1
|
Wu X, Deng Y, Xu Y, Kang H, Hu JJ, Yoon J, Liang G. Activatable Fluorescence and Bio/Chemiluminescence Probes for Aminopeptidases: From Design to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409893. [PMID: 39235570 DOI: 10.1002/adma.202409893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidases are exopeptidases that catalyze the cleavage of amino acid residues from the N-terminal fragment of protein or peptide substrates. Owing to their function, they play important roles in protein maturation, signal transduction, cell-cycle control, and various disease mechanisms, notably in cancer pathology. To gain better insights into their function, molecular imaging assisted by fluorescence and bio/chemiluminescence probes has become an indispensable method to their superiorities, including excellent sensitivity, selectivity, and real-time and noninvasive imaging. Numerous efforts are made to develop activatable probes that can effectively enhance efficiency and accuracy as well as minimize the side effects. This review is classified according to the type of aminopeptidases, summarizing some recent works on the design, work mechanism, and sensing, imaging, and theranostic performance of their activatable probe. Finally, the current challenges are outlined in developing activatable probes for aminopeptidases and provide possible solutions for future advancements.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Wu Y, Wu H, Lu X, Chen Y, Zhang X, Ju J, Zhang D, Zhu B, Huang S. Development and Evaluation of Targeted Optical Imaging Probes for Image‐Guided Surgery in Head and Neck Cancer. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xiaoya Lu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Yi Chen
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xue Zhang
- University of Jinan Jinan Shandong 250021 China
| | - Jiandong Ju
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Baocun Zhu
- University of Jinan Jinan Shandong 250021 China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| |
Collapse
|
3
|
Ren K, Ni Y, Li X, Wang C, Chang Q, Li Y, Gao Z, Wu S, Shi X, Song J, Yao N, Zhou J. Expression profiling of long noncoding RNAs associated with vasculogenic mimicry in osteosarcoma. J Cell Biochem 2019; 120:12473-12488. [PMID: 30825232 DOI: 10.1002/jcb.28514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is the most common highly malignant bone tumor in teens. Vasculogenic mimicry (VM) is defined as de novo extracellular matrix-rich vascular-like networks formed by highly aggressive tumor cells. We previously reported the presence of VM and it is an unfavorable prognostic factor in OS patients. Long noncoding RNAs (lncRNAs) are aberrantly expressed in OS and involved in cancer cell VM. However, lncRNAs in VM formation of OS have not been investigated. We, therefore, profiled the expression of lncRNAs in highly aggressive OS cell line 143B compared with its parental poorly aggressive cell line HOS. The differentially expressed (DE) lncRNAs and messenger RNA (mRNAs) were subjected to constructed lncRNA-mRNA coexpressed network. The top-ranked hub gene lncRNA n340532 knockdown 143B cells were used for in vitro and in vivo VM assays. The annotation of DE lncRNAs was performed according to the coexpressed mRNAs by Gene Ontology and pathway analysis. A total of 1360 DE lncRNAs and 1353 DE mRNAs were screened out. lncRNA MALAT1 and FTX, which have known functions related to VM formation and tumorigenesis were identified in our data. The coexpression network composed of 226 lncRNAs and 118 mRNAs in which lncRNA n340532 had the highest degree number. lncRNA n340532 knockdown reduced VM formation in vitro. The suppression of n340532 also exhibited potent anti-VM and antimetastasis effect in vivo, suggesting its potential role in OS VM and metastasis. Furthermore, n340532 coexpressed with 10 upregulation mRNAs and 3 downregulation mRNAs. The enriched transforming growth factor-β signaling pathway, angiogenesis and so forth were targeted by those coexpressed mRNAs, implying n340532 may facilitate VM formation in OS through these pathways and gene functions. Our findings provide evidence for the potential role of lncRNAs in VM formation of OS that could be used in the clinic for anti-VM therapy in OS.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Bone Neoplasms/blood supply
- Bone Neoplasms/genetics
- Bone Neoplasms/pathology
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Ontology
- Gene Regulatory Networks
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Osteosarcoma/blood supply
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- RNA, Long Noncoding/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yicheng Ni
- Department of Radiology, Faculty of Medicine, K.U. Leuven, Leuven, Belgium
| | - Xingjia Li
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qing Chang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yonggang Li
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zengxin Gao
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Sujia Wu
- Department of Orthopedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Shi
- Department of Orthopedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jie Song
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Nan Yao
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhou
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Geng N, Zhang W, Li Y, Li F. Aspartyl Aminopeptidase Suppresses Proliferation, Invasion, and Stemness of Breast Cancer Cells via Targeting CD44. Anat Rec (Hoboken) 2019; 302:2178-2185. [PMID: 31228326 DOI: 10.1002/ar.24206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023]
Abstract
