefore, the malignant progression of GBM.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Shuyao Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Kefeng Lin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiaoman Yu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Jiaqi Meng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chao Ma
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zheng Wu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuchao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ning Chen
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Qi Ge
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Wenli Gao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Eric W-F Lam
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Lin Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, People's Republic of China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Di Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Nhieu J, Lin YL, Wei LN. CRABP1 in Non-Canonical Activities of Retinoic Acid in Health and Diseases. Nutrients 2022; 14:nu14071528. [PMID: 35406141 PMCID: PMC9003107 DOI: 10.3390/nu14071528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
In this review, we discuss the emerging role of Cellular Retinoic Acid Binding Protein 1 (CRABP1) as a mediator of non-canonical activities of retinoic acid (RA) and relevance to human diseases. We first discuss the role of CRABP1 in regulating MAPK activities and its implication in stem cell proliferation, cancers, adipocyte health, and neuro-immune regulation. We then discuss an additional role of CRABP1 in regulating CaMKII activities, and its implication in heart and motor neuron diseases. Through molecular and genetic studies of Crabp1 knockout (CKO) mouse and culture models, it is established that CRABP1 forms complexes with specific signaling molecules to function as RA-regulated signalsomes in a cell context-dependent manner. Gene expression data and CRABP1 gene single nucleotide polymorphisms (SNPs) of human cancer, neurodegeneration, and immune disease patients implicate the potential association of abnormality in CRABP1 with human diseases. Finally, therapeutic strategies for managing certain human diseases by targeting CRABP1 are discussed.
Collapse
Affiliation(s)
| | | | - Li-Na Wei
- Correspondence: ; Tel.: +1-612-6259-402
| |
Collapse
|
6
|
Shou Y, Liu Y, Xu J, Liu J, Xu T, Tong J, Liu L, Hou Y, Liu D, Yang H, Cheng G, Zhang X. TIMP1 Indicates Poor Prognosis of Renal Cell Carcinoma and Accelerates Tumorigenesis via EMT Signaling Pathway. Front Genet 2022; 13:648134. [PMID: 35281807 PMCID: PMC8914045 DOI: 10.3389/fgene.2022.648134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/11/2022] [Indexed: 12/29/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system. The mortality of advanced RCC remains high despite advances in systemic therapy of RCC. Considering the misdiagnosis of early-stage RCC, the identification of effective biomarkers is of great importance. Tissue inhibitor matrix metalloproteinase 1 (TIMP1), which belongs to TIMP gene family, is a natural inhibitor of the matrix metalloproteinases (MMPs). In this study, we found TIMP1 was significantly up-regulated in cell lines and RCC tissues. Kaplan-Meier analysis revealed that high expression of TIMP1 indicated a poor prognosis. Multivariate analysis further indicated that TIMP1 overexpression was an independent prognostic factor of RCC patients. Furthermore, knockdown of TIMP1 in vitro suppressed the proliferation, migration, and invasion of RCC cells, while upregulating TIMP1 accelerated the proliferation, migration, and invasion of RCC cells. In addition, we also found that TIMP1 prompted the progression of RCC via epithelial-to-mesenchymal transition (EMT) signaling pathway. In conclusion, the present results suggested that TIMP1 indicated poor prognosis of renal cell carcinoma and could serve as a potential diagnostic and prognostic biomarker for RCC.
Collapse
Affiliation(s)
- Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaju Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Gong Cheng, ; Xiaoping Zhang,
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Gong Cheng, ; Xiaoping Zhang,
| |
Collapse
|
7
|
Yang L, Zhang X, Zhang J, Liu Y, Ji T, Mou J, Fang X, Wang S, Chen J. Low expression of TFF3 in papillary thyroid carcinoma may correlate with poor prognosis but high immune cell infiltration. Future Oncol 2021; 18:333-348. [PMID: 34756116 DOI: 10.2217/fon-2020-1183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Papillary thyroid carcinoma (PTC) is one of the most common endocrine malignancies and has a favorable prognosis. However, optimal treatments and prognostic markers have not been clearly identified. Methods: Gene expression data from primary PTC were downloaded from the Gene Expression Omnibus database and subjected to two analyses of differentially expressed genes (DEGs), followed by intersecting individual and integrated DEGs analyses as well as gene set enrichment analysis. Analysis of data from Sequence Read Archive and The Cancer Genome Atlas, immunohistochemistry and qRT-PCR of TFF3 were performed to validate the results. Finally, the relationship between gene expression and disease-free survival as well as immune cell infiltration were investigated. Results: Six critical DEGs and several tumor-enriched signaling pathways were identified. Immunohistochemistry and qRT-PCR validated the low expression of TFF3 in PTC. TFF3 and FCGBP are coexpressed in PTC, and patients with lower gene expression had worse disease-free survival but higher immune cell infiltration. Conclusion: TFF3 was significantly underexpressed and may function with FCGBP synergistically in PTC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiyin Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yuwei Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jianing Mou
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaolian Fang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| |
Collapse
|
8
|
Quercetin Induces Anticancer Activity by Upregulating Pro-NAG-1/GDF15 in Differentiated Thyroid Cancer Cells. Cancers (Basel) 2021; 13:cancers13123022. [PMID: 34208730 PMCID: PMC8233818 DOI: 10.3390/cancers13123022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Thyroid cancer is one of the most common cancers worldwide, and its incidence has increased over the last few decades. It is difficult to diagnose different types of thyroid cancer. Tumor tissues from papillary thyroid cancer patient showed higher expression of mature NAG-1, whereas adjacent normal tissues showed higher expression of pro-NAG-1. Several anti-cancer compounds increased pro-NAG-1 expression in thyroid cancer cell line. Quercetin (3,3’,4’,5,7-pentahydroxyflavone) is a flavonoid that is a major component of various plants, including raspberries, grapes, and onions. Quercetin induced apoptosis by inducing only pro-NAG-1 expression, but not mature NAG-1, mediated by the transcription factor C/EBP. This study indicates that pro-NAG-1 could be used as a useful biomarker for thyroid cancer and also provides a potential therapeutic target for the treatment of thyroid cancer with quercetin. Abstract Although the treatment of thyroid cancer has improved, unnecessary surgeries are performed due to a lack of specific diagnostic and prognostic markers. Therefore, the identification of novel biomarkers should be considered in the diagnosis and treatment of thyroid cancer. In this study, antibody arrays were performed using tumor and adjacent normal tissues of patients with papillary thyroid cancer, and several potential biomarkers were identified. Among the candidate proteins chosen based on the antibody array data, mature NAG-1 exhibited increased expression in tumor tissues compared to adjacent normal tissues. In contrast, pro-NAG-1 expression increased in normal tissues, as assessed by western blot analysis. Furthermore, pro-NAG-1 expression was increased when the thyroid cancer cells were treated with phytochemicals and nonsteroidal anti-inflammatory drugs in a dose-dependent manner. In particular, quercetin highly induced the expression of pro-NAG-1 but not that of mature NAG-1, with enhanced anticancer activity, including apoptosis induction and cell cycle arrest. Examination of the NAG-1 promoter activity showed that p53, C/EBPα, or C/EBPδ played a role in quercetin-induced NAG-1 expression. Overall, our study indicated that NAG-1 may serve as a novel biomarker for thyroid cancer prognosis and may be used as a therapeutic target for thyroid cancers.
