1
|
Zhai Z, Wang S, Cao Y, Liu J, Zhao Q, Ji Y, Yang X, Tang X, Ma J, Du P. Pan-Cancer Analysis Reveals the Potential of PLOD1 as a Prognostic and Immune Biomarker for Human Cancer. Biomedicines 2024; 12:2653. [PMID: 39767559 PMCID: PMC11673125 DOI: 10.3390/biomedicines12122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is known as an enhancer of collagen fiber deposition and cross-linking stability. However, there is limited information on its function in tumors. In this study, we aimed to elucidate the function and potential mechanism of action of PLOD1 across cancers. Methods: We assessed the pan-cancer expression, mutation, methylation and prognostic value of PLOD1 through multiple online databases. In addition, we performed correlation analyses of its immunological features, as well as functional assessment analyses of PLOD1. Finally, we assessed the effect of PLOD1 knockdown on bladder tumor cells using in vitro experiments. Results: Our findings suggest that PLOD1 is aberrantly expressed in multiple cancer types, accompanied by a poor prognosis. Epigenetic alterations in PLOD1 are highly heterogeneous across a wide range of tumors, and aberrant methylation and copy number variants correlate with a poor prognosis. In the tumor microenvironment, PLOD1 expression correlated positively with the infiltration level of various immunosuppressive cells (e.g., monocytes, macrophages and tumor-associated fibroblasts) and negatively with immune-killing cells (e.g., CD8+ T cells, B cells and CD4+ T cells). In addition, PLOD1 expression was associated with immune checkpoints and immunomodulatory genes. Finally, in vitro experiments demonstrated that knockdown of PLOD1 reduced the proliferation, migration and antiapoptotic abilities of T24 cells. Conclusions: The results of this study demonstrate that PLOD1 is a potential oncogene and prognostic biomarker in pan-cancer; tumor tissues with high PLOD1 expression reveal a relatively immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Zhao Zhai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Shuo Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Yudong Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Jia Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Qiang Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Yongpeng Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Xiao Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Xingxing Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Jinchao Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| | - Peng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China
| |
Collapse
|
2
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
3
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hong K, Zhang Y, Yao L, Zhang J, Sheng X, Song L, Guo Y, Guo Y. Pan-cancer analysis of the angiotensin II receptor-associated protein as a prognostic and immunological gene predicting immunotherapy responses in pan-cancer. Front Cell Dev Biol 2022; 10:913684. [PMID: 36060798 PMCID: PMC9437438 DOI: 10.3389/fcell.2022.913684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Understanding interior molecular mechanisms of tumorigenesis and cancer progression contributes to antitumor treatments. The angiotensin II receptor-associated protein (AGTRAP) has been confirmed to be related with metabolic products in metabolic diseases and can drive the progression of hepatocellular carcinoma and colon carcinoma. However, functions of AGTRAP in other kinds of cancers are unclear, and a pan-cancer analysis of AGTRAP has not been carried out. Methods and materials: We downloaded data from The Cancer Genome Atlas and Genotype-Tissue Expression dataset and The Human Protein Atlas databases and then used R software (version 4.1.1) and several bioinformatic tools to conduct the analysis. Results: In our study, we evaluated the expression of AGTRAP in cancers, such as high expression in breast cancer, lung adenocarcinoma, and glioma and low expression in kidney chromophobe. Furthermore, our study revealed that high expression of AGTRAP is significantly related with poor prognosis in glioma, liver cancer, kidney chromophobe, and so on. We also explored the putative functional mechanisms of AGTRAP across pan-cancer, such as endoplasmic reticulum pathway, endocytosis pathway, and JAK-STAT signaling pathway. In addition, the connection between AGTRAP and tumor microenvironment, tumor mutation burden, and immune-related genes was proven. Conclusion: Our study provided comprehensive evidence of the roles of AGTRAP in different kinds of cancers and supported the relationship of AGTRAP and tumorous immunity.