Although involved in diverse cancer processes, the function of aspartyl aminopeptidase (DNPEP) in breast cancer remains elusive. Here, we reported that DNPEP is significantly downregulated in breast cancer tissues. Overexpression of DNPEP resulted in decreased breast cancer cells proliferation, migration, and invasion, while DNPEP knockdown had the opposite effect. Interestingly, we showed that the reduced DNPEP levels were correlated with the elevated cluster of differentiation 44 (CD44) levels in breast cancer. DNPEP promoted CD44 ubiquitin-proteasome-independent degradation, which is dependent on the hydrolase activity of DNPEP. Ectopic DNPEP expression significantly suppressed the stemness properties of breast cancer cells. These results shed light on the prospect of DNPEP in manipulating breast cancer progression. Anat Rec, 302:2178-2185, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Nanxi Geng
- Department of Cell Biology, China Medical University, Shenyang, China
| | - Wenyu Zhang
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Yang Li
- Department of Cell Biology, China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Ferrari E, Wittig A, Basilico F, Rossi R, De Palma A, Di Silvestre D, Sauerwein WA, Mauri PL. Urinary Proteomics Profiles Are Useful for Detection of Cancer Biomarkers and Changes Induced by Therapeutic Procedures. Molecules 2019; 24:molecules24040794. [PMID: 30813269 PMCID: PMC6412696 DOI: 10.3390/molecules24040794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary cancer treatment modality where two different agents (10B and thermal neutrons) have to be present to produce an effect. A dedicated trial design is necessary for early clinical trials. The concentration of 10B in tissues is an accepted surrogate to predict BNCT effects on tissues. Tissue, blood, and urines were sampled after infusion of two different boron carriers, namely BSH and BPA in the frame of the European Organisation for Research and Treatment of Cancer (EORTC) trial 11001. In this study, urine samples were used to identify protein profiles prior and after drug infusion during surgery. Here, an approach that is based on the mass spectrometry (MS)-based proteomic analysis of urine samples from head and neck squamous cell carcinoma (HNSCC) and thyroid cancer patients is presented. This method allowed the identification of several inflammation- and cancer-related proteins, which could serve as tumor biomarkers. In addition, changes in the urinary proteome during and after therapeutic interventions were detected. In particular, a reduction of three proteins that were involved in inflammation has been observed: Galectin-3 Binding Protein, CD44, and osteopontin. The present work represents a proof of principle to follow proteasome changes during complex treatments based on urine samples.
Collapse
Affiliation(s)
- Emanuele Ferrari
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20090 Segrate (MI), Italy; (E.F.); (R.R.); (A.D.P.); (D.D.S.)
| | - Andrea Wittig
- Dept. of Radiotherapy and Radiation Oncology, University Hospital Jena, 07743 Jena, Germany;
| | - Fabrizio Basilico
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20090 Segrate (MI), Italy; (E.F.); (R.R.); (A.D.P.); (D.D.S.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20090 Segrate (MI), Italy; (E.F.); (R.R.); (A.D.P.); (D.D.S.)
| | - Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20090 Segrate (MI), Italy; (E.F.); (R.R.); (A.D.P.); (D.D.S.)
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20090 Segrate (MI), Italy; (E.F.); (R.R.); (A.D.P.); (D.D.S.)
| | | | - Pier Luigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20090 Segrate (MI), Italy; (E.F.); (R.R.); (A.D.P.); (D.D.S.)
- Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence: ; Tel.: +39-02-264226728
| |
Collapse
|
6
|
Amin SA, Adhikari N, Jha T. Design of Aminopeptidase N Inhibitors as Anti-cancer Agents. J Med Chem 2018; 61:6468-6490. [DOI: 10.1021/acs.jmedchem.7b00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| |
Collapse
|
7
|
Azimi A, Tuominen R, Costa Svedman F, Caramuta S, Pernemalm M, Frostvik Stolt M, Kanter L, Kharaziha P, Lehtiö J, Hertzman Johansson C, Höiom V, Hansson J, Egyhazi Brage S. Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis 2017; 8:e3029. [PMID: 29048432 PMCID: PMC5596587 DOI: 10.1038/cddis.2017.406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022]
Abstract
A majority of patients with BRAF-mutated metastatic melanoma respond to therapy with BRAF inhibitors (BRAFi), but relapses are common owing to acquired resistance. To unravel BRAFi resistance mechanisms we have performed gene expression and mass spectrometry based proteome profiling of the sensitive parental A375 BRAF V600E-mutated human melanoma cell line and of daughter cell lines with induced BRAFi resistance. Increased expression of two novel resistance candidates, aminopeptidase-N (CD13/ANPEP) and ETS transcription factor FLI1 was observed in the BRAFi-resistant daughter cell lines. In addition, increased levels of the previously reported resistance mediators, receptor tyrosine kinase ephrine receptor A2 (EPHA2) and the hepatocyte growth factor receptor MET were also identified. The expression of these proteins was assessed in matched tumor samples from melanoma patients obtained before BRAFi and after disease progression. MET was overexpressed in all progression samples while the expression of the other candidates varied between the individual patients. Targeting CD13/ANPEP by a blocking antibody induced apoptosis in both parental A375- and BRAFi-resistant daughter cells as well as in melanoma cells with intrinsic BRAFi resistance and led to dephosphorylation of EPHA2 on S897, previously demonstrated to cause inhibition of the migratory capacity. AKT and RSK, both reported to induce EPHA2 S897 phosphorylation, were also dephosphorylated after inhibition of CD13/ANPEP. FLI1 silencing also caused decreases in EPHA2 S897 phosphorylation and in total MET protein expression. In addition, silencing of FLI1 sensitized the resistant cells to BRAFi. Furthermore, we show that BRAFi in combination with the multi kinase inhibitor dasatinib can abrogate BRAFi resistance and decrease both EPHA2 S897 phosphorylation and total FLI1 protein expression. This is the first report presenting CD13/ANPEP and FLI1 as important mediators of resistance to BRAF inhibition with potential as drug targets in BRAFi refractory melanoma.