Collapse
|
9
|
Saha P, Sarkar S, Paidi RK, Biswas SC. TIMP-1: A key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer's disease. Brain Behav Immun 2020; 87:804-819. [PMID: 32194232 DOI: 10.1016/j.bbi.2020.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by two pathologic species, extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. Astrocytes that maintain normal homeostasis in the brain undergo a set of molecular, cellular and functional changes called reactive astrogliosis in various neurological diseases including AD. It is hypothesized that reactive astrocytes initially tend to protect neurons by reducing Aβ load and by secreting a plethora of cytokines, however, their functions have only been poorly investigated. Our studies on the kinetics of activation of cortical astrocytes following Aβ-exposure revealed significant level of activation as early as in 6 h. The astrocyte conditioned medium (ACM) from 6 h Aβ-treated astrocytes (Aβ-ACM) provided significant neuroprotection of cultured cortical neurons against Aβ insults. Analysis of the secreted proteins in Aβ-ACM revealed a marked increase of Tissue inhibitor of Metalloproteinase-1 (TIMP-1) within 6 h. Interestingly, we found that neutralization of TIMP-1 with antibody or knockdown with siRNA in astrocytes abolished most of the neuroprotective ability of the 6 h Aβ-ACM on Aβ-treated cultured neurons. Furthermore addition of exogenous rat recombinant TIMP-1 protein protects primary neurons from Aβ mediated toxicity. In a well characterized Aβ-infused rodent model of AD, intra-cerebroventricular administration of TIMP-1 revealed a reduction in Aβ load and apoptosis in hippocampal and cortical regions. Finally, we found that TIMP-1 can ameliorate Aβ-induced cognitive dysfunctions through restoration of Akt and its downstream pathway and maintenance of synaptic integrity. Thus, our results not only provide a functional clarity for TIMP-1, secreted by activated astrocytes, but also support it as a major candidate in cytokine-mediated therapy of AD especially at the early phase of disease progression.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
10
|
Oczko-Wojciechowska M, Pfeifer A, Jarzab M, Swierniak M, Rusinek D, Tyszkiewicz T, Kowalska M, Chmielik E, Zembala-Nozynska E, Czarniecka A, Jarzab B, Krajewska J. Impact of the Tumor Microenvironment on the Gene Expression Profile in Papillary Thyroid Cancer. Pathobiology 2020; 87:143-154. [PMID: 32320975 DOI: 10.1159/000507223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 11/19/2022] Open
Abstract
Transcriptome of papillary thyroid cancer (PTC) is well characterized and correlates with some prognostic and genotypic factors, but data addressing the interaction between PTC and tumor microenvironment (TME) are scarce. Therefore, in the present study, we aimed to assess the impact of TME on gene expression profile in PTC. We evaluated the gene expression profile in PTC and normal thyroid cells isolated by laser capture microdissection and in whole tissue slides corresponding to the entire tumor. We included 26 microdissected samples for gene expression analysis (HG-U133 PLUS 2.0, Affymetrix, currently Thermo Fisher Scientific USA): 15 PTC samples, 11 samples of normal thyrocytes, and 30 whole slides (15 PTC and 15 normal thyroid). Transcripts were divided into three groups: differentially expressed both in microdissected and whole slides, transcripts differently expressed in microdissected samples and not changed in whole slides, and transcripts differentially expressed in whole slides and not changed in microdissected samples. Eleven genes were selected for validation in an independent set of samples; among them, four genes differentiated only microdissected PTC and normal cells. Two genes (PTCSC and CTGF) were confirmed. One gene (FOS) was not confirmed by the validation, whereas EGR1 was also significant in whole slide analysis. The other seven genes (TFF3, FN1, MPPED2, MET, KCNJ2, TACSTD2, and GALE) showed differentiated expression in microdissected thyrocytes and in whole tumor slides. Most of identified genes were related to the tumor-microenvironment interaction and confirmed the crosstalk between TME and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Oczko-Wojciechowska
- Genetic and Molecular Diagnostics of Cancer Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland,
| | - Aleksandra Pfeifer
- Genetic and Molecular Diagnostics of Cancer Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Michal Jarzab
- Breast Unit, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Michał Swierniak
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dagmara Rusinek
- Genetic and Molecular Diagnostics of Cancer Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Tomasz Tyszkiewicz
- Genetic and Molecular Diagnostics of Cancer Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Malgorzata Kowalska
- Genetic and Molecular Diagnostics of Cancer Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Ewa Chmielik
- Tumor Pathology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Ewa Zembala-Nozynska
- Tumor Pathology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Oncologic and Reconstructive Surgery Clinic, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
11
|
Jiang Q, Feng W, Xiong C, Lv Y. Integrated bioinformatics analysis of the association between apolipoprotein E expression and patient prognosis in papillary thyroid carcinoma. Oncol Lett 2020; 19:2295-2305. [PMID: 32194729 PMCID: PMC7039105 DOI: 10.3892/ol.2020.11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023] Open
Abstract
The prognosis of most patients with papillary thyroid carcinoma (PTC) is excellent despite some cases of tumor progression or relapse. The present study was designed to reveal possible prognostic risk indicators for PTC. Differentially expressed genes (DEGs) extracted from 4 Gene Expression Omnibus (GEO) cohorts were subjected to functional enrichment analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. A dataset from The Cancer Genome Atlas (TCGA) was obtained to filter and validate significant genes using cytoHubba, followed by analysis of their association with clinicopathological characteristics and prognosis. In total, 240 DEGs were identified after data preprocessing. These DEGs were enriched in ‘intracellular redox equilibrium’, ‘release of exosome’, ‘cell adhesion’, ‘regulation of extracellular matrix’, ‘collagen binding’ and ‘energy metabolism’ based on GO analysis which including cellular component, molecular function and biological process. KEGG pathway analysis revealed that the DEGs were enriched in thyroid hormone synthesis, pathways in cancer, focal adhesion, metabolic pathways, apoptosis, PPAR signaling pathway and PI3K/AKT signaling pathway. Using cytoHubba, the following hub genes were identified: Apolipoprotein E (APOE); hemoglobin subunit α1 (HBA1); angiotensin II receptor 1 (AGTR1); collagen I α1 (COL1A1); galectin 3 (LGALS3) and TIMP metallopeptidase inhibitor 1 (TIMP1). The expression of these genes was found to be consistent in TCGA datasets. Kaplan-Meier analysis revealed that APOE was significantly associated with overall survival (P=0.00067) and disease free survival (P=0.00220). Additionally, low expression of APOE was significantly associated with older age (P<0.001) and higher TNM stage (P<0.001) compared with the high expression group. Therefore, APOE may function as a predictive risk indicator for progression as well as prognosis of PTC.
Collapse
Affiliation(s)
- Qunguang Jiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenqian Feng
- Department of Operating Room, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yunxia Lv
- Department of Thyroid Surgery, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Sadowski SM, Petrenko V, Meyer P, Pusztaszeri M, Brulhart-Meynet MC, Heddad Masson M, Triponez F, Philippe J, Dibner C. Validation of molecular biomarkers for preoperative diagnostics of human papillary thyroid carcinoma in fine needle aspirates. Gland Surg 2019; 8:S62-S76. [PMID: 31475093 DOI: 10.21037/gs.2018.11.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Despite substantial efforts, reliable preoperative diagnostic for human thyroid malignancies in case of cytologically indeterminate nodules is still missing, resulting in high number of unnecessary thyroidectomies. In an attempt to increase precision of existing preoperative diagnostics, we aimed at validating the panel of molecular biomarkers predictive for papillary thyroid carcinoma (PTC) in preoperative fine needle aspirate (FNA) samples. Methods In this prospective study conducted in preoperative thyroid FNA from 44 thyroid nodules, expression levels of 11 molecular biomarkers previously validated on the postoperative samples of PTCs were measured by Cell-to-CT and QuantiGene Plex methods and correlated with final diagnosis. Results The QuantiGene Plex resulted in reliable gene expression measurements for FNA and core-needle biopsy (CNB) samples, however this method was less sensitive than pre-amplification based Cell-to-CT. Measurements conducted on the same samples by the two methods significantly correlated for most of the genes. Expression levels of TIMP1, c-MET and ARNTL were upregulated in PTC nodules as compared to benign counterparts, supporting previous post-operative studies. Strong correlation was observed between these biomarker alterations in the same samples. Within the sub-group of 15 indeterminate nodules (Bethesda II-V), TIMP1 had 100% specificity and 83% sensitivity for PTC cases. Conclusions Assessment of TIMP1, c-MET and core-clock gene ARNTL expression levels by QuantiGene Plex assay in FNA samples holds promise as an ancillary method to the cytological preoperative diagnostics.
