1
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
2
|
Michmerhuizen NL, Ludwig ML, Birkeland AC, Nimmagadda S, Zhai J, Wang J, Jewell BM, Genouw D, Remer L, Kim D, Foltin SK, Bhangale A, Kulkarni A, Bradford CR, Swiecicki PL, Carey TE, Jiang H, Brenner JC. Small molecule profiling to define synergistic EGFR inhibitor combinations in head and neck squamous cell carcinoma. Head Neck 2022; 44:1192-1205. [PMID: 35224804 PMCID: PMC8986607 DOI: 10.1002/hed.27018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival. Although epidermal growth factor receptor (EGFR)-targeting antibody cetuximab improves survival in some settings, responses are limited suggesting that alternative approaches are needed. METHODS We performed a high throughput drug screen to identify EGFR inhibitor-based synergistic combinations of clinically advanced inhibitors in models resistant to EGFR inhibitor monotherapies, and then performed downstream validation experiments on prioritized synergistic combinations. RESULTS From our screen, we re-discovered known synergistic EGFR inhibitor combinations with FGFR or IGF-1R inhibitors that were broadly effective and also discovered novel synergistic combinations with XIAP inhibitor and DNMT inhibitors that were effective in only a subset of models. CONCLUSIONS Conceptually, our data identify novel synergistic combinations that warrant evaluation in future studies, and suggest that some combinations, although highly synergistic, will require parallel companion diagnostic development to be effectively advanced in patients.
Collapse
Affiliation(s)
- Nicole L. Michmerhuizen
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Megan L. Ludwig
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sai Nimmagadda
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jingyi Zhai
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Jiayu Wang
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Brittany M. Jewell
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Dylan Genouw
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Lindsay Remer
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Daniel Kim
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Susan K. Foltin
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Apurva Bhangale
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Aditi Kulkarni
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Carol R. Bradford
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Paul L. Swiecicki
- Department of Hematology and OncologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Thomas E. Carey
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Hui Jiang
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - J. Chad Brenner
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
3
|
Cao Y, Haring CT, Brummel C, Bhambhani C, Aryal M, Lee C, Heft Neal M, Bhangale A, Gu W, Casper K, Malloy K, Sun Y, Shuman A, Prince ME, Spector ME, Chinn S, Shah J, Schonewolf C, McHugh JB, Mills RE, Tewari M, Worden FP, Swiecicki PL, Mierzwa M, Brenner JC. Early HPV ctDNA Kinetics and Imaging Biomarkers Predict Therapeutic Response in p16+ Oropharyngeal Squamous Cell Carcinoma. Clin Cancer Res 2022; 28:350-359. [PMID: 34702772 PMCID: PMC8785355 DOI: 10.1158/1078-0432.ccr-21-2338] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/11/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In locally advanced p16+ oropharyngeal squamous cell carcinoma (OPSCC), (i) to investigate kinetics of human papillomavirus (HPV) circulating tumor DNA (ctDNA) and association with tumor progression after chemoradiation, and (ii) to compare the predictive value of ctDNA to imaging biomarkers of MRI and FDG-PET. EXPERIMENTAL DESIGN Serial blood samples were collected from patients with AJCC8 stage III OPSCC (n = 34) enrolled on a randomized trial: pretreatment; during chemoradiation at weeks 2, 4, and 7; and posttreatment. All patients also had dynamic-contrast-enhanced and diffusion-weighted MRI, as well as FDG-PET scans pre-chemoradiation and week 2 during chemoradiation. ctDNA values were analyzed for prediction of freedom from progression (FFP), and correlations with aggressive tumor subvolumes with low blood volume (TVLBV) and low apparent diffusion coefficient (TVLADC), and metabolic tumor volume (MTV) using Cox proportional hazards model and Spearman rank correlation. RESULTS Low pretreatment ctDNA and an early increase in ctDNA at week 2 compared with baseline were significantly associated with superior FFP (P < 0.02 and P < 0.05, respectively). At week 4 or 7, neither ctDNA counts nor clearance were significantly predictive of progression (P = 0.8). Pretreatment ctDNA values were significantly correlated with nodal TVLBV, TVLADC, and MTV pre-chemoradiation (P < 0.03), while the ctDNA values at week 2 were correlated with these imaging metrics in primary tumor. Multivariate analysis showed that ctDNA and the imaging metrics performed comparably to predict FFP. CONCLUSIONS Early ctDNA kinetics during definitive chemoradiation may predict therapy response in stage III OPSCC.
Collapse
Affiliation(s)
- Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Catherine T Haring
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Collin Brummel
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Chandan Bhambhani
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Madhava Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Choonik Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Molly Heft Neal
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Apurva Bhangale
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Keith Casper
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Kelly Malloy
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Yilun Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Andrew Shuman
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Mark E Prince
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Matthew E Spector
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Steven Chinn
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Shah
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Caitlin Schonewolf
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B McHugh
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Muneesh Tewari
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Francis P Worden
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Paul L Swiecicki
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - J Chad Brenner
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Abstract
ABSTRACT Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most prevalent cancer worldwide, with an annual incidence of 600,000 new cases. Despite advances in surgery, chemotherapy, and radiotherapy, the overall survival for HNSCC patients has not been significantly improved over the past several decades. Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) genomic alterations are frequently detected in HNSCC, including amplification, activating mutation, and chromosomal rearrangement. Among them, FGFR1 amplification, FGF amplifications, and FGFR3 mutations are the most prevalent. In addition, FGF/FGFR expression has also been observed in most HNSCCs. However, the prognostic value of FGF/FGFR aberrations remains unclear, especially for gene amplification and overexpression. Nonetheless, FGF/FGFR has been a promising target for HNSCC treatment, and recent preclinical studies demonstrate the potential of the combination treatment regimens involving FGFR inhibitors on HNSCC. Therefore, there are a number of FGFR inhibitors currently in clinical trials for the treatment of head and neck cancers.