Collapse
Affiliation(s)
- Alireza Azimi
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Tuominen
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Fernanda Costa Svedman
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Caramuta
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pernemalm
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Frostvik Stolt
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Kanter
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pedram Kharaziha
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Veronica Höiom
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hansson
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Suzanne Egyhazi Brage
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Hou J, Jin K, Li J, Jiang Y, Li X, Wang X, Huang Y, Zhang Y, Xu W. LJNK, an indoline-2,3-dione-based aminopeptidase N inhibitor with promising antitumor potency. Anticancer Drugs 2016; 27:496-507. [PMID: 26872309 DOI: 10.1097/cad.0000000000000351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In our previous study, we found that LJNK showed potent aminopeptidase N (APN)-inhibitory activity. In the current study, we further evaluated the antitumor effects of LJNK both in vitro and in vivo. Enzyme experiments showed that LJNK showed better inhibitory activity than bestatin against APN both from human carcinoma cells' surface and from porcine kidney microsomes. In addition, LJNK could suppress rat aortic ring microvessel growth and HUVEC tubular structure formation, which showed its stronger antiangiogenesis effects than bestatin. [(3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide)] assay and clonogenic assay showed that LJNK suppressed cancer cell growth both in the short and the long term. Mice bearing H22 transplantation tumor proved its antitumor effects in vivo. Annexin V-fluorescein isothiocyanate/propidium iodide assay showed that LJNK could induce 28.1% PLC/PRF/5 cell apoptosis and the apoptotic pathway was probably identified by western blot. The above-mentioned results suggested that LJNK inhibited cell proliferation and angiogenesis, and induced apoptosis by decreasing APN activity.
Collapse
Affiliation(s)
- Jinning Hou
- aDepartment of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan bKey Laboratory of Applied Pharmacology in Shandong Province, Department of Pharmacology, School of Pharmacy, Weifang Medical College cBochuang International Medical Institute, Weifang, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lucena G, Reyes-Botella C, García-Martínez O, Ramos-Torrecillas J, De Luna Bertos E, Ruiz C. Effect of NSAIDs on the aminopeptidase activity of cultured human osteoblasts. Mol Cell Endocrinol 2016; 426:146-54. [PMID: 26930569 DOI: 10.1016/j.mce.2016.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Aminopeptidases (APs) are involved in various physiological and pathological processes. In tumor tissues the expression of APs, cyclooxygenase-2 and its metabolites are increased. The objective was to determine the effect of certain NSAIDs on the AP activity of osteoblasts. Primary cultures of osteoblast were treated with different concentrations of indomethacin, meloxicam, naproxen, nimesulide, and piroxicam. The AP activity was fluorimetrically determined using aminoacyl-β-naphthylamides (aa-βNAs) as substrates: Ala-βNA, Arg-βNA, Gly-βNA, Leu-βNA, Lys-βNA, Met-βNA, and Phe-βNA. The five NSAIDs showed an inhibitory effect of AP activity against the study substrates depending on the dose tested. Meloxicam and piroxicam had the highest inhibitory effect on enzymatic activity, with an IC50 of around 70 μM. Our results suggest that the physiological alteration of osteoblasts in the presence of NSAIDs may be a consequence of AP inhibition, suggesting a potential clinical role for these drugs against cancer in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- G Lucena
- Biobanco, Sistema Sanitario Público de Andalucía, Junta de Andalucía, Granada, Spain
| | - C Reyes-Botella
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada. Instituto Investigación Biosanitaria, ibs.Granada, Spain
| | - O García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada. Instituto Investigación Biosanitaria, ibs.Granada, Spain
| | - J Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada. Instituto Investigación Biosanitaria, ibs.Granada, Spain
| | - E De Luna Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada. Instituto Investigación Biosanitaria, ibs.Granada, Spain
| | - C Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada. Instituto Investigación Biosanitaria, ibs.Granada, Spain; Institute of Neuroscience, Parque Tecnológico Ciencias de la Salud, Armilla, Granada, University of Granada, Spain.
| |
Collapse
|
10
|
Aminopeptidase N activity predicts 5-year survival in colorectal cancer patients. J Investig Med 2016; 63:740-6. [PMID: 25929234 DOI: 10.1097/jim.0000000000000199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Aminopeptidase N (APN; EC 3.4.11.2) is a membrane dimeric metallopeptidase involved in differentiation, development, and proliferative processes of several tissues. Recent studies have demonstrated the increased expression and activity of this enzyme in several cancers. However, there are no available data about the impact of this peptidase in the biological aggressiveness and the survival of colorectal cancer (CRC) patients. METHODS The activity and mRNA expression of APN in tumor tissue (n = 81) and plasma (n = 40) of patients with CRC of low and high grades and stages were prospectively analyzed by fluorimetric and quantitative reverse transcriptase-polymerase chain reaction methods. Data obtained in adenoma and CRC were compared with those from the surrounding normal mucosa. Classic clinical and pathological parameters were stratified following APN data and analyzed for 5-year survival. RESULTS mRNA levels of APN (ANPEP) were lower in colorectal adenomas and adenocarcinomas than in the surrounding uninvolved mucosa (Kruskal-Wallis, P < 0.001). Aminopeptidase N activity in CRC tissue was higher in patients with better overall survival (log-rank P < 0.05, Cox analysis P < 0.05). By contrast, higher plasmatic APN activity correlated with worse overall survival (log-rank P < 0.01, Cox analysis P < 0.05). CONCLUSIONS Aminopeptidase N activity in tissue and plasma from CRC patients is an independent prognostic factor of 5-year survival. The determination of APN activity levels in the plasma may be a safe, minimally invasive, and inexpensive way to define the aggressiveness of CRC in daily practice.