Collapse
Affiliation(s)
- Samira M Sadowski
- Department of Thoracic and Endocrine Surgery, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,iGE3 Center, Geneva, Switzerland
| | - Patrick Meyer
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Department of Pathology, Jewish General Hospital and McGill University, Montreal, Canada
| | - Marie-Claude Brulhart-Meynet
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mounia Heddad Masson
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,iGE3 Center, Geneva, Switzerland
| |
Collapse
|
13
|
The potential of retinoids for combination therapy of lung cancer: Updates and future directions. Pharmacol Res 2019; 147:104331. [PMID: 31254665 DOI: 10.1016/j.phrs.2019.104331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
Lung cancer is the most common cancer-related death worldwide. Natural compounds have shown high biological and pharmaceutical relevance as anticancer agents. Retinoids are natural derivatives of vitamin A having many regulatory functions in the human body, including vision, cellular proliferation and differentiation, and activation of tumour suppressor genes. Retinoic acid (RA) is a highly active retinoid isoform with promising anti-lung cancer activity. The abnormal expression of retinoid receptors is associated with loss of anticancer activities and acquired resistance to RA in lung cancer. The preclinical promise has not translated to the general clinical utility of retinoids for lung cancer patients, especially those with a history of smoking. Newer retinoid nano-formulations and the combinatorial use of retinoids has been associated with lower toxicity and more favorably efficacy in both the preclinical and clinical settings. Here, we highlight epidemiological and clinical therapeutic studies involving retinoids and lung cancer. We also discuss the biological actions of retinoids in lung cancer, which include effects on cancer stem cell differentiation, angiogenesis, metastasis, and proliferative. We suggest that the use of retinoids in combination with conventional and targeted anticancer agents will broaden the utility of these potent anticancer compounds in the lung cancer clinic.
Collapse
|
14
|
Guo L, Ren H, Zeng H, Gong Y, Ma X. Proteomic analysis of cerebrospinal fluid in pediatric acute lymphoblastic leukemia patients: a pilot study. Onco Targets Ther 2019; 12:3859-3868. [PMID: 31190885 PMCID: PMC6527054 DOI: 10.2147/ott.s193616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Involvement of central nervous system in acute lymphoblastic leukemia (CNSL) remains one of the major causes of pediatric acute lymphoblastic leukemia (ALL) treatment failure. However, the current understanding of the pathological process of CNSL is still limited. This study aimed to better understand the protein expression in cerebrospinal fluid (CSF) of ALL and discover valuable prognostic biomarkers. Materials and methods CSF samples were obtained from ALL patients and healthy controls. Comparative proteomic profiling using label-free liquid chromatography-tandem mass spectrometry was performed to detect differentially expressed proteins. Results In the present study, 51 differentially expressed proteins were found. Among them, two core clusters including ten proteins (TIMP1, LGALS3BP, A2M, FN1, AHSG, HRG, ITIH4, CF I, C2, and C4a) might be crucial for tumorigenesis and progression of ALL and can be potentially valuable indicators of CNSL. Conclusion These differentially expressed proteins of ALL children with central nervous system involvement and normal children may work as diagnostic and prognostic factors of ALL patients.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China, .,West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Ren
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Hao Zeng
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China,
| |
Collapse
|
15
|
Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int J Med Sci 2019; 16:450-460. [PMID: 30911279 PMCID: PMC6428975 DOI: 10.7150/ijms.29935] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 11/05/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all cancers of the thyroid. It is also one of the few cancers with a rapidly increasing incidence. PTC is usually contained within the thyroid gland and generally biologically indolent. Prognosis of the cancer is excellent, with less than 2% mortality at 5 years. However, more than 25% of patients with PTC developed a recurrence during a long term follow-up. The present article provides an updated condensed overview of PTC, which focuses mainly on the molecular alterations involved and recent biomarker investigations.
Collapse
Affiliation(s)
- Mardiaty Iryani Abdullah
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Barani Karikalan
- Perdana University, Jalan MAEPS Perdana, Serdang 43400, Selangor, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Zhang K, Liu J, Li C, Peng X, Li H, Li Z. Identification and validation of potential target genes in papillary thyroid cancer. Eur J Pharmacol 2019; 843:217-225. [DOI: 10.1016/j.ejphar.2018.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
17
|
Kopp S, Krüger M, Bauer J, Wehland M, Corydon TJ, Sahana J, Nassef MZ, Melnik D, Bauer TJ, Schulz H, Schütte A, Schmitz B, Oltmann H, Feldmann S, Infanger M, Grimm D. Microgravity Affects Thyroid Cancer Cells during the TEXUS-53 Mission Stronger than Hypergravity. Int J Mol Sci 2018; 19:E4001. [PMID: 30545079 PMCID: PMC6321223 DOI: 10.3390/ijms19124001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most abundant tumor of the endocrine organs. Poorly differentiated thyroid cancer is still difficult to treat. Human cells exposed to long-term real (r-) and simulated (s-) microgravity (µg) revealed morphological alterations and changes in the expression profile of genes involved in several biological processes. The objective of this study was to examine the effects of short-term µg on poorly differentiated follicular thyroid cancer cells (FTC-133 cell line) resulting from 6 min of exposure to µg on a sounding rocket flight. As sounding rocket flights consist of several flight phases with different acceleration forces, rigorous control experiments are mandatory. Hypergravity (hyper-g) experiments were performed at 18g on a centrifuge in simulation of the rocket launch and s-µg was simulated by a random positioning machine (RPM). qPCR analyses of selected genes revealed no remarkable expression changes in controls as well as in hyper-g samples taken at the end of the first minute of launch. Using a centrifuge initiating 18g for 1 min, however, presented moderate gene expression changes, which were significant for COL1A1, VCL, CFL1, PTK2, IL6, CXCL8 and MMP14. We also identified a network of mutual interactions of the investigated genes and proteins by employing in-silico analyses. Lastly, µg-samples indicated that microgravity is a stronger regulator of gene expression than hyper-g.
Collapse
Affiliation(s)
- Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, 8000 Aarhus C, Denmark.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Thomas J Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany.
| | - Andreas Schütte
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Burkhard Schmitz
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Hergen Oltmann
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Stefan Feldmann
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
18
|
Celestino R, Nome T, Pestana A, Hoff AM, Gonçalves AP, Pereira L, Cavadas B, Eloy C, Bjøro T, Sobrinho-Simões M, Skotheim RI, Soares P. CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension. BMC Cancer 2018; 18:68. [PMID: 29321030 PMCID: PMC5763897 DOI: 10.1186/s12885-017-3948-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Background The prognostic variability of thyroid carcinomas has led to the search for accurate biomarkers at the molecular level. Follicular thyroid carcinoma (FTC) is a typical example of differentiated thyroid carcinomas (DTC) in which challenges are faced in the differential diagnosis. Methods We used high-throughput paired-end RNA sequencing technology to study four cases of FTC with different degree of capsular invasion: two minimally invasive (mFTC) and two widely invasive FTC (wFTC). We searched by genes differentially expressed between mFTC and wFTC, in an attempt to find biomarkers of thyroid cancer diagnosis and/or progression. Selected biomarkers were validated by real-time quantitative PCR in 137 frozen thyroid samples and in an independent dataset (TCGA), evaluating the diagnostic and the prognostic performance of the candidate biomarkers. Results We identified 17 genes significantly differentially expressed between mFTC and wFTC. C1QL1, LCN2, CRABP1 and CILP were differentially expressed in DTC in comparison with normal thyroid tissues. LCN2 and CRABP1 were also differentially expressed in DTC when compared with follicular thyroid adenoma. Additionally, overexpression of LCN2 and C1QL1 were found to be independent predictors of extrathyroidal extension in DTC. Conclusions We conclude that the underexpression of CRABP1 and the overexpression of LCN2 may be useful diagnostic biomarkers in thyroid tumours with questionable malignity, and the overexpression of LCN2 and C1QL1 may be useful for prognostic purposes. Electronic supplementary material The online version of this article (10.1186/s12885-017-3948-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Celestino
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway.,School of Allied Health Technologies, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - Torfinn Nome
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0424, Oslo, Norway
| | - Ana Pestana
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ICBAS - Abel Salazar Biomedical Sciences Institute of the University of Porto, 4050-313, Porto, Portugal
| | - Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0424, Oslo, Norway
| | - A Pedro Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ICBAS - Abel Salazar Biomedical Sciences Institute of the University of Porto, 4050-313, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Luísa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Catarina Eloy
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Trine Bjøro
- Department of Medical Biochemistry, Norwegian Radium Hospital, Oslo University Hospital, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - Manuel Sobrinho-Simões
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, 4200-319, Porto, Portugal.,Department of Pathology, Centro Hospitalar de São João, 4200-319, Porto, Portugal
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway. .,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0424, Oslo, Norway.