Collapse
|
5
|
Bao Y, Gabrielpillai J, Dietrich J, Zarbl R, Strieth S, Schröck F, Dietrich D. Fibroblast growth factor (FGF), FGF receptor (FGFR), and cyclin D1 (CCND1) DNA methylation in head and neck squamous cell carcinomas is associated with transcriptional activity, gene amplification, human papillomavirus (HPV) status, and sensitivity to tyrosine kinase inhibitors. Clin Epigenetics 2021; 13:228. [PMID: 34933671 PMCID: PMC8693503 DOI: 10.1186/s13148-021-01212-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Dysregulation of fibroblast growth factor receptor (FGFR) signaling pathway has been observed in head and neck squamous cell carcinoma (HNSCC) and is a promising therapeutic target for selective tyrosine kinase inhibitors (TKIs). Potential predictive biomarkers for response to FGFR-targeted therapies are urgently needed. Understanding the epigenetic regulation of FGF pathway related genes, i.e. FGFRs, FGFs, and CCND1, could enlighten the way towards biomarker-selected FGFR-targeted therapies. Methods We performed DNA methylation analysis of the encoding genes FGFR1, FGFR2, FGFR3, FGFR4, FGF1-14, FGF16-23, and CCND1 at single CpG site resolution (840 CpG sites) employing The Cancer Genome Research Atlas (TCGA) HNSCC cohort comprising N = 530 tumor tissue and N = 50 normal adjacent tissue samples. We correlated DNA methylation to mRNA expression with regard to human papilloma virus (HPV) and gene amplification status. Moreover, we investigated the correlation of methylation with sensitivity to the selective FGFR inhibitors PD 173074 and AZD4547 in N = 40 HPV(−) HNSCC cell lines. Results We found sequence-contextually nuanced CpG methylation patterns in concordance with epigenetically regulated genes. High methylation levels were predominantly found in the promoter flank and gene body region, while low methylation levels were present in the central promoter region for most of the analyzed CpG sites. FGFRs, FGFs, and CCND1 methylation differed significantly between tumor and normal adjacent tissue and was associated with HPV and gene amplification status. CCND1 promoter methylation correlated with CCND1 amplification. For most of the analyzed CpG sites, methylation levels correlated to mRNA expression in tumor tissue. Furthermore, we found significant correlations of DNA methylation of specific CpG sites with response to the FGFR1/3–selective inhibitors PD 173074 and AZD4547, predominantly within the transcription start site of CCND1. Conclusions Our results suggest an epigenetic regulation of CCND1, FGFRs, and FGFs via DNA methylation in HNSCC and warrants further investigation of DNA methylation as a potential predictive biomarker for response to selective FGFR inhibitors in clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01212-4.
Collapse
Affiliation(s)
- Yilin Bao
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany.,Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jennis Gabrielpillai
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Friederike Schröck
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
6
|
Balikov DA, Hu K, Liu CJ, Betz BL, Chinnaiyan AM, Devisetty LV, Venneti S, Tomlins SA, Cani AK, Rao RC. Comparative Molecular Analysis of Primary Central Nervous System Lymphomas and Matched Vitreoretinal Lymphomas by Vitreous Liquid Biopsy. Int J Mol Sci 2021; 22:9992. [PMID: 34576156 PMCID: PMC8471952 DOI: 10.3390/ijms22189992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a lymphoid malignancy of the brain that occurs in ~1500 patients per year in the US. PCNSL can spread to the vitreous and retina, where it is known as vitreoretinal lymphoma (VRL). While confirmatory testing for diagnosis is dependent on invasive brain tissue or cerebrospinal fluid sampling, the ability to access the vitreous as a proximal biofluid for liquid biopsy to diagnose PCNSL is an attractive prospect given ease of access and minimization of risks and complications from other biopsy strategies. However, the extent to which VRL, previously considered genetically identical to PCNSL, resembles PCNSL in the same individual with respect to genetic alterations, diagnostic strategies, and precision-medicine based approaches has hitherto not been explored. Furthermore, the degree of intra-patient tumor genomic heterogeneity between the brain and vitreous sites has not been studied. In this work, we report on targeted DNA next-generation sequencing (NGS) of matched brain and vitreous samples in two patients who each harbored VRL and PCSNL. Our strategy showed enhanced sensitivity for molecular diagnosis confirmation over current clinically used vitreous liquid biopsy methods. We observed a clonal relationship between the eye and brain samples in both patients, which carried clonal CDKN2A deep deletions, a highly recurrent alteration in VRL patients, as well as MYD88 p.L265P activating mutation in one patient. Several subclonal alterations, however, in the genes SETD2, BRCA2, TERT, and broad chromosomal regions showed heterogeneity between the brain and the eyes, between the two eyes, and among different regions of the PCNSL brain lesion. Taken together, our data show that NGS of vitreous liquid biopsies in PCNSL patients with VRL highlights shared and distinct genetic alterations that suggest a common origin for these lymphomas, but with additional site-specific alterations. Liquid biopsy of VRL accurately replicates the findings for PCNSL truncal (tumor-initiating) genomic alterations; it can also nominate precision medicine interventions and shows intra-patient heterogeneity in subclonal alterations. To the best of our knowledge, this study represents the first interrogation of genetic underpinnings of PCNSL with matched VRL samples. Our findings support continued investigation into the utility of vitreous liquid biopsy in precision diagnosis and treatment of PCNSL/VRL.
Collapse
Affiliation(s)
- Daniel A. Balikov
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
| | - Kevin Hu
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bryan L. Betz
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laxmi V. Devisetty
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andi K. Cani
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Hematology/Oncology Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajesh C. Rao
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Haring CT, Bhambhani C, Brummel C, Jewell B, Bellile E, Heft Neal ME, Sandford E, Spengler RM, Bhangale A, Spector ME, McHugh J, Prince ME, Mierzwa M, Worden FP, Tewari M, Swiecicki PL, Brenner JC. Human papilloma virus circulating tumor DNA assay predicts treatment response in recurrent/metastatic head and neck squamous cell carcinoma. Oncotarget 2021; 12:1214-1229. [PMID: 34194620 PMCID: PMC8238244 DOI: 10.18632/oncotarget.27992] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the rising incidence of human papillomavirus related (HPV+) oropharyngeal squamous cell carcinoma (OPSCC), treatment of metastatic disease remains palliative. Even with new treatments such as immunotherapy, response rates are low and can be delayed, while even mild tumor progression in the face of an ineffective therapy can lead to rapid death. Real-time biomarkers of response to therapy could improve outcomes by guiding early change of therapy in the metastatic setting. Herein, we developed and analytically validated a new droplet digital PCR (ddPCR)-based assay for HPV16 circulating tumor DNA (ctDNA) and evaluated plasma HPV16 ctDNA for predicting treatment response in metastatic HPV+ OPSCC. We found that longitudinal changes HPV16 ctDNA correlate with treatment response and that ctDNA responses are observed earlier than conventional imaging (average 70 days, range: 35-166). With additional validation in multi-site studies, this assay may enable early identification of treatment failure, allowing patients to be directed promptly toward clinical trials or alternative therapies.