Collapse
|
11
|
Hata R, Nonaka H, Takakusagi Y, Ichikawa K, Sando S. Design of a Hyperpolarized Molecular Probe for Detection of Aminopeptidase N Activity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryunosuke Hata
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113–8656 Japan
| | - Yoichi Takakusagi
- Incubation Center for Advanced Medical Science Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812–8582 Japan
| | - Kazuhiro Ichikawa
- Incubation Center for Advanced Medical Science Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812–8582 Japan
- Innovation Center for Medical Redox Navigation Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812–8582 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113–8656 Japan
| |
Collapse
|
12
|
Hata R, Nonaka H, Takakusagi Y, Ichikawa K, Sando S. Design of a Hyperpolarized Molecular Probe for Detection of Aminopeptidase N Activity. Angew Chem Int Ed Engl 2015; 55:1765-8. [PMID: 26689297 DOI: 10.1002/anie.201509457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/09/2015] [Indexed: 11/06/2022]
Abstract
Aminopeptidase N (APN) is an important enzyme that is involved in tumor angiogenesis. Detection of APN activity can thus lead to early diagnosis and elucidation of tumor development. Although some molecular probes for APN have been developed, the detection of APN activity in opaque biological samples remains a challenge. To this end, we designed a hyperpolarized NMR probe [1-(13) C]Ala-NH2 which satisfies the prerequisites for APN detection, namely, sufficient retention of the hyperpolarized state, a high reactivity to APN, and an APN-induced chemical shift change. The [1-(13) C]Ala-NH2 probe allowed sensitive detection of APN activity using (13) C NMR spectroscopy.
Collapse
Affiliation(s)
- Ryunosuke Hata
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoichi Takakusagi
- Incubation Center for Advanced Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiro Ichikawa
- Incubation Center for Advanced Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
13
|
Perez I, Blanco L, Sanz B, Errarte P, Ariz U, Beitia M, Fernández A, Loizate A, Candenas ML, Pinto FM, Gil J, López JI, Larrinaga G. Altered Activity and Expression of Cytosolic Peptidases in Colorectal Cancer. Int J Med Sci 2015; 12:458-67. [PMID: 26078706 PMCID: PMC4466510 DOI: 10.7150/ijms.11808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The role of peptidases in carcinogenic processes and their potential usefulness as tumor markers in colorectal cancer (CRC) have been classically attributed to cell-surface enzymes. The objective of the present study was to analyze the activity and mRNA expression of three cytosolic peptidases in the CRC and to correlate the obtained results with classic histopathological parameters for tumor prognosis and survival. METHODS The activity and mRNA levels of puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB) and pyroglutamyl-peptidase I (PGI) were measured by fluorimetric and quantitative RT-PCR methods in colorectal mucosa and tumor tissues and plasma samples from CRC patients (n=81). RESULTS 1) PSA and APB activity was higher in adenomas and carcinomas than in the uninvolved mucosa. 2) mRNA levels of PSA and PGI was lower in tumors. 3) PGI activity in CRC tissue correlated negatively with histological grade, tumor size and 5-year overall survival of CRC patients. 4) Higher plasmatic APB activity was independently associated with better 5-year overall survival. CONCLUSIONS Data suggest that cytosolic peptidases may be involved in colorectal carcinogenesis and point to the determination of this enzymes as a valuable method in the determination of CRC prognosis.
Collapse
Affiliation(s)
- Itxaro Perez
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Lorena Blanco
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Begoña Sanz
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Peio Errarte
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Usue Ariz
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Maider Beitia
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Ainhoa Fernández
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Alberto Loizate
- 3. Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain
| | - M Luz Candenas
- 4. Institute for Chemical Research, CSIC-Isla de la Cartuja, Sevilla, Spain
| | - Francisco M Pinto
- 4. Institute for Chemical Research, CSIC-Isla de la Cartuja, Sevilla, Spain
| | - Javier Gil
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - José I López
- 5. Department of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Gorka Larrinaga
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
14
|
Chen Y, Tang H, Seibel W, Papoian R, Oh K, Li X, Zhang J, Golczak M, Palczewski K, Kiser PD. Identification and characterization of novel inhibitors of Mammalian aspartyl aminopeptidase. Mol Pharmacol 2014; 86:231-42. [PMID: 24913940 PMCID: PMC4127928 DOI: 10.1124/mol.114.093070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Aspartyl aminopeptidase (DNPEP) has been implicated in the control of angiotensin signaling and endosome trafficking, but its precise biologic roles remain incompletely defined. We performed a high-throughput screen of ∼25,000 small molecules to identify inhibitors of DNPEP for use as tools to study its biologic functions. Twenty-three confirmed hits inhibited DNPEP-catalyzed hydrolysis of angiotensin II with micromolar potency. A counter screen against glutamyl aminopeptidase (ENPEP), an enzyme with substrate specificity similar to that of DNPEP, identified eight DNPEP-selective inhibitors. Structure-activity relationships and modeling studies revealed structural features common to the identified inhibitors, including a metal-chelating group and a charged or polar moiety that could interact with portions of the enzyme active site. The compounds identified in this study should be valuable tools for elucidating DNPEP physiology.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Hong Tang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - William Seibel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Ruben Papoian
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Ki Oh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| |
Collapse
|
15
|
Hitzerd SM, Verbrugge SE, Ossenkoppele G, Jansen G, Peters GJ. Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 2014; 46:793-808. [PMID: 24385243 DOI: 10.1007/s00726-013-1648-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022]
Abstract