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Department of Pathology, Medical Faculty, University of Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
19
|
Song G, Xu S, Zhang H, Wang Y, Xiao C, Jiang T, Wu L, Zhang T, Sun X, Zhong L, Zhou C, Wang Z, Peng Z, Chen J, Wang X. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J Exp Clin Cancer Res 2016; 35:148. [PMID: 27644693 PMCID: PMC5028967 DOI: 10.1186/s13046-016-0427-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tissue inhibitor matrix metalloproteinase 1 (TIMP1) plays a vital role in carcinogenesis, yet its precise functional roles and regulation remain unclear. In this study, we aim to investigate its biological function and clinical significance in human colon cancer. METHODS We analyzed the expression of TIMP1 in both public database (Oncomine and TCGA) and 94 cases of primary colon cancer and matched normal colon tissue specimens. The underlying mechanisms of altered TIMP1 expression on cell tumorigenesis, proliferation, and metastasis were explored in vitro and in vivo. RESULTS TIMP1 was overexpressed in colon tumorous tissues and lymph node metastasis specimens than in normal tissues. The aberrant expression of TIMP1 was significantly associated with the regional lymph node metastasis (p = 0.033), distant metastasis (p = 0.039), vascular invasion (p = 0.024) and the American Joint Committee on Cancer (AJCC) stage (p = 0.026). Cox proportional hazards model showed that TIMP1 was an independent prognostic indicator of disease-free survival (HR = 2.603, 95 % CI: 1.115-6.077, p = 0.027) and overall survival (HR = 2.907, 95 % CI: 1.254-6.737, p = 0.013) for patients with colon cancer. Consistent with this, our findings highlight that suppression of TIMP1 expression decreased proliferation, and metastasis but increased apoptosis by inducing TIMP1 specific regulated FAK-PI3K/AKT and MAPK pathway. CONCLUSION TIMP1 might play an important role in promoting tumorigenesis and metastasis of human colon cancer and function as a potential prognostic indicator for colon cancer.
Collapse
Affiliation(s)
- Guohe Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Shifeng Xu
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021 People’s Republic of China
| | - Hong Zhang
- School of Medicine, Örebro University, Örebro, SE 70182 Sweden
| | - Yupeng Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Tao Jiang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Leilei Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200031 People’s Republic of China
| | - Tao Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Jian Chen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080 People’s Republic of China
| |
Collapse
|
20
|
Chidiac M, Fayyad-Kazan M, Daher J, Poelvoorde P, Bar I, Maenhaut C, Delrée P, Badran B, Vanhamme L. ApolipoproteinL1 is expressed in papillary thyroid carcinomas. Pathol Res Pract 2016; 212:631-5. [DOI: 10.1016/j.prp.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
|
21
|
Gomez-Rueda H, Palacios-Corona R, Gutiérrez-Hermosillo H, Trevino V. A robust biomarker of differential correlations improves the diagnosis of cytologically indeterminate thyroid cancers. Int J Mol Med 2016; 37:1355-62. [PMID: 27035928 DOI: 10.3892/ijmm.2016.2534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/23/2016] [Indexed: 11/05/2022] Open
Abstract
The fine-needle aspiration of thyroid nodules and subsequent cytological analysis is unable to determine the diagnosis in 15 to 30% of thyroid cancer cases; patients with indeterminate cytological results undergo diagnostic surgery which is potentially unnecessary. Current gene expression biomarkers based on well-determined cytology are complex and their accuracy is inconsistent across public datasets. In the present study, we identified a robust biomarker using the differences in gene expression values specifically from cytologically indeterminate thyroid tumors and a powerful multivariate search tool coupled with a nearest centroid classifier. The biomarker is based on differences in the expression of the following genes: CCND1, CLDN16, CPE, LRP1B, MAGI3, MAPK6, MATN2, MPPED2, PFKFB2, PTPRE, PYGL, SEMA3D, SERGEF, SLC4A4 and TIMP1. This 15-gene biomarker exhibited superior accuracy independently of the cytology in six datasets, including The Cancer Genome Atlas (TCGA) thyroid dataset. In addition, this biomarker exhibited differences in the correlation coefficients between benign and malignant samples that indicate its discriminatory power, and these 15 genes have been previously related to cancer in the literature. Thus, this 15-gene biomarker provides advantages in clinical practice for the effective diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Hugo Gomez-Rueda
- Bioinformatics Research Group, Department of Research and Innovation, Medical School, Tecnológico de Monterrey, Colonia Los Doctores, 64710 Monterrey, Nuevo León, Mexico
| | - Rebeca Palacios-Corona
- Northeastern Biomedical Research Center, Instituto Mexicano del Seguro Social, Colonia Independencia, 64720 Monterrey, Nuevo León, Mexico
| | - Hugo Gutiérrez-Hermosillo
- Department of Geriatrics, UMAE 1 CMN del Bajío, Instituto Mexicano del Seguro Social, Hospital Aranda de la Parra, Colonia Centro, 37000 León, Guanajuato, Mexico
| | - Victor Trevino
- Bioinformatics Research Group, Department of Research and Innovation, Medical School, Tecnológico de Monterrey, Colonia Los Doctores, 64710 Monterrey, Nuevo León, Mexico
| |
Collapse
|
22
|
Persaud SD, Park SW, Ishigami-Yuasa M, Koyano-Nakagawa N, Kagechika H, Wei LN. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation. Sci Rep 2016; 6:22396. [PMID: 26935534 PMCID: PMC4776112 DOI: 10.1038/srep22396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
All trans retinoic acid (atRA) is one of the most potent therapeutic agents, but extensive toxicity caused by nuclear RA receptors (RARs) limits its clinical application in treating cancer. AtRA also exerts non-genomic activities for which the mechanism remains poorly understood. We determine that cellular retinoic acid binding protein 1 (Crabp1) mediates the non-genomic activity of atRA, and identify two compounds as the ligands of Crabp1 to rapidly and RAR-independently activate extracellular signal regulated kinase 1/2 (ERK1/2). Non-canonically activated ERK activates protein phosphatase 2A (PP2A) and lengthens cell cycle duration in embryonic stem cells (ESC). This is abolished in Crabp1-null ESCs. Re-expressing Crabp1 in Crabp1-negative cancer cells also sensitizes their apoptotic induction by atRA. This study reveals a physiological relevance of the non-genomic action of atRA, mediated by Crabp1, in modulating cell cycle progression and apoptosis induction, and provides a new cancer therapeutic strategy whereby compounds specifically targeting Crabp1 can modulate cell cycle and cancer cell apoptosis in a RAR-independent fashion, thereby avoiding atRA’s toxicity caused by its genomic effects.