Collapse
Affiliation(s)
- Catherine T. Haring
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
- Co-First Authors
| | - Chandan Bhambhani
- University of Michigan, Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor, MI 48109, USA
- Co-First Authors
| | - Collin Brummel
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
| | - Brittany Jewell
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
| | - Emily Bellile
- University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Molly E. Heft Neal
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
| | - Erin Sandford
- University of Michigan, Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor, MI 48109, USA
| | - Ryan M. Spengler
- University of Michigan, Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor, MI 48109, USA
| | - Apurva Bhangale
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
| | - Matthew E. Spector
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Jonathan McHugh
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
- University of Michigan, Department of Pathology, Ann Arbor, MI 48109, USA
| | - Mark E. Prince
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
| | - Michelle Mierzwa
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI 48109, USA
| | - Francis P. Worden
- University of Michigan, Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor, MI 48109, USA
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Muneesh Tewari
- University of Michigan, Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor, MI 48109, USA
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI 48109, USA
- University of Michigan, Center for Computational Medicine and Bioinformatics, Ann Arbor, MI 48109, USA
- Co-Senior Authors
| | - Paul L. Swiecicki
- University of Michigan, Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor, MI 48109, USA
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
- Co-Senior Authors
| | - J. Chad Brenner
- University of Michigan, Department of Otolaryngology-Head and Neck Surgery, Ann Arbor, MI 48109, USA
- University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
- University of Michigan, Department of Pharmacology, Ann Arbor, MI 48109, USA
- Co-Senior Authors
| |
Collapse
|
8
|
Heft Neal ME, Gensterblum-Miller E, Bhangale AD, Kulkarni A, Zhai J, Smith J, Brummel C, Foltin SK, Thomas D, Jiang H, McHugh JB, Brenner JC. Integrative sequencing discovers an ATF1-motif enriched molecular signature that differentiates hyalinizing clear cell carcinoma from mucoepidemoid carcinoma. Oral Oncol 2021; 117:105270. [PMID: 33827033 DOI: 10.1016/j.oraloncology.2021.105270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Salivary gland tumors are comprised of a diverse group of malignancies with widely varying prognoses. These cancers can be difficult to differentiate, especially in cases with limited potential for immunohistochemistry (IHC)-based characterization. Here, we sought to define the molecular profile of a rare salivary gland cancer called hyalinizing clear cell carcinoma (HCCC), and identify a molecular gene signature capable of distinguishing between HCCC and the histopathologically similar disease, mucoepidermoid carcinoma (MEC). MATERIALS AND METHODS We performed the first integrated full characterization of five independent HCCC cases. RESULTS We discovered insulin-like growth factor alterations and aberrant IGF2 and/or IGF1R expression in HCCC tumors, suggesting a potential dependence on this pathway. Further, we identified a 354 gene signature that differentiated HCCC from MEC, and was significantly enriched for genes with an ATF1 binding motif in their promoters, supporting a transcriptional pathogenic mechanism of the characteristic EWSR1-ATF1 fusion found in these tumors. Of the differentially expressed genes, IGF1R, SGK1 and SGK3 were found to be elevated in the HCCCs relative to MECs. Finally, analysis of immune checkpoints and subsequent IHC demonstrated that CXCR4 protein was elevated in several of the HCCC cases. CONCLUSION Collectively, our data identify an ATF1-motif enriched gene signature that may have clinical utility for molecular differentiation of HCCCs from other salivary gland tumors and discover potential actionable alterations that may benefit the clinical care of recurrent HCCC patients.
Collapse
Affiliation(s)
- M E Heft Neal
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - E Gensterblum-Miller
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - A D Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - A Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - J Smith
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - C Brummel
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - S K Foltin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - D Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - H Jiang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J B McHugh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Abstract
BACKGROUND Genomic aberrations (mutations, gene fusions, amplifications) and dysregulation of the fibroblast growth factor (FGF) receptor (FGFR) signaling pathway are frequently found in squamous cell carcinomas of the head and neck (HNSCCs). Targeted therapy with tyrosine kinase inhibitors (TKIs) or monoclonal antibodies directed against FGF receptors therefore represents a promising approach for the treatment of HNSCC. OBJECTIVE This review article describes the current status of FGFR-directed therapies for head and neck tumors (especially HNSCC) and, in this context, discusses genomic alterations of the FGFR pathway as potential companion predictive biomarkers. METHODS This article is based on searches of PubMed, ClinicalTrials.gov, and conference proceedings. RESULTS First results prove the efficacy of TKIs both in HNSCC and in adenocarcinomas of the head and neck, especially in thyroid and adenocystic salivary gland carcinomas. CONCLUSION Early clinical and preclinical data point to the promise of biomarker-directed treatment of patients with head and neck tumors using FGFR-targeted TKIs.