Aminopeptidases represent a class of (zinc) metalloenzymes that catalyze the cleavage of amino acids nearby the N-terminus of polypeptides, resulting in hydrolysis of peptide bonds. Aminopeptidases operate downstream of the ubiquitin-proteasome pathway and are implicated in the final step of intracellular protein degradation either by trimming proteasome-generated peptides for antigen presentation or full hydrolysis into free amino acids for recycling in renewed protein synthesis. This review focuses on the function and subcellular location of five key aminopeptidases (aminopeptidase N, leucine aminopeptidase, puromycin-sensitive aminopeptidase, leukotriene A4 hydrolase and endoplasmic reticulum aminopeptidase 1/2) and their association with different diseases, in particular cancer and their current position as target for therapeutic intervention by aminopeptidase inhibitors. Historically, bestatin was the first prototypical aminopeptidase inhibitor that entered the clinic 35 years ago and is still used for the treatment of lung cancer. More recently, new generation aminopeptidase inhibitors became available, including the aminopeptidase inhibitor prodrug tosedostat, which is currently tested in phase II clinical trials for acute myeloid leukemia. Beyond bestatin and tosedostat, medicinal chemistry has emerged with additional series of potential aminopeptidases inhibitors which are still in an early phase of (pre)clinical investigations. The expanded knowledge of the unique mechanism of action of aminopeptidases has revived interest in aminopeptidase inhibitors for drug combination regimens in anti-cancer treatment. In this context, this review will discuss relevant features and mechanisms of action of aminopeptidases and will also elaborate on factors contributing to aminopeptidase inhibitor efficacy and/or loss of efficacy due to drug resistance-related phenomena. Together, a growing body of data point to aminopeptidase inhibitors as attractive tools for combination chemotherapy, hence their implementation may be a step forward in a new era of personalized treatment of cancer patients.
Collapse
Affiliation(s)
- Sarina M Hitzerd
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Rm 1.42, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Taylor JM, Yaneva M, Velasco K, Philip J, Erdjument-Bromage H, Ostrovnaya I, Lilja HG, Bochner BH, Tempst P. Aminopeptidase activities as prospective urinary biomarkers for bladder cancer. Proteomics Clin Appl 2014; 8:317-26. [PMID: 24591208 DOI: 10.1002/prca.201300118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/07/2013] [Accepted: 11/17/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Proteases have been implicated in cancer progression and invasiveness. We have investigated the activities, as opposed to simple protein levels, of selected aminopeptidases in urine specimens to serve as potential novel biomarkers for urothelial cancer. EXPERIMENTAL DESIGN The unique urinary proteomes of males and females were profiled to establish the presence of a gender-independent set of aminopeptidases. Samples were also collected from patients with urothelial cancer and matched controls. A SOP for urine processing was developed taking into account hydration variation. Five specific aminopeptidase activity assays, using fluorophoric substrates, were optimized for evaluation of marker potential. RESULTS Nineteen exopeptidases and 21 other proteases were identified in urine and the top-five most abundant aminopeptidases, identical in both genders, selected for functional studies. Depending on the enzyme, activities were consistently lower (p ≤ 0.05), higher or unchanged in the cancer samples as compared to controls. Two selected aminopeptidase activities used as a binary classifier resulted in a ROC curve with an AUC = 0.898. CONCLUSION AND CLINICAL RELEVANCE We have developed functional assays that characterize aminopeptidase activities in urine specimens with adequate technical and intraindividual reproducibility. With further testing, it could yield a reliable biomarker test for bladder cancer detection or prognostication.
Collapse
Affiliation(s)
- Jennifer M Taylor
- Protein Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Surgery, Urology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gonzalez E, Piva M, Rodriguez-Suarez E, Gil D, Royo F, Elortza F, Falcon-Perez JM, Vivanco MDM. Human mammospheres secrete hormone-regulated active extracellular vesicles. PLoS One 2014; 9:e83955. [PMID: 24404144 PMCID: PMC3880284 DOI: 10.1371/journal.pone.0083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/10/2013] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.
Collapse
Affiliation(s)
| | - Marco Piva
- Cell Biology and Stem Cells Unit, CIBERehd, Derio, Spain
| | | | - David Gil
- Structural Biology, CIC bioGUNE, Derio, Spain
| | | | - Felix Elortza
- Proteomics Platform, ProteoRed-ISCIII, CIBERehd, Derio, Spain
| | - Juan M. Falcon-Perez
- Metabolomics CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail: (JMFP); (MDMV)
| | - Maria dM. Vivanco
- Cell Biology and Stem Cells Unit, CIBERehd, Derio, Spain
- * E-mail: (JMFP); (MDMV)
| |
Collapse
|
18
|
Carrera-González MP, Ramírez-Expósito MJ, Mayas MD, García MJ, Martínez-Martos JM. Local thyroid renin-angiotensin system in experimental breast cancer. Life Sci 2013; 93:1004-9. [PMID: 24177601 DOI: 10.1016/j.lfs.2013.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED An association between breast cancer and thyroid dysfunction exists although the underlying mechanisms remain to be elucidated. Numerous studies have characterized the role of thyroid hormones in controlling the synthesis and secretion of renin-angiotensin system (RAS) components, but little information is available on the putative role of the local RAS on thyroid function. AIMS Here we analyze several soluble and membrane-bound RAS-regulating aminopeptidase activities in thyroid gland from rats with mammary tumors and the relationship with the circulating levels of thyroid stimulating hormone (TSH) and free thyroxin (fT4). MAIN METHODS We analyze soluble and membrane-bound RAS-regulating aminopeptidase activities fluorometrically using their corresponding aminoacyl-β-naphthylamide as the substrate. KEY FINDINGS We have found in rats with mammary tumors a concomitant change of thyroid RAS-regulating enzymes and thyroid hormone production. SIGNIFICANCE We suggest that existence of alterations in the regulatory mechanisms mediated by the angiotensins of the local tissue RAS as a consequence of the carcinogenic process which could act alone or in combination with alterations at a higher level of regulation such as the hypothalamus-pituitary axis.