Collapse
Affiliation(s)
- Shawna D Persaud
- Department of Pharmacology University of Minnesota, Minneapolis, MN 55455, USA
| | - Sung Wook Park
- Department of Pharmacology University of Minnesota, Minneapolis, MN 55455, USA
| | - Mari Ishigami-Yuasa
- Tokyo Medical and Dental University (TMDU), Institute of Biomaterials and Bioengineering, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, JAPAN
| | | | - Hiroyuki Kagechika
- Tokyo Medical and Dental University (TMDU), Institute of Biomaterials and Bioengineering, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, JAPAN
| | - Li-Na Wei
- Department of Pharmacology University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Zhu X, Yao J, Tian W. Microarray technology to investigate genes associated with papillary thyroid carcinoma. Mol Med Rep 2015; 11:3729-33. [PMID: 25586635 DOI: 10.3892/mmr.2015.3180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 12/03/2014] [Indexed: 11/05/2022] Open
Abstract
DNA microarray data on thyroid tissue from patients with papillary thyroid carcinoma (PTC) and from healthy controls were compared in order to investigate the regulatory genes and uncover the underlying regulatory network in PTC. The DNA microarray data set, GSE3678, was downloaded from Gene Expression Omnibus database. This included seven thyroid tissue samples from patients with PTC and seven samples from healthy controls. Raw data were processed and differentially expressed genes (DEGs) were identified using corresponding R packages. Gene regulation analysis was conducted using TRANSFAC® and TRED. A total of 171 DEGs were obtained. A regulatory network was then established, using 104 of the DEGs. Subsequently, pathway enrichment analyses of the genes were conducted using Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. Three differentially expressed transcription factors were identified: Trefoil factor 3, cut‑like homeobox 2 and forkhead box protein A2. The most significant pathways involving the 104 DEGs were pathways involved in cancer. Biological process analysis using DAVID, suggested that these genes were associated with the positive regulation of gene expression, gene transcription and metabolic processes. The present study identified a range of genes associated with the development of PTC. The results of the present study were beneficial for understanding the regulatory mechanisms involved in PTC, and for developing clinical diagnostic and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Xinyong Zhu
- Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLA, Beijing 100048, P.R. China
| | - Jing Yao
- Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLA, Beijing 100048, P.R. China
| | - Wen Tian
- Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLA, Beijing 100048, P.R. China
| |
Collapse
|
24
|
Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A, Trukhanova L, Zueva E, Tavitian B, Dyakova N, Zborovskaya I, Tchevkina E. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle 2014; 13:1530-9. [PMID: 24626200 DOI: 10.4161/cc.28475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CRABP1 (cellular retinoic acid binding protein 1) belongs to the family of fatty acid binding proteins. Retinoic acid binding is the only known functional activity of this protein. The role of CRABP1 in human carcinogenesis remains poorly understood. Here, for the first time we demonstrated pro-metastatic and pro-tumorigenic activity of CRABP1 in mesenchymal tumors. Further functional analysis revealed that the pro-tumorigenic effect of CRABP1 does not depend on retinoic acid binding activity. These results suggest that CRABP1 could have an alternative intracellular functional activity that contributes to the high malignancy of transformed mesenchymal cells. Microarray analysis detected CRABP1-mediated alterations in the expression of about 100 genes, including those encoding key regulatory proteins. CRABP1 is ubiquitously expressed in monophasic synovial sarcomas, while in biphasic synovial sarcomas it is expressed uniquely by the spindle cells of the aggressive mesenchymal component. High level of CRABP1 expression is associated with lymph node metastasis and poor differentiation/high grade of pancreatic neuroendocrine tumors (pNETs). Presented data suggest CRABP1 as a promising biomarker of pNETs' clinical behavior. Our results give the first evidence of pro-tumorigenic and pro-metastatic activity of CRABP1 in mesenchymal and neuroendocrine tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elina Zueva
- N.N. Blokhin Russian Cancer Research Center; Moscow, Russia
| | | | | | | | | |
Collapse
|
25
|
In papillary thyroid carcinoma, TIMP-1 expression correlates with BRAF V600E mutation status and together with hypoxia-related proteins predicts aggressive behavior. Virchows Arch 2013; 463:437-44. [DOI: 10.1007/s00428-013-1453-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/26/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022]
|
26
|
Abstract
The incidence of thyroid cancer is increasing worldwide and thyroid nodules are a frequent clinical finding. Diagnosing follicular cell-derived cancers is, however, challenging both histopathologically and especially cytopathologically. The advent of high-throughput molecular technologies has prompted many researchers to explore the transcriptome and, in recent years, also the miRNome in order to generate new molecular classifiers capable of classifying thyroid tumours more accurately than by conventional cytopathological and histopathological methods. This has led to a number of molecular classifiers that may differentiate malignant from benign thyroid nodules. Molecular classification models based on global RNA profiles from fine-needle aspirations are currently being evaluated; results are preliminary and lack validation in prospective clinical trials. There is no doubt that molecular classification will not only contribute to our biological insight but also improve clinical and pathological examinations, thus advancing thyroid tumour diagnosis and ultimately preventing superfluous surgery. This review evaluates the status of classification and biological insights gained from molecular profiling of follicular cell-derived thyroid cancers.
Collapse
Affiliation(s)
- Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
27
|
Persaud SD, Lin YW, Wu CY, Kagechika H, Wei LN. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal 2012; 25:19-25. [PMID: 22982089 DOI: 10.1016/j.cellsig.2012.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/01/2012] [Indexed: 12/19/2022]
Abstract
All-trans retinoic acid (atRA), one of the active ingredients of vitamin A, exerts canonical activities to regulate gene expression mediated by nuclear RA receptors (RARs). AtRA could also elicit certain non-canonical activities including, mostly, rapid activation of extracellular signal regulated kinase 1/2 (ERK1/2); but the mechanism was unclear. In this study, we have found that cellular retinoic acid binding protein I (CRABPI) mediates the non-canonical, RAR- and membrane signal-independent activation of ERK1/2 by atRA in various cellular backgrounds. In the context of embryonic stem cells (ESCs), atRA/CRABPI-dependent ERK1/2 activation rapidly affects ESC cell cycle, specifically to expand the G1 phase. This is mediated by ERK stimulation resulting in dephosphorylation of nuclear p27, which elevates nuclear p27 protein levels to block G1 progression to S phase. This is the first study to identify CRABPI as the mediator for non-canonical activation of ERK1/2 by atRA, and demonstrate a new functional role for CRABPI in modulating ESC cell cycle progression.
Collapse
Affiliation(s)
- Shawna D Persaud
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
28
|
Bommarito A, Richiusa P, Carissimi E, Pizzolanti G, Rodolico V, Zito G, Criscimanna A, Di Blasi F, Pitrone M, Zerilli M, Amato MC, Spinelli G, Carina V, Modica G, Latteri MA, Galluzzo A, Giordano C. BRAFV600E mutation, TIMP-1 upregulation, and NF-κB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer 2011; 18:669-85. [PMID: 21903858 DOI: 10.1530/erc-11-0076] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BRAF(V600E) is the most common mutation found in papillary thyroid carcinoma (PTC). Tissue inhibitor of metalloproteinases (TIMP-1) and nuclear factor (NF)-κB have been shown to play an important role in thyroid cancer. In particular, TIMP-1 binds its receptor CD63 on cell surface membrane and activates Akt signaling pathway, which is eventually responsible for its anti-apoptotic activity. The aim of our study was to evaluate whether interplay among these three factors exists and exerts a functional role in PTCs. To this purpose, 56 PTC specimens were analyzed for BRAF(V600E) mutation, TIMP-1 expression, and NF-κB activation. We found that BRAF(V600E) mutation occurs selectively in PTC nodules and is associated with hyperactivation of NF-κB and upregulation of both TIMP-1 and its receptor CD63. To assess the functional relationship among these factors, we first silenced BRAF gene in BCPAP cells, harboring BRAF(V600E) mutation. We found that silencing causes a marked decrease in TIMP-1 expression and NF-κB binding activity, as well as decreased invasiveness. After treatment with specific inhibitors of MAPK pathway, we found that only sorafenib was able to increase IκB-α and reduce both TIMP-1 expression and Akt phosphorylation in BCPAP cells, indicating that BRAF(V600E) activates NF-κB and this pathway is MEK-independent. Taken together, our findings demonstrate that BRAF(V600E) causes upregulation of TIMP-1 via NF-κB. TIMP-1 binds then its surface receptor CD63, leading eventually to Akt activation, which in turn confers antiapoptotic behavior and promotion of cell invasion. The recognition of this functional trilogy provides insight on how BRAF(V600E) determines cancer initiation, progression, and invasiveness in PTC, also identifying new therapeutic targets for the treatment of highly aggressive forms.
Collapse
Affiliation(s)
- Alessandra Bommarito
- Sezione di Endocrinologia, Laboratorio di Endocrinologia Molecolare, Dipartimento di Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chile T, Corrêa-Giannella ML, Fortes MAHZ, Bronstein MD, Cunha-Neto MB, Giannella-Neto D, Giorgi RR. Expression of CRABP1, GRP, and RERG mRNA in clinically non-functioning and functioning pituitary adenomas. J Endocrinol Invest 2011; 34:e214-8. [PMID: 21270509 DOI: 10.3275/7481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pituitary tumors account for approximately 10-15% of intracranial neoplasms. AIM Using the cDNA microarray method, we have previously compared expression under two distinct conditions: a pool of 4 clinically non-functioning pituitary adenomas (NFPA) and a spinal cord metastasis of a non-functioning pituitary carcinoma, in order to gain biological insights into genomic changes of pituitary neoplasias. In the present study, we further investigated the mRNA expression of 3 selected genes previously described as being involved in other neoplasias based on a series of 60 pituitary adenomas: CRABP1 (cellular retinoic acid binding protein 1), GRP (gastrin-releasing peptide), and RERG (Ras-related, estrogen- regulated, growth inhibitor). MATERIAL AND METHODS The expression of CRABP1, GRP, and RERG was determined by quantitative RT-PCR. RESULTS A significantly higher content of CRABP1 mRNA was observed in NFPA compared to functioning adenomas, and PRL-secreting adenomas showed a lower expression of this gene compared to normal pituitary. A lower expression of GRP mRNA was detected in NFPA compared to normal pituitary and also to functioning adenomas. RERG mRNA was overexpressed in NFPA in comparison to functioning adenomas and to normal pituitary. Among the functioning adenomas, only the ACTH-secreting adenomas presented a higher expression of RERG mRNA compared to normal pituitary. CONCLUSIONS The findings of differential expression of CRABP1 in prolactinomas and of RERG in NFPA compared to normal pituitary suggests that retinoic acid and estrogen receptor, respectively, could be involved in the tumorigenesis of these adenomas subtypes. Additional studies are required to further confirm this hypothesis.