Collapse
Affiliation(s)
- Dimo Dietrich
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| |
Collapse
|
10
|
Prognostic Significance of Oxidation Pathway Mutations in Recurrent Laryngeal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12113081. [PMID: 33105726 PMCID: PMC7690434 DOI: 10.3390/cancers12113081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Organ preservation protocols have become first line therapy for the majority of advanced laryngeal cancers. Unfortunately, up to one third of patients will develop recurrent disease requiring salvage surgery. These tumors tend to display aggressive features when compared to primary disease. The aim of this study is to identify genomic alterations associated with poor prognosis in the recurrent setting to guide precision therapy and identify potential targetable pathways. Here we show that mutations in the oxidation pathway, specifically the KEAP1-NFR2 pathway, predict survival in a cohort of patients undergoing salvage laryngectomy. Abstract Organ preservation protocols are commonly used as first line therapy for advanced laryngeal cancer. Recurrence thereafter is associated with poor survival. The aim of this study is to identify genetic alterations associated with survival among patients with recurrent laryngeal cancer undergoing salvage laryngectomy. Sixty-two patients were sequenced using a targeted panel, of which twenty-two also underwent transcriptome sequencing. Alterations were grouped based on biologic pathways and survival outcomes were assessed using Kaplan-Meier analysis and multivariate cox regression. Select pathways were evaluated against The Cancer Genome Atlas (TCGA) data. Patients with mutations in the Oxidation pathway had significantly worse five-year disease specific survival (1% vs. 76%, p = 0.02), while mutations in the HN-Immunity pathway were associated with improved five-year disease specific survival (100% vs. 62%, p = 0.02). Multivariate analysis showed mutations in the Oxidation pathway remained an independent predictor of disease specific survival (HR 3.2, 95% CI 1.1–9.2, p = 0.03). Transcriptome analysis of recurrent tumors demonstrated that alterations in the Oxidation pathway were associated a positive Ragnum hypoxia signature score, consistent with enhanced pathway activity. Further, TCGA analyses demonstrated the prognostic value of oxidation pathway alterations in previously untreated disease. Alterations in the Oxidation pathway are associated with survival among patients with recurrent laryngeal cancer. These prognostic genetic biomarkers may inform precision medicine protocols and identify putatively targetable pathways to improve survival in this cohort.
Collapse
|
11
|
Swiecicki PL, Durm G, Bellile E, Bhangale A, Brenner JC, Worden FP. A multi-center phase II trial evaluating the efficacy of palbociclib in combination with carboplatin for the treatment of unresectable recurrent or metastatic head and neck squamous cell carcinoma. Invest New Drugs 2020; 38:1550-1558. [PMID: 31981071 DOI: 10.1007/s10637-020-00898-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Background Palbociclib is a selective inhibitor of CDK4/6 approved in metastatic breast cancer as well as evidence of activity in malignancies with CDK4-amplifications. Extensive preclinical evidence has demonstrated synergy of CDK4/6 inhibitors with platinum chemotherapy suggesting a potential role for clinical synthetic lethality. Given the sensitivity to platinum therapy as well as the landscape of genomic alterations, concurrent treatment with platinum chemotherapy and palbociclib is of significant interest as a novel treatment approach. Patients and Methods Patients with unresectable, recurrent, or metastatic head and neck cancer (R/M HNC) were enrolled. Eligible patients were required to have no previous treatment with cytotoxic chemotherapy in the recurrent/metastatic setting. This was a multicenter phase II trial in which patients were administered carboplatin in addition to concurrent palbociclib. The primary endpoint of this trial was 12-week disease control rate (DCR). Results Twenty-one patients were enrolled and 18 were evaluable for response. Grade 3/4 treatment related toxicities were seen in 79% of patients of which the most common were related to myelosuppression. 12-week DCR was 33% (5 patients with stable disease, 1 with a partial response). Median progression free survival was 2.9 months (range: 1.2-13.3) and overall survival was 4.6 months (range: 1.4-14.8). Conclusion The combination of carboplatin and palbociclib is associated with significant treatment related toxicity and insufficient anti-tumor activity.
Collapse
Affiliation(s)
- Paul L Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, 300 N Ingalls St, SPC 5419, Ann Arbor, MI, 48109, USA. .,Department of Internal Medicine, Division of Hematology/Oncology, Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Greg Durm
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Apurva Bhangale
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, University of Michigan Health System, Ann Arbor, MI, USA
| | - J Chad Brenner
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, University of Michigan Health System, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Francis P Worden
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, 300 N Ingalls St, SPC 5419, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Protecting Tumors by Preventing Human Papilloma Virus Antigen Presentation: Insights from Emerging Bioinformatics Algorithms. Cancers (Basel) 2019; 11:cancers11101543. [PMID: 31614809 PMCID: PMC6826432 DOI: 10.3390/cancers11101543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Recent developments in bioinformatics technologies have led to advances in our understanding of how oncogenic viruses such as the human papilloma virus drive cancer progression and evade the host immune system. Here, we focus our review on understanding how these emerging bioinformatics technologies influence our understanding of how human papilloma virus (HPV) drives immune escape in cancers of the head and neck, and how these new informatics approaches may be generally applicable to other virally driven cancers. Indeed, these tools enable researchers to put existing data from genome wide association studies, in which high risk alleles have been identified, in the context of our current understanding of cellular processes regulating neoantigen presentation. In the future, these new bioinformatics approaches are highly likely to influence precision medicine-based decision making for the use of immunotherapies in virally driven cancers.
Collapse
|
13
|
Michmerhuizen NL, Leonard E, Matovina C, Harris M, Herbst G, Kulkarni A, Zhai J, Jiang H, Carey TE, Brenner JC. Rationale for Using Irreversible Epidermal Growth Factor Receptor Inhibitors in Combination with Phosphatidylinositol 3-Kinase Inhibitors for Advanced Head and Neck Squamous Cell Carcinoma. Mol Pharmacol 2019; 95:528-536. [PMID: 30858165 PMCID: PMC6442321 DOI: 10.1124/mol.118.115162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and debilitating form of cancer characterized by poor patient outcomes and low survival rates. In HNSCC, genetic aberrations in phosphatidylinositol 3-kinase (PI3K) and epidermal growth factor receptor (EGFR) pathway genes are common, and small molecules targeting these pathways have shown modest effects as monotherapies in patients. Whereas emerging preclinical data support the combined use of PI3K and EGFR inhibitors in HNSCC, in-human studies have displayed limited clinical success so far. Here, we examined the responses of a large panel of patient-derived HNSCC cell lines to various combinations of PI3K and EGFR inhibitors, including EGFR agents with varying specificity and mechanistic characteristics. We confirmed the efficacy of PI3K and EGFR combination therapies, observing synergy with α isoform-selective PI3K inhibitor HS-173 and irreversible EGFR/ERBB2 dual inhibitor afatinib in most models tested. Surprisingly, however, our results demonstrated only modest improvement in response to HS-173 with reversible EGFR inhibitor gefitinib. This difference in efficacy was not explained by differences in ERBB target selectivity between afatinib and gefitinib; despite effectively disrupting ERBB2 phosphorylation, the addition of ERBB2 inhibitor CP-724714 failed to enhance the effect of HS-173 gefitinib dual therapy. Accordingly, although irreversible ERBB inhibitors showed strong synergistic activity with HS-173 in our models, none of the reversible ERBB inhibitors were synergistic in our study. Therefore, our results suggest that the ERBB inhibitor mechanism of action may be critical for enhanced synergy with PI3K inhibitors in HNSCC patients and motivate further preclinical studies for ERBB and PI3K combination therapies.