Collapse
Affiliation(s)
- M P Carrera-González
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Jaén, Spain.
| | | | | | | | | |
Collapse
|
19
|
Altered peptidase activities in thyroid neoplasia and hyperplasia. DISEASE MARKERS 2013; 35:825-32. [PMID: 24379520 PMCID: PMC3860089 DOI: 10.1155/2013/970736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/02/2022]
Abstract
Background. Papillary thyroid carcinoma (PTC), follicular thyroid adenoma (FTA), and thyroid nodular hyperplasia (TNH) are the most frequent diseases of the thyroid gland. Previous studies described the involvement of dipeptidyl-peptidase IV (DPPIV/CD26) in the development of thyroid neoplasia and proposed it as an additional tool in the diagnosis/prognosis of these diseases. However, very little is known about the involvement of other peptidases in neoplastic and hyperplastic processes of this gland. Methods. The catalytic activity of 10 peptidases in a series of 30 PTC, 10 FTA, and 14 TNH was measured fluorimetrically in tumour and nontumour adjacent tissues. Results. The activity of DPPIV/CD26 was markedly higher in PTC than in FTA, TNH, and nontumour tissues. Aspartyl aminopeptidase (AspAP), alanyl aminopeptidase (AlaAP), prolyl endopeptidase, pyroglutamyl peptidase I, and aminopeptidase B activities were significantly increased in thyroid neoplasms when compared to nontumour tissues. AspAP and AlaAP activities were also significantly higher in PTC than in FTA and TNH. Conclusions. These data suggest the involvement of DPPIV/CD26 and some cytosolic peptidases in the neoplastic development of PTC and FTA. Further studies will help to define the possible clinical usefulness of AlaAP and AspAP in the diagnosis/prognosis of thyroid neoplasms.
Collapse
|
20
|
Larrinaga G, Perez I, Ariz U, Sanz B, Beitia M, Errarte P, Etxezarraga C, Candenas ML, Pinto FM, López JI. Clinical impact of aspartyl aminopeptidase expression and activity in colorectal cancer. Transl Res 2013; 162:297-308. [PMID: 23948443 DOI: 10.1016/j.trsl.2013.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/09/2013] [Accepted: 07/23/2013] [Indexed: 12/12/2022]
Abstract
Aspartyl aminopeptidase (ASP; EC 3.4.11.21) is a widely distributed and abundant cytosolic enzyme that regulates bioactive peptides such as angiotensin II. It has been demonstrated that the expression and activity of this enzyme is modified in tissue and serum of patients with several types of cancer. However, the involvement of ASP in the neoplastic development and survival of patients with colorectal cancer (CRC) has not been analyzed to date. The activity and messenger RNA expression of ASP in tumor tissue (n = 71) and plasma (n = 40) of patients with CRC was analyzed prospectively using fluorometric and quantitative real-time polymerase chain reaction methods. Data obtained from tumor tissue were compared with those from the surrounding normal mucosa. Classic pathologic parameters (grade, stage, nodal invasion, distant metastases and perineural, lymphatic, and vascular invasion) were stratified following ASP data and analyzed for 5-year survival. ASP was upregulated in CRC tissues, and greater activity correlated significantly with the absence of lymph node metastases and with better overall survival. Inversely, greater plasmatic ASP activity was associated with worse overall and disease-free survival. Data suggest that ASP is involved in colorectal neoplasia and point to this enzyme as a potential useful diagnostic tool in clinical practice.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shao Y, Zhang SQ, Quan F, Zhang PF, Wu SL. MicroRNA-145 inhibits the proliferation, migration and invasion of the human TCA8113 oral cancer line. Oncol Lett 2013; 6:1636-1640. [PMID: 24273601 PMCID: PMC3835314 DOI: 10.3892/ol.2013.1621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/25/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the effect of microRNA (miR)-145 on the proliferation, migration and invasion of the human oral cancer line, TCA8113. Expression levels of miR-145 in TCA8113 cells were detected by quantitative PCR. miR-145 was transfected into human TCA8113 oral cancer cells and the proliferation, migration and invasion abilities of treated TCA8113 cells were detected by proliferation, migration and invasion assays, respectively. The expression levels of miR-145 in TCA8113 cells were significantly lower than those in human normal oral keratinocytes (P<0.05). Cellular proliferation, migration and invasion abilities in the miR-145 transfection group were significantly lower than those in the control group (all P<0.05). High miR-145 expression was found to negatively regulate the proliferation, migration and invasion of TCA8113 cells. Results of the present study indicate that the expression of miR-145 may be associated with the genesis and development of human oral cancer.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | |
Collapse
|
22
|