Collapse
Affiliation(s)
- T Chile
- Laboratory for Cellular and Molecular Endocrinology (LIM-25), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Tissue inhibitor of metalloproteinase 1 expression associated with gene demethylation confers anoikis resistance in early phases of melanocyte malignant transformation. Transl Oncol 2011; 2:329-40. [PMID: 19956395 DOI: 10.1593/tlo.09220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 08/13/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Although anoikis resistance has been considered a hallmark of malignant phenotype, the causal relation between neoplastic transformation and anchorage-independent growth remains undefined. We developed an experimental model of murine melanocyte malignant transformation, where a melanocyte lineage (melan-a) was submitted to sequential cycles of anchorage blockade, resulting in progressive morphologic alterations, and malignant transformation. Throughout this process, cells corresponding to premalignant melanocytes and melanoma cell lines were established and show progressive anoikis resistance and increased expression of Timp1. In melan-a melanocytes, Timp1 expression is suppressed by DNA methylation as indicated by its reexpression after 5-aza-2'-deoxycytidine treatment. Methylation-sensitive single-nucleotide primer extension analysis showed increased demethylation in Timp1 in parallel with its expression along malignant transformation. Interestingly, TIMP1 expression has already been related with negative prognosis in some human cancers. Although described as a MMP inhibitor, this protein has been associated with apoptosis resistance in different cell types. Melan-a cells overexpressing Timp1 showed increased survival in suspension but were unable to form tumors in vivo, whereas Timp1-overexpressing melanoma cells showed reduced latency time for tumor appearance and increased metastatic potential. Here, we demonstrated for the first time an increment in Timp1 expression since the early phases of melanocyte malignant transformation, associated to a progressive gene demethylation, which confers anoikis resistance. In this way, Timp1 might be considered as a valued marker for melanocyte malignant transformation.
Collapse
|
31
|
|
32
|
Kashat L, So AKC, Masui O, Wang XS, Cao J, Meng X, Macmillan C, Ailles LE, Siu KWM, Ralhan R, Walfish PG. Secretome-based identification and characterization of potential biomarkers in thyroid cancer. J Proteome Res 2010; 9:5757-69. [PMID: 20873772 DOI: 10.1021/pr100529t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In search of thyroid cancer biomarkers, proteins secreted by thyroid cancer cell lines, papillary-derived TPC-1 and anaplastic-derived CAL62, were analyzed using liquid chromatography-tandem mass spectrometry. Of 46 high-confidence identifications, 6 proteins were considered for verification in thyroid cancer patients' tissue and blood. The localization of two proteins, nucleolin and prothymosin-α (PTMA), was confirmed in TPC-1 and CAL62 cells by confocal microscopy and immunohistochemically in xenografts of TPC-1 cells in NOD/SCID/γ mice and human thyroid cancers (48 tissues). Increased nuclear and cytoplasmic expression of PTMA was observed in anaplastic compared to papillary and poorly differentiated carcinomas. Nuclear expression of nucleolin was observed in all subtypes of thyroid carcinomas, along with faint cytoplasmic expression in anaplastic cancers. Importantly, PTMA, nucleolin, clusterin, cysteine-rich angiogenic inducer 61, enolase 1, and biotinidase were detected in thyroid cancer patients' sera, warranting future analysis to confirm their potential as blood-based thyroid cancer markers. In conclusion, we demonstrated the potential of secretome analysis of thyroid cancer cell lines to identify novel proteins that can be independently verified in cell lines, xenografts, tumor tissues, and blood samples of thyroid cancer patients. These observations support their potential utility as minimally invasive biomarkers for thyroid carcinomas and their application in management of these diseases upon future validation.
Collapse
Affiliation(s)
- Lawrence Kashat
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stein L, Rothschild J, Luce J, Cowell JK, Thomas G, Bogdanova TI, Tronko MD, Hawthorn L. Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. Thyroid 2010; 20:475-87. [PMID: 19725780 DOI: 10.1089/thy.2009.0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Following exposure to radiation during the Chernobyl fallout tragedy, papillary thyroid carcinoma (PTC) increased significantly in individuals who were children at the time of the accident. We have used two high-throughput, whole genome platforms to analyze radiation-induced PTCs from pediatric patients from the Chernobyl region. METHODS We performed comparative genomic hybridization using Affymetrix 50K Mapping arrays and gene expression profiling on 10 pediatric post-Chernobyl PTCs obtained from patients living in the region. We performed an overlay analysis of these two data sets. RESULTS Many regions of copy number alterations (CNAs) were detected including novel regions that had never been associated with PTCs. Increases in copy numbers were consistently found on chromosomes 1p, 5p, 9q, 12q, 13q, 16p, 21q, and 22q. Deletions were observed less frequently and were mapped to 1q, 6q, 9q, 10q, 13q, 14q, 21q, and 22q. Gene expression analysis revealed that most of the altered genes were also perturbed in sporadic adult PTC; however, 141 gene expression changes were found to be unique to the post-Chernobyl tumors. The genes with the highest increases in expression that were novel to the pediatric post-Chernobyl tumors were TESC, PDZRN4, TRAa/TRDa, GABBR2, and CA12. The genes showing the largest expression decreases included PAPSS2, PDLIM3, BEXI, ANK2, SORBS2, and PPARGCIA. An overlay analysis of the gene expression and CNA profiles was then performed. This analysis identified genes showing both CNAs and concurrent gene expression alterations. Many of these are commonly seen in sporadic PTC such as SERPINA, COL8A, and PDX, while others were unique to the radiation-induced profiles including CAMK2N1, AK1, DHRS3, and PDE9A. CONCLUSIONS This type of analysis allows an assessment of gene expression changes that are associated with a physical mechanism. These genes and chromosomal regions are potential markers for radiation-induced PTC.
Collapse
Affiliation(s)
- Leighton Stein
- Roswell Park Cancer Institute , Department of Cancer Genetics, Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fontaine JF, Mirebeau-Prunier D, Raharijaona M, Franc B, Triau S, Rodien P, Goëau-Brissonniére O, Karayan-Tapon L, Mello M, Houlgatte R, Malthiery Y, Savagner F. Increasing the number of thyroid lesions classes in microarray analysis improves the relevance of diagnostic markers. PLoS One 2009; 4:e7632. [PMID: 19893615 PMCID: PMC2764086 DOI: 10.1371/journal.pone.0007632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Genetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARγ, TSHR, GNAS and NRAS genes. Conclusion/Significance We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas.
Collapse
Affiliation(s)
- Jean-Fred Fontaine
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
| | - Delphine Mirebeau-Prunier
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
| | - Mahatsangy Raharijaona
- INSERM, UMR 915, l'institut du Thorax, Nantes, France
- Université de Nantes, Nantes, France
| | - Brigitte Franc
- Hôpital A Paré, Laboratoire d'Anatomie Pathologique, Boulogne, France
| | - Stephane Triau
- CHU Angers, Laboratoire de Pathologie Cellulaire et Tissulaire, Angers, France
| | - Patrice Rodien
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Département Endocrinologie-Diabétologie-Nutrition, Angers, France
| | | | | | | | - Rémi Houlgatte
- INSERM, UMR 915, l'institut du Thorax, Nantes, France
- Université de Nantes, Nantes, France
| | - Yves Malthiery
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
| | - Frédérique Savagner
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
- INSERM, UMR 915, l'institut du Thorax, Nantes, France
- * E-mail:
| |
Collapse
|
35
|
mRNA expression of matrix metalloproteinases (MMPs) 2 and 9 and tissue inhibitor of matrix metalloproteinases (TIMPs) 1 and 2 in childhood acute lymphoblastic leukemia: potential role of TIMP1 as an adverse prognostic factor. Leuk Res 2009; 34:32-7. [PMID: 19875168 DOI: 10.1016/j.leukres.2009.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/24/2009] [Accepted: 10/06/2009] [Indexed: 11/21/2022]
Abstract
This study evaluates the mRNA expression profile of genes TIMP1, TIMP2, MMP2 and MMP9 in diagnostic bone marrow samples from 134 consecutive ALL children by real-time quantitative PCR. A significant association was observed between higher expression levels of MMP9 and low risk group and absence of extramedullary infiltration and higher expression levels of TIMP2 and MMP2 with T-ALL. TIMP1 gene expression values higher than the median were associated with a significantly lower 5-year event free-survival in univariable (P=0.04) and multivariable analysis (P=0.01). Our data address new information in the complex interaction of the migration/adhesion genes and childhood ALL.