Collapse
Affiliation(s)
- Nicole L Michmerhuizen
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Elizabeth Leonard
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Chloe Matovina
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Micah Harris
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Gabrielle Herbst
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Aditi Kulkarni
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Jingyi Zhai
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Hui Jiang
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Thomas E Carey
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - J Chad Brenner
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| |
Collapse
|
14
|
Swiecicki PL, Brennan JR, Mierzwa M, Spector ME, Brenner JC. Head and Neck Squamous Cell Carcinoma Detection and Surveillance: Advances of Liquid Biomarkers. Laryngoscope 2018; 129:1836-1843. [PMID: 30570748 DOI: 10.1002/lary.27725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinomas are aggressive tumors that often present at advanced stage in difficult-to-biopsy regions of the head and neck. With the rapid move to analyze circulating tumor DNA (ctDNA) to either detect cancer or monitor disease progression and response to therapy, we have designed this article as a primer to understand the recent studies that support a transition to use these circulating biomarkers as a part of routine clinical care. Whereas some technical challenges still need to be overcome, the utility of ctDNA in cancer care is already evident from these early studies. Therefore, it is critical to understand recent advances in this area as well as emerging questions that need to be addressed as these biomarkers move closer to enhancing routine clinical care paradigms. Laryngoscope, 129:1836-1843, 2019.
Collapse
Affiliation(s)
- Paul L Swiecicki
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| | - Julia R Brennan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| | - Matthew E Spector
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| |
Collapse
|
15
|
Smith JD, Birkeland AC, Rosko AJ, Hoesli RC, Foltin SK, Swiecicki P, Mierzwa M, Chinn SB, Shuman AG, Malloy KM, Casper KA, McLean SA, Wolf GT, Bradford CR, Prince ME, Brenner JC, Spector ME. Mutational profiles of persistent/recurrent laryngeal squamous cell carcinoma. Head Neck 2018; 41:423-428. [PMID: 30548484 DOI: 10.1002/hed.25444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We sought to describe targeted DNA sequencing data of persistent/recurrent laryngeal squamous cell carcinoma (LSCC) and to compare gene-specific alteration frequencies with that of primary, untreated LSCC specimens from The Cancer Genome Atlas (TCGA). METHODS The tumors of 21 patients with persistent/recurrent LSCC were subjected to targeted DNA sequencing using the Ion AmpliSeq Comprehensive Cancer Panel. Gene-specific alteration frequencies were compared (Chi-Square test) to primary, untreated LSCC sequencing data from TCGA using the cBioPortal platform. RESULTS Persistent/recurrent LSCC was characterized by a high rate of inactivating alterations in TP53 (38.1%) and CDKN2A (33%), amplification events of CCND1 (19.1%), and ERBB2 (14.3%), and NOTCH1 (19.1%) mutations. Comparison of primary vs persistent/recurrent LSCC revealed significant differences in alteration frequencies of eight critical genes: BAP1, CDKN2A, DCUN1D1, MSH2, MTOR, PIK3CA, TET2, and TP53. CONCLUSIONS Our results provide preliminary support for a distinct mutational profile of persistent/recurrent LSCC that requires validation in larger cohorts.
Collapse
Affiliation(s)
- Joshua D Smith
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew J Rosko
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rebecca C Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Susan K Foltin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Paul Swiecicki
- Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Steven B Chinn
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew G Shuman
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kelly M Malloy
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Keith A Casper
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A McLean
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Gregory T Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carol R Bradford
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mark E Prince
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Ludwig ML, Kulkarni A, Birkeland AC, Michmerhuizen NL, Foltin SK, Mann JE, Hoesli RC, Devenport SN, Jewell BM, Shuman AG, Spector ME, Carey TE, Jiang H, Brenner JC. The genomic landscape of UM-SCC oral cavity squamous cell carcinoma cell lines. Oral Oncol 2018; 87:144-151. [PMID: 30527230 DOI: 10.1016/j.oraloncology.2018.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We sought to describe the genetic complexity of 14 UM-SCC oral cavity cancer cell lines that have remained uncharacterized despite being used as model systems for decades. MATERIALS AND METHODS We performed exome sequencing on 14 oral cavity UM-SCC cell lines and denote the mutational profile of each line. We used a SNP array to profile the multiple copy number variations of each cell line and use immunoblotting to compare alterations to protein expression of commonly amplified genes (EGFR, PIK3CA, etc.). RNA sequencing was performed to characterize the expression of genes with copy number alterations. RESULTS The cell lines displayed a highly complex network of genetic aberrations that was consistent with alterations identified in the HNSCC TCGA project including PIK3CA amplification, CDKN2A deletion, as well as TP53 and CASP8 mutations, enabling genetic stratification of each cell line in the panel. Copy number FISH and spectral karyotyping analysis demonstrate that cell lines retain chromosomal heterogeneity. CONCLUSIONS Collectively, we developed an important resource for future oral cavity HNSCC cell line studies and highlight the complexity of genomic aberrations in cell lines.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, United States; Program in Cellular and Molecular Biology, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, United States
| | | | - Nicole L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pharmacology, United States
| | - Susan K Foltin
- Department of Otolaryngology - Head and Neck Surgery, United States
| | - Jacqueline E Mann
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pathology, United States
| | - Rebecca C Hoesli
- Department of Otolaryngology - Head and Neck Surgery, United States
| | - Samantha N Devenport
- Department of Otolaryngology - Head and Neck Surgery, United States; Program in Cellular and Molecular Biology, United States
| | | | - Andrew G Shuman
- Department of Otolaryngology - Head and Neck Surgery, United States; Center for Bioethics and Social Sciences in Medicine, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - Thomas E Carey
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pharmacology, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hui Jiang
- Department of Biostatistics, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pharmacology, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