Collapse
Affiliation(s)
- Kai Hong
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- Medicine School, Ningbo University, Ningbo, Zhejiang, China
| | - Yingjue Zhang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Lingli Yao
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- Medicine School, Ningbo University, Ningbo, Zhejiang, China
| | - Jiabo Zhang
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
| | - Xianneng Sheng
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
| | - Lihua Song
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- Medicine School, Ningbo University, Ningbo, Zhejiang, China
| | - Yu Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- *Correspondence: Yu Guo, ; Yangyang Guo,
| | - Yangyang Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- *Correspondence: Yu Guo, ; Yangyang Guo,
| |
Collapse
|
5
|
Yuan B, Xu Y, Zheng S. PLOD1 acts as a tumor promoter in glioma via activation of the HSF1 signaling pathway. Mol Cell Biochem 2022; 477:549-557. [PMID: 34845571 DOI: 10.1007/s11010-021-04289-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/04/2021] [Indexed: 02/05/2023]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is a collagen-related lysyl hydroxylase and its prognostic value in glioma patients was verified. However, its biological function in glioma has yet to be fully investigated. The PLOD1 mRNA status and clinical significance in gliomas were assessed via the GEPIA database. Overexpression or targeted depletion of PLOD1 was carried out in the human glioma cell line U87 and verified by western blotting. CCK8 and colony formation assays were implemented to examine the impact of PLOD1 on the proliferative and colony-forming phenotypes of U87 cells. Luciferase reporter assays and HSF1-specific pharmacologic inhibitors (KRIBB11) were employed to determine the regulatory relationship between PLOD1 and heat shock factor 1 (HSF1). High expression of PLOD1 was observed in tissue samples of glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG). GEPIA overall survival further demonstrated that both GBM and LGG patients with high PLOD1 displayed worse clinical outcomes compared with those with low PLOD1. Overexpression and targeted depletion of PLOD1 enhanced and suppressed U87 cell proliferation and colony formation, respectively. Luciferase reporter assays showed that PLOD1 significantly enhanced the transcriptional activity of HSF1 in HEK293T cells. PLOD1 deficiency in U87 cells inhibited HSF1-induced survivin accumulation, whereas KRIBB11 also blocked the PLOD1-overexpressing induced survivin expression. An inhibitor of HSF1 signaling events abolished the increased clonogenic potential caused by PLOD1 overexpression in U87 cells. High expression of PLOD1 can increase the proliferation and colony formation of U87 cells by activating the HSF1 signaling pathway. This study suggested PLOD1/HSF1 as an effective therapeutic target for gliomas.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, No. 57, Changping Road, Shantou, 515041, Guangdong, People's Republic of China.
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, No. 57, Changping Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, No. 57, Changping Road, Shantou, 515041, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Zhou Y, Wang S, Yin X, Gao G, Wang Q, Zhi Q, Han Y, Kuang Y. TSHZ3 functions as a tumor suppressor by DNA methylation in colorectal cancer. Clin Res Hepatol Gastroenterol 2021; 45:101725. [PMID: 34089916 DOI: 10.1016/j.clinre.2021.101725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Teashirt zinc finger homeobox 3 (TSHZ3) is currently reported to be aberrantly expressed in several tumors, but the detailed functions and epigenetic mechanisms of TSHZ3 in colorectal cancer (CRC) remain unclear. MATERIALS AND METHODS In this study, the TSHZ3 expression in 118 CRC and normal adjacent tissues (NATs) was evaluated, and the methylation status of the TSZH3 promoter region in CRC tissues and cell lines was also analyzed. RESULTS The results of PCR analysis showed that TSHZ3 was significantly down-regulated in CRC tissues, and patients with low TSHZ3 levels had a poorer 5-year overall survival (OS) rate. Analyzing the promoter sequence (-1000∼0) by MethPrimer, TSHZ3 promoter was found to harbor abundant of CpG islands. The methylation specific PCR (MSP) analysis presented a relatively hypermethylated status of THSZ3 promoter in CRC samples. The data of MSP and bisulfite sequencing PCR (BSP) also confirmed that CpG sites of TSHZ3 promoter were methylated in CRC cells, and the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) could effectively restored the TSHZ3 expression in vitro. Functionally, the proliferation, apoptosis and metastasis of CRC cells were regulated by TSZH3 over-expression, and the suppressing effects of TSHZ3 in CRC were also confirmed in a xenograft mouse model. CONLUSIONS Our results indicated that promoter methylation was one of the mechanisms contributing to the down-regulation of TSHZ3 in CRC, and TSZH3 might served as a potential tumor suppressor gene in the development and progression of CRC.