Collapse
|
36
|
Identification of genes involved in squamous cell carcinoma of the lung using synchronized data from DNA copy number and transcript expression profiling analysis. Lung Cancer 2008; 59:315-31. [DOI: 10.1016/j.lungcan.2007.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/16/2007] [Accepted: 08/22/2007] [Indexed: 12/12/2022]
|
37
|
van Staveren WCG, Solís DW, Delys L, Duprez L, Andry G, Franc B, Thomas G, Libert F, Dumont JE, Detours V, Maenhaut C. Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype. Cancer Res 2007; 67:8113-20. [PMID: 17804723 DOI: 10.1158/0008-5472.can-06-4026] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell lines are crucial to elucidate mechanisms of tumorigenesis and serve as tools for cancer treatment screenings. Therefore, careful validation of whether these models have conserved properties of in vivo tumors is highly important. Thyrocyte-derived tumors are very interesting for cancer biology studies because from one cell type, at least five histologically characterized different benign and malignant tumor types can arise. To investigate whether thyroid tumor-derived cell lines are representative in vitro models, characteristics of eight of those cell lines were investigated with microarrays, differentiation markers, and karyotyping. Our results indicate that these cell lines derived from differentiated and undifferentiated tumor types have evolved in vitro into similar phenotypes with gene expression profiles the closest to in vivo undifferentiated tumors. Accordingly, the absence of expression of most thyrocyte-specific genes, the nonresponsiveness to thyrotropin, as well as their large number of chromosomal abnormalities, suggest that these cell lines have acquired characteristics of fully dedifferentiated cells. They represent the outcome of an adaptation and evolution in vitro, which questions the reliability of these cell lines as models for differentiated tumors. However, they may represent useful models for undifferentiated cancers, and by their comparison with differentiated cells, can help to define the genes involved in the differentiation/dedifferentiation process. The use of any cell line as a model for a cancer therefore requires prior careful and thorough validation for the investigated property.
Collapse
|
38
|
Lo KC, Rossi MR, LaDuca J, Hicks DG, Turpaz Y, Hawthorn L, Cowell JK. Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changes. Genes Chromosomes Cancer 2007; 46:875-94. [PMID: 17620294 DOI: 10.1002/gcc.20474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copy number abnormalities (CNAs) in tumor cells are presumed to affect expression levels of genes located in region of abnormality. To investigate this relationship we have surveyed the losses, gains and amplifications in 30 glioblastomas using array comparative genome hybridization and compared these data with gene expression changes in the same tumors using the Affymetrix U133Plus2.0 oligonucleotide arrays. The two datasets were overlaid using our in-house overlay tool which highlights concordance between CNAs and expression level changes for the same tumors. In this survey we have highlighted genes frequently overexpressed in amplified regions on chromosomes 1, 4, 11, and 12 and have identified novel amplicons on these chromosomes. Deletions of specific regions on chromosomes 9, 10, 11, 14, and 15 have also been correlated with reduced gene expression in the regions of minimal overlap. In addition we describe a novel approach for comparing gene expression levels between tumors based on the presence or absence of chromosome CNAs. This genome wide screen provides an efficient and comprehensive survey of genes which potentially serve as the drivers for the CNAs in GBM.
Collapse
Affiliation(s)
- Ken C Lo
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C. Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 2007; 26:7894-903. [PMID: 17621275 DOI: 10.1038/sj.onc.1210588] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this paper is to correlate the molecular phenotype of papillary thyroid carcinoma (PTC) to their biological pathology. We hybridized 26 PTC on microarrays and showed that nearly 44% of the transcriptome was regulated in these tumors. We then combined our data set with two published PTC microarray studies to produce a platform- and study-independent list of PTC-associated genes. We further confirmed the mRNA regulation of 15 genes from this list by quantitative reverse transcription-PCR. Analysis of this list with statistical tools led to several conclusions: (1) there is a change in cell population with an increased expression of genes involved in the immune response, reflecting lymphocyte infiltration in the tumor compared to the normal tissue. (2) The c-jun N-terminal kinase pathway is activated by overexpression of its components. (3) The activation of ERKK1/2 by genetic alterations is supplemented by activation of the epidermal growth factor but not of the insulin-like growth factor signaling pathway. (4) There is a downregulation of immediate early genes. (5) We observed an overexpression of many proteases in accordance with tumor remodeling, and suggested a probable role of S100 proteins and annexin A2 in this process. (6) Numerous overexpressed genes favor the hypothesis of a collective migration mode of tumor cells.
Collapse
Affiliation(s)
- L Delys
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tanaka K, Imoto I, Inoue J, Kozaki K, Tsuda H, Shimada Y, Aiko S, Yoshizumi Y, Iwai T, Kawano T, Inazawa J. Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma. Oncogene 2007; 26:6456-68. [PMID: 17438526 DOI: 10.1038/sj.onc.1210459] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic alterations and the resulting inactivation of tumor suppressor genes often contribute to the development of various cancers. To identify novel candidates that may be silenced by aberrant methylation in esophageal squamous-cell carcinoma (ESCC), we analysed ESCC cell lines by a recently developed method known as bacterial artificial chromosome array-based methylated CpG island amplification (BAMCA), and selected candidates through BAMCA-assisted strategy. In the course of this program, we identified frequent CpG methylation-dependent silencing of the gene encoding cellular retinoic acid binding protein 1 (CRABP1) in our panel of ESCC cell lines. Expression of CRABP1 mRNA was restored in gene-silenced ESCC cells after treatment with 5-aza 2'-deoxycytidine. The DNA methylation status of the CRABP1 CpG island with clear promoter activity correlated inversely with expression of this gene. CpG methylation of CRABP1 was frequently observed in primary ESCC tissues as well. Restoration of CRABP1 expression in ESCC cells lacking the protein reduced cell growth by inducing arrest at G(0)-G(1), whereas knockdown of the gene in cells expressing CRABP1 promoted cell growth. Among 113 primary ESCC tumors, the absence of immunoreactive CRABP1 was significantly associated with de-differentiation of cancer cells and with distant lymph-node metastases in the patients. These results indicate that CRABP1 appears to have a tumor-suppressor function in esophageal epithelium, and its epigenetic silencing may play a pivotal role during esophageal carcinogenesis. Its expression status in biopsies or resected tumors might serve as an index for identifying ESCC patients for whom combined therapeutic modalities would be recommended.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Proliferation
- DNA Methylation
- Epigenesis, Genetic
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lymphatic Metastasis/pathology
- Male
- Middle Aged
- Promoter Regions, Genetic
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
Collapse
Affiliation(s)
- K Tanaka
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Griffith OL, Melck A, Jones SJM, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 2006; 24:5043-51. [PMID: 17075124 DOI: 10.1200/jco.2006.06.7330] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE An estimated 4% to 7% of the population will develop a clinically significant thyroid nodule during their lifetime. In many cases, preoperative diagnoses by needle biopsy are inconclusive. Thus, there is a clear need for improved diagnostic tests to distinguish malignant from benign thyroid tumors. The recent development of high-throughput molecular analytic techniques should allow the rapid evaluation of new diagnostic markers. However, researchers are faced with an overwhelming number of potential markers from numerous thyroid cancer expression profiling studies. MATERIALS AND METHODS To address this challenge, we have carried out a comprehensive meta-review of thyroid cancer biomarkers from 21 published studies. A gene ranking system that considers the number of comparisons in agreement, total number of samples, average fold-change and direction of change was devised. RESULTS We have observed that genes are consistently reported by multiple studies at a highly significant rate (P < .05). Comparison with a meta-analysis of studies reprocessed from raw data showed strong concordance with our method. CONCLUSION Our approach represents a useful method for identifying consistent gene expression markers when raw data are unavailable. A review of the top 12 candidates revealed well known thyroid cancer markers such as MET, TFF3, SERPINA1, TIMP1, FN1, and TPO as well as relatively novel or uncharacterized genes such as TGFA, QPCT, CRABP1, FCGBP, EPS8 and PROS1. These candidates should help to develop a panel of markers with sufficient sensitivity and specificity for the diagnosis of thyroid tumors in a clinical setting.