17
|
Smith J, Kulkarni A, Birkeland AC, McHugh JB, Brenner JC. Whole-Exome Sequencing of Sinonasal Small Cell Carcinoma Arising within a Papillary Schneiderian Carcinoma In Situ. Otolaryngol Head Neck Surg 2018; 159:859-865. [PMID: 29734873 PMCID: PMC6212311 DOI: 10.1177/0194599818774004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The pathogenetic underpinnings of extrapulmonary small cell carcinomas (EPSCCs) of the head and neck are poorly understood. We sought to describe the clinical case and whole-exome DNA sequencing data of a patient with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma (SCC). STUDY DESIGN Case report and whole-exome sequencing of tumor DNA. SETTING Academic medical center. SUBJECTS AND METHODS A 52-year-old man with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma. We performed whole-exome genetic sequencing and copy-number variation (CNV) analysis of tumor and normal DNA extracted from flash-frozen, paraffin-embedded (FFPE) samples. RESULTS A total of 93 high-confidence, nonsynonymous somatic mutation events were identified in sinonasal SCC, including loss-of-function mutations in TP53, MAML3, a transcriptional coactivator of the Notch pathway, and GAS6, an activating ligand of the TAM family of tyrosine kinase receptors. Focal amplifications of chromosomal regions 6p25-11.1, containing SOX4 and VEGFA, and 14q32.1-32.3, containing AKT1 and the Notch inhibitory ligand DLK1, were also seen. Further CNV analysis revealed deletions in the critical cell cycle regulators CDKN2A, RB1, RBL1, and RBL2 and the chromatin modifier EP300. CONCLUSIONS Small cell carcinoma may rarely arise from sinonasal Schneiderian carcinoma in situ and exhibits similar genomic aberrations (eg, SOX amplification, Notch pathway inactivation) to pulmonary small cell carcinoma.
Collapse
Affiliation(s)
- Joshua Smith
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Aditi Kulkarni
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Andrew C Birkeland
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan B. McHugh
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - J. Chad Brenner
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
18
|
Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J 2018; 285:4516-4534. [PMID: 29905002 DOI: 10.1111/febs.14586] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Complex multicellular organisms have evolved sophisticated mechanisms to rapidly resolve epithelial injuries. Epithelial integrity is critical to maintaining internal homeostasis. An epithelial breach represents the potential for pathogen ingress and fluid loss, both of which may have severe consequences if not limited. The mammalian wound healing response involves a finely tuned, self-limiting series of cellular and molecular events orchestrated by the transient activation of specific signalling pathways. Accurate regulation of these events is essential; failure to initiate key steps at the right time delays healing and leads to chronic wounds, while aberrant initiation of wound healing processes may produce cell behaviours that promote cancer progression. In this review, we discuss how wound healing pathways co-opted in cancer lose their stringent regulation and become compromised in their reversibility. We hypothesize on how the commandeering of wound healing 'master regulators' is involved in this process, and also highlight the implications of these findings in the treatment of both chronic wounds and cancer.
Collapse
Affiliation(s)
- Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
19
|
Fibroblast growth factor receptor 1 and 3 expression is associated with regulatory PI3K/AKT kinase activity, as well as invasion and prognosis, in human laryngeal cancer. Cell Oncol (Dordr) 2018; 41:253-268. [DOI: 10.1007/s13402-017-0367-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
|
20
|
Hoesli RC, Ludwig ML, Michmerhuizen NL, Rosko AJ, Spector ME, Brenner JC, Birkeland AC. Genomic sequencing and precision medicine in head and neck cancers. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2017; 43:884-892. [PMID: 28034498 PMCID: PMC5393934 DOI: 10.1016/j.ejso.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a common and deadly disease. Historically, surgical and chemoradiation treatments have been met with modest success, and understanding of genetic drivers of HNSCC has been limited. With recent next generation sequencing studies focused on HNSCC, we are beginning to understand the genetic landscape of HNSCCs and are starting to identify and advance targeted options for patients. In this review, we describe current knowledge and recent advances in sequencing studies of HNSCC, discuss current limitations and future directions for further genomic analysis, and highlight the translational advances being undertaken to treat this important disease.
Collapse
Affiliation(s)
- R C Hoesli
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M L Ludwig
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - N L Michmerhuizen
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - A J Rosko
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M E Spector
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - J C Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - A C Birkeland
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Birkeland AC, Burgin SJ, Yanik M, Scott MV, Bradford CR, McHugh JB, McLean SA, Sullivan SE, Nor JE, McKean EL, Brenner JC. Pathogenetic Analysis of Sinonasal Teratocarcinosarcomas Reveal Actionable β-catenin Overexpression and a β-catenin Mutation. J Neurol Surg B Skull Base 2017; 78:346-352. [PMID: 28725522 DOI: 10.1055/s-0037-1601320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/12/2017] [Indexed: 12/22/2022] Open
Abstract
Objective Sinonasal teratocarcinosarcomas are rare, aggressive tumors of the skull base. Treatment options are limited and outcomes are poor. Little is known in regard to the genetic factors regulating these tumors. Characterization of actionable molecular alterations in these tumors could provide potentially successful therapeutic options. Methods We performed targeted exome sequencing on an index sinonasal teratocarcinosarcoma specimen to identify potential driver mutations. We performed immunohistochemical stains for β-catenin on paraffin-embedded tissue on the index tumor and a subsequent teratocarcinosarcoma. Online databases of cancer mutations (Catalogue of Somatic Mutations in Cancer and The Cancer Genome Atlas) were accessed. Results We identified an activating p.S45F mutation in β-catenin in our index sinonasal teratocarcinosarcoma. This mutation results in constitutive signaling in the Wnt/β-catenin pathway. We confirmed β-catenin overexpression and nuclear localization via immunohistochemistry in the index tumor and a second patient. The p.S45F activating mutation was found in a variety of solid tumors, and accounts for 3.3 to 10.4% of all known β-catenin mutations. Conclusion We identified a potential driver mutation in β-catenin in a sinonasal teratocarcinosarcoma, resulting in β-catenin overexpression. These findings suggest a role for the Wnt/β-catenin pathway in sinonasal teratocarcinosarcoma tumorigenesis and a role for anti-β-catenin targeted therapy.