Collapse
Affiliation(s)
- Youxin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuequn Yin
- Department of Anesthesia Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, Jiangsu, 215228, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
7
|
Liu S, Zhao W, Li X, Zhang L, Gao Y, Peng Q, Du C, Jiang N. AGTRAP Is a Prognostic Biomarker Correlated With Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2021; 11:713017. [PMID: 34595113 PMCID: PMC8477650 DOI: 10.3389/fonc.2021.713017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Recently, it has been reported that angiotensin II receptor-associated protein (AGTRAP) plays a substantial role in tumor progression. Nevertheless, the possible role of AGTRAP in hepatocellular carcinoma (HCC) remains unrecognized. Methods The metabolic gene rapid visualizer, Cancer Cell Line Encyclopedia, Human Protein Atlas, and Hepatocellular Carcinoma Database were used to analyze the expression of AGTRAP in HCC tissues and normal liver tissues or adjacent tissues. Kaplan-Meier plotter and UALCAN analysis were used to assess the prognostic and diagnostic value of AGTRAP. LinkedOmics and cBioPortal were used to explore the genes co-expressed with AGTRAP in HCC. To further understand the potential mechanism of AGTRAP in HCC, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathway analyses were performed using R software, the protein-protein interaction (PPI) network was established using the STRING database, and the immune infiltration and T-cell exhaustion related to AGTRAP were explored via Timer and GEPIA. In addition, immunohistochemistry was used to detect the expression of AGTRAP protein in HCC tissues and paired adjacent tissues from clinical specimens. Results This study found that the mRNA and protein levels of AGTRAP in HCC tissues were higher than those in normal liver tissues and adjacent tissues, and higher mRNA levels of AGTRAP were associated with higher histological grade and a poor overall survival in HCC patients. The area under the receiver operating characteristic curve (AUC) of AGTRAP was 0.856, suggesting that it could be a diagnostic marker for HCC. Moreover, the alteration rate of AGTRAP in HCC was 8%, and AGTRAP was involved in HCC probably through the NF-κB and MAPK signaling pathways. Furthermore, AGTRAP was positively correlated with the infiltration of CD8+ T cells, CD4+ T cells, B cells, macrophages, dendritic cells, and neutrophils, and the levels of AGTRAP were significantly correlated with T-cell exhaustion biomarkers. The immunohistochemistry results confirmed that the protein levels of AGTRAP were consistently higher in HCC tissues than in paired adjacent tissues. Conclusion The clinical value of AGTRAP and its correlation with immune infiltration in HCC was effectively identified in clinical data from multiple recognized databases. These findings indicate that AGTRAP could serve as a potential biomarker in the treatment of HCC, thereby informing its prognosis, diagnosis, and even immunotherapy.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Peng W, Tu G, Zhao Z, He B, Cai Q, Zhang P, Peng X, Shi S, Wang X. DNA methylome and transcriptome analysis established a model of four differentially methylated positions (DMPs) as a diagnostic marker in esophageal adenocarcinoma early detection. PeerJ 2021; 9:e11355. [PMID: 34012728 PMCID: PMC8109010 DOI: 10.7717/peerj.11355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal carcinogenesis involves in alterations of DNA methylation and gene transcription. This study profiled genomic DNA methylome vs. gene expression using transcriptome data on esophageal adenocarcinoma (EAC) tissues from the online databases in order to identify methylation biomarkers in EAC early diagnosis. Materials and Methods The DNA methylome and transcriptome data were downloaded from the UCSC Xena, Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases and then bioinformatically analyzed for the differentially methylated positions (DMPs) vs. gene expression between EAC and normal tissues. The highly methylated DMPs vs. reduced gene expression in EAC were selected and then stratified with those of the corresponding normal blood samples and other common human cancers to construct an EAC-specific diagnostic model. The usefulness of this model was further verified in other three GEO datasets of EAC tissues. Result A total of 841 DMPs were associated with expression of 320 genes, some of which were aberrantly methylated in EAC tissues. Further analysis showed that four (cg07589773, cg10474350, cg13011388 and cg15208375 mapped to gene IKZF1, HOXA7, EFS and TSHZ3, respectively) of these 841 DMPs could form and establish a diagnostic model after stratified them with the corresponding normal blood samples and other common human cancers. The data were further validated in other three GEO datasets on EAC tissues in early EAC diagnosis. Conclusion This study revealed a diagnostic model of four genes methylation to diagnose EAC early. Further study will confirm the usefulness of this model in a prospective EAC cases.