Larrinaga G, Blanco L, Sanz B, Perez I, Gil J, Unda M, Andrés L, Casis L, López JI. The impact of peptidase activity on clear cell renal cell carcinoma survival. Am J Physiol Renal Physiol 2012; 303:F1584-91. [PMID: 23019229 DOI: 10.1152/ajprenal.00477.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several studies have proposed that protease expression and activity may have a predictive value in the survival of clear cell renal cell carcinoma (CCRCC). Most efforts on this issue have been focused on the analysis of matrix metalloproteinases (MMP) and very little on the role of other proteases, such as peptidases. The catalytic activity of 9 peptidases (APN, APB, ASP, CAP, DPP-IV, NEP/CD10, PEP, PGI, and PSA) was quantified by fluorometric methods in a series of 79 CCRCC patients, and the results obtained were analyzed for survival (Kaplan-Meier curves, log-rank test, and Cox multivariate analysis). CCRCC patients with higher activity levels of membrane-bound APN and soluble APN, DPP-IV, and CAP had significantly shorter 5-yr survival rates than those with lower levels. By contrast, higher soluble APB activity significantly correlated with longer survival. Our data suggest the involvement of peptidases in the biological aggressiveness of CCRCC and support the usefulness of measuring these proteases to assess the prognosis of patients with CCRCC.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Dept. of Pathology, Hospital Universitario Cruces, Plaza de Cruces s/n, Bizkaia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Neoadjuvant chemotherapy modifies serum angiotensinase activities in women with breast cancer. Maturitas 2012; 72:79-83. [DOI: 10.1016/j.maturitas.2012.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/05/2012] [Accepted: 02/15/2012] [Indexed: 11/22/2022]
|
24
|
Wulfänger J, Schneider H, Wild P, Ikenberg K, Rodolfo M, Rivoltini L, Meyer S, Riemann D, Seliger B. Promoter methylation of aminopeptidase N/CD13 in malignant melanoma. Carcinogenesis 2012; 33:781-90. [DOI: 10.1093/carcin/bgs091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
CIP-13F, a novel aminopeptidase N (APN/CD13) inhibitor, inhibits Lewis lung carcinoma growth and metastasis in mice. Cancer Chemother Pharmacol 2011; 69:1029-38. [DOI: 10.1007/s00280-011-1799-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022]
|
26
|
Lai A, Ghaffari A, Li Y, Ghahary A. Paracrine regulation of fibroblast aminopeptidase N/CD13 expression by keratinocyte-releasable stratifin. J Cell Physiol 2011; 226:3114-20. [PMID: 21302309 DOI: 10.1002/jcp.22666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As wound healing proceeds into the tissue remodeling phase, cellular interactions become dominated by the interplay of keratinocytes with fibroblasts in the skin, which is largely mediated through paracrine signaling and greatly affects the molecular constitution of the extracellular matrix. We have recently identified aminopeptidase N (APN)/CD13 as a potential fibroblast receptor for 14-3-3 sigma (also known as stratifin), a keratinocyte-releasable protein with potent matrix metalloproteinase 1 (MMP1) stimulatory activity. The present study demonstrates that the expression of APN on dermal fibroblasts is regulated through paracrine signaling by keratinocyte-derived soluble factors. By using an in vitro keratinocyte-fibroblast co-culture system, we showed that APN expression in dermal fibroblasts is induced in the presence of keratinocytes or in response to keratinocyte-conditioned medium. Conditioned medium collected from differentiated keratinocytes further increases APN protein production, suggesting an amplified stimulatory effect by keratinocyte differentiation. Recombinant stratifin potently induces APN synthesis in a dose-dependent manner. A consistent correlation between the protein expression levels of APN and MMP1 was also observed. These results confirm paracrine regulation of APN expression in dermal fibroblasts by keratinocyte-derived stimuli, in particular stratifin, and provide evidence that APN may serve as a target in the regulation of MMP1 expression in epidermal-mesenchymal communication.
Collapse
Affiliation(s)
- Amy Lai
- BC Professional Fire Fighters' Burn and Wound Healing Laboratory, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
27
|
LYP, a bestatin dimethylaminoethyl ester, inhibited cancer angiogenesis both in vitro and in vivo. Microvasc Res 2011; 82:122-30. [PMID: 21664364 DOI: 10.1016/j.mvr.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/12/2011] [Accepted: 05/25/2011] [Indexed: 11/22/2022]
Abstract
Our previous study revealed that LYP, a bestatin dimethylaminoethyl ester, inhibited the growth of human ovarian carcinoma ES-2 xenografts in mice and suppressed aminopeptidase N (APN/CD13) activity more potently than bestatin. In this study, we examined the inhibitory effect of LYP on migration and formation of capillary tube of human umbilical vascular endothelial cells (HUVECs) in vitro and anti-angiogenesis in ES-2 xenografts in mice. LYP did not possess cytotoxicity to HUVEC proliferation according to the MTT assay and trypan blue exclusion assay. However, APN/CD13 activity on cell surface of HUVECs was suppressed in the presence of LYP as measured by quantifying the enzymatic cleavage of the substrate l-leucine-p-nitroanilide. The assays of scratch and transwell chamber showed that LYP significantly inhibited HUVEC migration and invasion through Matrigel coated polycarbonate filters. Capillary tube formation assay revealed that the number of branch points formed by HUVECs on 3-D Matrigel was reduced after incubation with LYP. The anti-angiogenesis of LYP was verified in ES-2 xenografts in mice. The mean vascular density (MVD) and mean vascular luminal diameter (MVLD) were markedly reduced by LYP after two weeks of intravenous injection as evaluated by CD34 immunohistochemical staining. LYP suppression of cancer angiogenesis was greater than that of bestatin. The inhibition of angiogenic molecules may involve in anti-angiogenesis of LYP. The levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF-α) were decreased in HUVECs and ES-2 xenografts after treatment with LYP as determined by Western blot analysis. These results indicated that the high efficacy of LYP may partially relate to the inhibition of angiogenesis.