Collapse
Affiliation(s)
- Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Sarah J Burgin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Megan Yanik
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Megan V Scott
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Carol R Bradford
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Scott A McLean
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Stephen E Sullivan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jacques E Nor
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Erin L McKean
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, United States.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
22
|
Oikawa Y, Morita KI, Kayamori K, Tanimoto K, Sakamoto K, Katoh H, Ishikawa S, Inazawa J, Harada H. Receptor tyrosine kinase amplification is predictive of distant metastasis in patients with oral squamous cell carcinoma. Cancer Sci 2017; 108:256-266. [PMID: 27889930 PMCID: PMC5329163 DOI: 10.1111/cas.13126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
This study aimed to clarify the genomic factors associated with the diagnosis and prognosis of oral squamous cell carcinoma via next-generation sequencing. We evaluated data from 220 cases of oral squamous cell carcinoma. Genomic DNA was eluted using formalin-fixed, paraffin-embedded samples, and targeted resequencing of 50 cancer-related genes was performed. In total, 311 somatic mutations were detected in 220 patients, consisting of 68 synonymous mutations and 243 non-synonymous mutations. Genes carrying mutations included TP53, CDKN2A, and PIK3CA in 79 (35.9%), 35 (15.9%), and 19 patients (8.6%), respectively. Copy number analysis detected amplification of PIK3CA and AKT1 in 38 (17.3%) and 11 patients (5.0%), respectively. Amplification of receptor tyrosine kinases was found in 37 patients (16.8%). Distant metastasis was noted in nine of 37 patients (24%) with receptor tyrosine kinase amplification, accounting for 43% of the 21 cases of distant metastasis. The cumulative 5-year survival rate was 64.6% in the receptor tyrosine kinase amplification group vs 85.2% in the no receptor tyrosine kinase amplification group. Moreover, we identified significantly poorer prognosis in the TP53 mutation/receptor tyrosine kinase amplification group, for which the cumulative 5-year survival rate was 41.6%. In conclusion, the results of this study demonstrated that receptor tyrosine kinase amplification is a prognostic factor for distant metastasis of oral squamous cell carcinoma, indicating the necessity of using next-generation sequencing in clinical sequencing.
Collapse
Affiliation(s)
- Yu Oikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-Ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.,Genome Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroto Katoh
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shumpei Ishikawa
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.,Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Birkeland AC, Foltin SK, Michmerhuizen NL, Hoesli RC, Rosko AJ, Byrd S, Yanik M, Nor JE, Bradford CR, Prince ME, Carey TE, McHugh JB, Spector ME, Brenner JC. Correlation of Crtc1/3-Maml2 fusion status, grade and survival in mucoepidermoid carcinoma. Oral Oncol 2017; 68:5-8. [PMID: 28438292 DOI: 10.1016/j.oraloncology.2017.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Mucoepidermoid carcinoma (MEC) is the most common malignant tumor of the salivary glands. Tumor stage and grade have historically been important predictors of survival. An oncogenic CRTC1- or CRTC3-MAML2 gene fusion has been identified in a number of MECs. Historically, these gene fusions have been associated with lower grade tumors and better survival. However, reported gene fusion rates and prognosis varies widely across studies, and have not controlled for tumor grade. We sought to identify gene fusion rates and outcomes in our cohort of MEC patients. MATERIALS AND METHODS An IRB-approved retrospective cohort of patients with MEC was identified at the University of Michigan. Clinical, histologic, and outcome data was collected from medical records. RNA was isolated from formalin fixed paraffin-embedded tumor sections, and qRT-PCR was performed to identify CRTC1/3-MAML2 gene fusions. Sanger sequencing of qRT-PCR products was used to confirm gene fusions. RESULTS Overall, 90 patient MEC tumors were collected (58 low-grade, 25 intermediate-grade, and 7 high-grade). Gene fusions were identified in 59% (53/90) of tumors. On univariate and bivariate analysis, fusion status did not significantly associate with grade or survival. CONCLUSION We have identified a high rate of CRTC1/3-MAML2 gene fusions in a large cohort of MEC. We do not identify any correlation between fusion status with tumor grade or survival. These findings suggest further characterization of MECs is needed before considering the CRTC1/3-MAML2 gene fusion as a prognostic biomarker. Additional genetic drivers may account for survival and grade in MECs.
Collapse
Affiliation(s)
- Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Susan K Foltin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Nicole L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Rebecca C Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Andrew J Rosko
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Serena Byrd
- Department of Otolaryngology - Head and Neck Surgery, St. Louis University, 3635 Vista Ave, St. Louis, MO 63110, United States
| | - Megan Yanik
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Jacques E Nor
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Carol R Bradford
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States; Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Mark E Prince
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States; Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Thomas E Carey
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States; Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States; Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States; Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States.
| |
Collapse
|
24
|
Mann JE, Hoesli R, Michmerhuizen NL, Devenport SN, Ludwig ML, Vandenberg TR, Matovina C, Jawad N, Mierzwa M, Shuman AG, Spector ME, Brenner JC. Surveilling the Potential for Precision Medicine-driven PD-1/PD-L1-targeted Therapy in HNSCC. J Cancer 2017; 8:332-344. [PMID: 28261333 PMCID: PMC5332883 DOI: 10.7150/jca.17547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy is becoming an accepted treatment modality for many patients with cancer and is now approved for use in platinum-refractory recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Despite these successes, a minority of patients with HNSCC receiving immunotherapy respond to treatment, and few undergo a complete response. Thus, there is a critical need to identify mechanisms regulating immune checkpoints in HNSCC such that one can predict who will benefit, and so novel combination strategies can be developed for non-responders. Here, we review the immunotherapy and molecular genetics literature to describe what is known about immune checkpoints in common genetic subsets of HNSCC. We highlight several highly recurrent genetic lesions that may serve as biomarkers or targets for combination immunotherapy in HNSCC.