Collapse
Affiliation(s)
- Obi L Griffith
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | |
Collapse
|
42
|
Abstract
Thyroid cancer is one of the few malignancies that are increasing in incidence. Recent advances have improved our understanding of its pathogenesis; these include the identification of genetic alterations that activate a common effector pathway involving the RET-Ras-BRAF signalling cascade, and other unique chromosomal rearrangements. Some of these have been associated with radiation exposure as a pathogenetic mechanism. Defects in transcriptional and post-transcriptional regulation of adhesion molecules and cell-cycle control elements seem to affect tumour progression. This information can provide powerful ancillary diagnostic tools and can also be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, University Health Network and Toronto Medical Laboratories, Department of Laboratory Medicine and Pathology, University of Toronto, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | | | | |
Collapse
|
43
|
van Staveren WCG, Solís DW, Delys L, Venet D, Cappello M, Andry G, Dumont JE, Libert F, Detours V, Maenhaut C. Gene expression in human thyrocytes and autonomous adenomas reveals suppression of negative feedbacks in tumorigenesis. Proc Natl Acad Sci U S A 2005; 103:413-8. [PMID: 16381821 PMCID: PMC1326163 DOI: 10.1073/pnas.0507354102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cAMP signaling pathway regulates growth of many cell types, including somatotrophs, thyrocytes, melanocytes, ovarian follicular granulosa cells, adrenocortical cells, and keratinocytes. Mutations of partners from the cAMP signaling cascade are involved in tumor formation. Thyroid-stimulating hormone (TSH) receptor and Gsalpha activating mutations have been detected in thyroid autonomous adenomas, Gsalpha mutations in growth hormone-secreting pituitary adenomas, and PKAR1A mutations in Carney complex, a multiple neoplasia syndrome. To gain more insight into the role of cAMP signaling in tumor formation, human primary cultures of thyrocytes were treated for different times (1.5, 3, 16, 24, and 48 h) with TSH to characterize modulations in gene expression using cDNA microarrays. This kinetic study showed a clear difference in expression, early (1.5 and 3 h) and late (16-48 h) after the onset of TSH stimulation. This result suggests a progressive sequential process leading to a change of cell program. The gene expression profile of the long-term stimulated cultures resembled the autonomous adenomas, but not papillary carcinomas. The molecular phenotype of the adenomas thus confirms the role of long-term stimulation of the TSH-cAMP cascade in the pathology. TSH induced a striking up-regulation of different negative feedback modulators of the cAMP cascade, presumably insuring the one-shot effect of the stimulus. Some were down- or nonregulated in adenomas, suggesting a loss of negative feedback control in the tumors. These results suggest that in tumorigenesis, activation of proliferation pathways may be complemented by suppression of multiple corresponding negative feedbacks, i.e., specific tumor suppressors.
Collapse
|
44
|
Weber F, Eng C. Gene-expression profiling in differentiated thyroid cancer – a viable strategy for the practice of genomic medicine? Future Oncol 2005; 1:497-510. [PMID: 16556026 DOI: 10.2217/14796694.1.4.497] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thyroid neoplasias have been largely ignored as an active field of investigation due to the overall favorable prognosis of differentiated nonmedullary thyroid cancers. However, differentiated thyroid cancers have the highest estimated annual percentage increase in incidence amongst all cancer sites. Furthermore, no significant progress has been made to improve survival, especially for advanced disease. Compounding the problem, there remains a lack of highly accurate preoperative markers or molecular-based predictive models to differentiate benign from malignant follicular neoplasias, thus we continue to rely upon surgery for diagnostic purposes in this subset of patients. Therefore, new approaches are necessary to identify potential novel diagnostic, prognostic and therapeutic algorithms, which would not only allow accurate early diagnosis but also personalized patient management, with clinical management and surveillance tailored according to the genetic signature of the patient. The advent of modern genomic technologies, such as global gene-expression profiling, may begin to provide the data required for the evidence-based practice of genomic medicine as it relates to thyroid neoplasia. However, it is already clear that genomic technology alone is insufficient to fully achieve this vision.
Collapse
Affiliation(s)
- Frank Weber
- The Ohio State University, Human Cancer Genetics Program, 420 West 12th Avenue, Ste 690 TMRF, Columbus, OH 43210, USA
| | | |
Collapse
|
45
|
Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, Gauger P, Doherty G, Thompson NW, Hanash S, Koenig RJ, Nikiforov YE. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 2005; 24:6646-56. [PMID: 16007166 DOI: 10.1038/sj.onc.1208822] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thyroid cancer poses a significant clinical challenge, and our understanding of its pathogenesis is incomplete. To gain insight into the pathogenesis of papillary thyroid carcinoma, transcriptional profiles of four normal thyroids and 51 papillary carcinomas (PCs) were generated using DNA microarrays. The tumors were genotyped for their common activating mutations: BRAF V600E point mutation, RET/PTC1 and 3 rearrangement and point mutations of KRAS, HRAS and NRAS. Principal component analysis based on the entire expression data set separated the PCs into three groups that were found to reflect tumor morphology and mutational status. By combining expression profiles with mutational status, we defined distinct expression profiles for the BRAF, RET/PTC and RAS mutation groups. Using small numbers of genes, a simple classifier was able to classify correctly the mutational status of all 40 tumors with known mutations. One tumor without a detectable mutation was predicted by the classifier to have a RET/PTC rearrangement and was shown to contain one by fluorescence in situ hybridization analysis. Among the mutation-specific expression signatures were genes whose differential expression was a direct consequence of the mutation, as well as genes involved in a variety of biological processes including immune response and signal transduction. Expression of one mutation-specific differentially expressed gene, TPO, was validated at the protein level using immunohistochemistry and tissue arrays containing an independent set of tumors. The results demonstrate that mutational status is the primary determinant of gene expression variation within these tumors, a finding that may have clinical and diagnostic significance and predicts success for therapies designed to prevent the consequences of these mutations.
Collapse
Affiliation(s)
- Thomas J Giordano
- Department of Pathology, UH 2G332/0054, University of Michigan Medical School, Ann Arbor, 48109-0054, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stolf BS, Abreu CM, Mahler-Araújo MB, Dellamano M, Martins WK, de Carvalho MB, Curado MP, Díaz JP, Fabri A, Brentani H, Carvalho AF, Soares FA, Kowalski LP, Hirata R, Reis LFL. Expression profile of malignant and non-malignant diseases of the thyroid gland reveals altered expression of a common set of genes in goiter and papillary carcinomas. Cancer Lett 2005; 227:59-73. [PMID: 16051032 DOI: 10.1016/j.canlet.2004.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 11/25/2004] [Accepted: 11/28/2004] [Indexed: 11/20/2022]
Abstract
Using cDNA microarrays with 3800 cDNA fragments, we determined the expression profile of normal thyroid tissue, goiter, adenoma and papillary carcinoma (10 samples from each class). After background correction and statistical analysis, we identified a set of 160 genes as being differentially expressed in all pair-wise comparisons. Here we demonstrate that, at least on the basis of these differentially expressed genes, a positive correlation between goiter and papillary carcinomas could be observed. We identified a common set of genes whose expression is diminished in both goiter and papillary carcinomas as compared to normal thyroid tissue. Moreover, no genes with inverse correlation in samples from goiter and papillary carcinomas could be detected. Using Real-Time PCR and/or tissue microarrays, we confirmed the altered expression of some of the identified genes. Of notice, we demonstrate that the reduced mRNA levels of p27(kip1) observed in papillary carcinomas as compared to either goiter or normal thyroid tissues (P<0.001) is accompanied by an altered protein distribution within the cell. In papillary carcinomas, P27(KIP1) is preferentially cytoplasmic as opposed to goiter or normal thyroid tissue, where P27(KIP1) is preferentially located in the nucleus. The exploitation of the data presented here could contribute to the understanding of the molecular events related to thyroid diseases and gives support to the notion that common molecular events might be related to the frequent observation of areas of papillary carcinomas in the gland of patients with goiter.
Collapse
Affiliation(s)
- Beatriz S Stolf
- Ludwig Institute for Cancer Research, São Paulo, Brazil; Instituto de Química, USP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|