Collapse
|
28
|
Hindocha S, Iqbal SA, Farhatullah S, Paus R, Bayat A. Characterization of stem cells in Dupuytren's disease. Br J Surg 2011; 98:308-15. [PMID: 21104823 DOI: 10.1002/bjs.7307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Dupuytren's disease (DD) is a common fibroproliferative disease of unknown origin. The source of abnormal cells leading to DD formation remains underexplored. In addition to fascia, palmar skin and fat-derived cells may be a potential source of cells causing DD. This study aimed to profile haematopoietic and mesenchymal stem cells in different DD tissue components compared with tissue removed at carpal tunnel surgery (control). METHODS Biopsies were taken from the diseased cord, nodule, perinodular fat and skin overlying the nodule of ten patients with DD and compared with control tissue from seven patients having surgery for carpal tunnel syndrome. Fluorescence-activated cell sorting (FACS), immunohistochemistry and quantitative real-time polymerase chain reaction (QRT-PCR) were used to identify expression of selected stem cell markers. RESULTS FACS and QRT-PCR analysis identified the highest RNA expression and number of cells positive for adipocyte stem cell markers (CD13 and CD29) in the DD nodule in comparison with carpal tunnel control tissue (P = 0·053). CD34 RNA was overexpressed, and a higher percentage of these cells was present in DD skin compared with carpal tunnel skin (P = 0·001). CONCLUSION Each structural component of DD (cord, nodule, perinodular fat and skin) had distinct stem cell populations. These findings support the hypothesis that DD may result from mesenchymal progenitor cell expansion.
Collapse
Affiliation(s)
- S Hindocha
- Plastic and Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
29
|
Increased prolyl endopeptidase activity in human neoplasia. ACTA ACUST UNITED AC 2010; 163:102-6. [PMID: 20362629 DOI: 10.1016/j.regpep.2010.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 01/21/2023]
Abstract
Prolyl endopeptidase (EC 3.4.21.26) (PEP) is a serine peptidase that converts several biologically active peptides. This enzyme has been linked to several neurological, digestive, cardiovascular and infectous disorders. However, little is known about its involvement in neoplastic processes. This study analyzes fluorimetrically cytosolic and membrane-bound PEP activity in a large series (n=122) of normal and neoplastic tissues from the kidney, colon, oral cavity, larynx, thyroid gland and testis. Cytosolic PEP activity significantly increased in clear cell renal cell carcinoma, urothelial carcinoma of the renal pelvis and head and neck squamous cell carcinoma. Both cytosolic and membrane-bound PEP activity were also increased in colorectal adenomatous polyps. These data suggest the involvement of PEP in some mechanisms that underlie neoplastic processes.
Collapse
|
30
|
Gao JJ, Gao ZH, Zhao CR, Yuan Y, Cui SX, Zhang XF, Cheng YN, Xu WF, Tang W, Qu XJ. LYP, a novel bestatin derivative, inhibits cell growth and suppresses APN/CD13 activity in human ovarian carcinoma cells more potently than bestatin. Invest New Drugs 2010; 29:574-82. [PMID: 20111888 DOI: 10.1007/s10637-010-9391-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
Abstract
LYP is a bestatin dimethylaminoethyl ester which inhibits aminopeptidase N (APN/CD13). Our goal in this study was to evaluate LYP as a candidate compound for cancer treatment, beginning by studying its inhibitory effects on tumors and then comparing it to bestatin. Experiments were performed on human ovarian carcinoma (OVCA) ES-2 and SKOV-3 cell lines, which have high and low levels of APN/CD13 respectively. LYP effectively inhibited ES-2 cell growth as estimated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and the trypan blue dye-exclusion test. LYP significantly suppressed APN/CD13 activity on the surface of ES-2 cells as measured by quantifying the enzymatic cleavage of the substrate L-leucine-p-nitroanilide. The inhibitory effects of LYP were greater than those of bestatin at the same concentrations. In contrast, LYP was a weak inhibitor of SKOV-3 cell growth, suggesting that LYP may inhibit ES-2 cell growth via suppression of APN/CD13. Inhibition of APN/CD13 expression was also demonstrated with immunofluorescent flow cytometry and Western blot analysis. Inhibitory effects of LYP were confirmed by using a mouse model in which LYP delayed the growth of ES-2 xenografts in mice after 2 weeks of LYP injections. Inhibition of APN/CD13 expression was demonstrated in the ES-2 xenografts using Western blot analysis. The inhibitory effects of LYP on the ES-2 xenografts were stronger than those of bestatin. These results suggest that LYP has a powerful inhibitory effect on the growth of OVCA cells and that the mechanism may be via a decrease in the expression of APN/CD13.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|