Collapse
Affiliation(s)
- Weilin Peng
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Guangxu Tu
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Boxue He
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Pengfei Zhang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiong Peng
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Shuai Shi
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Wang PP, Ding SY, Sun YY, Li YH, Fu WN. MYCT1 Inhibits the Adhesion and Migration of Laryngeal Cancer Cells Potentially Through Repressing Collagen VI. Front Oncol 2021; 10:564733. [PMID: 33680912 PMCID: PMC7931689 DOI: 10.3389/fonc.2020.564733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
MYCT1, a target of c-Myc, inhibits laryngeal cancer cell migration, but the underlying mechanism remains unclear. In the study, we detected differentially expressed genes (DEGs) from laryngeal cancer cells transfected by MYCT1 using RNA-seq (GSE123275). DEGs from head and neck squamous cell carcinoma (HNSCC) were first screened by comparison of transcription data from the Gene Expression Omnibus (GSE6631) and the Cancer Genome Atlas (TCGA) datasets using weighted gene co-expression network analysis (WGCNA). GO and KEGG pathway analysis explained the functions of the DEGs. The DEGs overlapped between GSE6631and TCGA datasets were then compared with ours to find the key DEGs downstream of MYCT1 related to the adhesion and migration of laryngeal cancer cells. qRT-PCR and Western blot were applied to validate gene expression at mRNA and protein levels, respectively. Finally, the cell adhesion, migration, and wound healing assays were to check cell adhesion and migration abilities, respectively. As results, 39 overlapping genes were enriched in the GSE6631 and TCGA datasets, and most of them revealed adhesion function. Thirteen of 39 genes including COL6 members COL6A1, COL6A2, and COL6A3 were overlapped in GSE6631, TCGA, and GSE123275 datasets. Similar to our RNA-seq results, we confirmed that COL6 is a target of MYCT1 in laryngeal cancer cells. We also found that MYCT1 inhibited the adhesion and migration of laryngeal cancer cells via COL6. These indicate that COL6 is a potential target of MYCT1 and participates the adhesion and migration of laryngeal cancer cells, which provides an important clue for further study on how MYCT1 regulating COL6 in laryngeal cancer progression.
Collapse
Affiliation(s)
- Peng-Peng Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Si-Yu Ding
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yun-Hui Li
- Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ding Y, Feng G, Yang M. Prognostic role of alternative splicing events in head and neck squamous cell carcinoma. Cancer Cell Int 2020; 20:168. [PMID: 32467664 PMCID: PMC7227031 DOI: 10.1186/s12935-020-01249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant alternative splicing (AS) is implicated in biological processes of cancer. This study aims to reveal prognostic AS events and signatures that may serve as prognostic predictors for head and neck squamous cell carcinoma (HNSCC). Methods Prognostic AS events in HNSCC were identified by univariate COX analysis. Prognostic signatures comprising prognostic AS events were constructed for prognosis prediction in patients with HNSCC. The correlation between the percent spliced in (PSI) values of AS events and the expression of splicing factors (SFs) was analyzed by Pearson correlation analysis. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is enriched. Results A total of 27,611 AS events in 15,873 genes were observed, and there were 3433 AS events in 2624 genes significantly associated with overall survival (OS) for HNSCC. Moreover, we found that AS prognostic signatures could accurately predict HNSCC prognosis. SF-AS regulatory networks were constructed according to the correlation between PSI values of AS events and the expression levels of SFs. Conclusions Our study identified prognostic AS events and signatures. Furthermore, it established SF-AS networks in HNSCC that were valuable in predicting the prognosis of patients with HNSCC and elucidating the regulatory mechanisms underlying AS in HNSCC.
Collapse
Affiliation(s)
- Yanni Ding
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| | - Guang Feng
- 2The Third Department of Burns and Plastic Surgery and Center of Wound Repair, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Min Yang
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| |
Collapse
|