Collapse
Affiliation(s)
- J E Mann
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - R Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - N L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - S N Devenport
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - M L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T R Vandenberg
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - C Matovina
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - N Jawad
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - M Mierzwa
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - A G Shuman
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - M E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
25
|
Michmerhuizen NL, Birkeland AC, Bradford CR, Brenner JC. Genetic determinants in head and neck squamous cell carcinoma and their influence on global personalized medicine. Genes Cancer 2016; 7:182-200. [PMID: 27551333 PMCID: PMC4979591 DOI: 10.18632/genesandcancer.110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While sequencing studies have provided an improved understanding of the genetic landscape of head and neck squamous cell carcinomas (HNSCC), there remains a significant lack of genetic data derived from non-Caucasian cohorts. Additionally, there is wide variation in HNSCC incidence and mortality worldwide both between and within various geographic regions. These epidemiologic differences are in part accounted for by varying exposure to environmental risk factors such as tobacco, alcohol, high risk human papilloma viruses and betel quid. However, inherent genetic factors may also play an important role in this variability. As limited sequencing data is available for many populations, the involvement of unique genetic factors in HNSCC pathogenesis from epidemiologically diverse groups is unknown. Here, we review current knowledge about the epidemiologic, environmental, and genetic variation in HNSCC cohorts globally and discuss future studies necessary to further our understanding of these differences. Long-term, a more complete understanding of the genetic drivers found in diverse HNSCC cohorts may help the development of personalized medicine protocols for patients with rare or complex genetic events.
Collapse
Affiliation(s)
- Nicole L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carol R Bradford
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Michmerhuizen NL, Leonard E, Kulkarni A, Brenner JC. Differential compensation mechanisms define resistance to PI3K inhibitors in PIK3CA amplified HNSCC. OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY 2016; 1:44-50. [PMID: 28004037 PMCID: PMC5167357 DOI: 10.15761/ohns.1000111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
OBJECTIVE Recent sequencing studies of head and neck squamous cell carcinomas (HNSCCs) have identified the phosphatidylinositol 3-kinase (PI3K) pathway as the most frequently mutated, oncogenic pathway in this cancer type. Despite the frequency of activating genomic alterations in PIK3CA (the gene encoding the catalytic subunit of PI3K, targeted inhibitors of PI3K have not shown clinical efficacy as monotherapies. We hypothesized that co-dependent pathways, including the Ras-MEK-ERK pathway, may still be functional in the presence of PI3K inhibitors and might serve as mediators of this resistance. METHODS We assessed the hypothesis using resazurin cell viability and trypan blue exclusion assays. We also used Western blot to characterize Ras-MEK-ERK pathway activity. STUDY DESIGN We evaluated this hypothesis in six PIK3CA-amplified, PI3K inhibitor-resistant HNSCC cell lines following treatment with pan and alpha-isoform selective PI3K inhibitors (BKM120 and HS-173 respectively). We also tested the effect of combination treatment with PI3K inhibitor HS-173 and MEK inhibitor trametinib or EGFR inhibitor gefitinib. RESULTS Our results displayed maintenance of Ras-MEK-ERK pathway activity in 4 of 6 HNSCC cell lines after PI3K inhibitor treatment. We also found that UM-SCC-69 and UM-SCC-108 cells display synergistic responses to dual therapy. CONCLUSION This study suggests that inhibition of the PI3K and Ras-MEK-ERK pathways might be effective in some HNSCC patients; however, it also prompts the study of additional resistance mechanisms to identify synergistic combination therapies for tumors resistant to these di-therapies.
Collapse
Affiliation(s)
- Nicole L. Michmerhuizen
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Elizabeth Leonard
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Aditi Kulkarni
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - J. Chad Brenner
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
27
|
Birkeland AC, Ludwig ML, Meraj TS, Brenner JC, Prince ME. The Tip of the Iceberg: Clinical Implications of Genomic Sequencing Projects in Head and Neck Cancer. Cancers (Basel) 2015; 7:2094-109. [PMID: 26506389 PMCID: PMC4695879 DOI: 10.3390/cancers7040879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022] Open
Abstract
Recent genomic sequencing studies have provided valuable insight into genetic aberrations in head and neck squamous cell carcinoma. Despite these great advances, certain hurdles exist in translating genomic findings to clinical care. Further correlation of genetic findings to clinical outcomes, additional analyses of subgroups of head and neck cancers and follow-up investigation into genetic heterogeneity are needed. While the development of targeted therapy trials is of key importance, numerous challenges exist in establishing and optimizing such programs. This review discusses potential upcoming steps for further genetic evaluation of head and neck cancers and implementation of genetic findings into precision medicine trials.
Collapse
Affiliation(s)
- Andrew C Birkeland
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
| | - Megan L Ludwig
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
| | - Taha S Meraj
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
- Comprehensive Cancer Center, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
| | - Mark E Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
- Comprehensive Cancer Center, University of Michigan Health Systems, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Birkeland AC, Brenner JC. Personalizing Medicine in Head and Neck Squamous Cell Carcinoma: The Rationale for Combination Therapies. ACTA ACUST UNITED AC 2015; 3. [PMID: 26913293 DOI: 10.18103/mra.v0i3.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Personalized medicine, in which individual tumor genetics drive the selection of targeted therapies and treatment plans for each patient, has recently emerged as the next generation of cancer therapy. Unfortunately, personalized medicine trials have had limited success in tumors that have complex combinations of disruptive genomic events, which drive differential responses to targeted therapies. Here, we will use head and neck squamous cell carcinoma as a model for genetically complex disease and discuss novel approaches to enhance personalized medicine trials for these complicated cases.
Collapse
Affiliation(s)
- Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, Ann Arbor, MI
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, Ann Arbor, MI; Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|