1
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
2
|
Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkhorasani F, Rasool Riyadh Abdulwahid AH, Rezaei-Tazangi F, Kavei M, Rezaei R, Mobarak H, Aref AR, Fang W. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. ENVIRONMENTAL RESEARCH 2023; 239:117263. [PMID: 37797672 DOI: 10.1016/j.envres.2023.117263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | | | - Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Amirali Momayezi
- School of Chemical Engineering, Iran University of Science, and Technology, Tehran, Iran
| | | | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Mohammed Kavei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lu TL, Li CL, Gong YQ, Hou FT, Chen CW. Identification of tumor antigens and immune subtypes of hepatocellular carcinoma for mRNA vaccine development. World J Gastrointest Oncol 2023; 15:1717-1738. [PMID: 37969406 PMCID: PMC10631436 DOI: 10.4251/wjgo.v15.i10.1717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND mRNA vaccines have been investigated in multiple tumors, but limited studies have been conducted on their use for hepatocellular carcinoma (HCC). AIM To identify candidate mRNA vaccine antigens for HCC and suitable subpopulations for mRNA vaccination. METHODS Gene expression profiles and clinical information of HCC datasets were obtained from International Cancer Genome Consortium and The Cancer Genome Atlas. Genes with somatic mutations and copy number variations were identified by cBioPortal analysis. The differentially expressed genes with significant prognostic value were identified by Gene Expression Profiling Interactive Analysis 2 website analysis. The Tumor Immune Estimation Resource database was used to assess the correlation between candidate antigens and the abundance of antigen-presenting cells (APCs). Tumor-associated antigens were overexpressed in tumors and associated with prognosis, genomic alterations, and APC infiltration. A consensus cluster analysis was performed with the Consensus Cluster Plus package to identify the immune subtypes. The weighted gene coexpression network analysis (WGCNA) was used to determine the candidate biomarker molecules for appropriate populations for mRNA vaccines. RESULTS AURKA, CCNB1, CDC25C, CDK1, TRIP13, PES1, MCM3, PPM1G, NEK2, KIF2C, PTTG1, KPNA2, and PRC1 were identified as candidate HCC antigens for mRNA vaccine development. Four immune subtypes (IS1-IS4) and five immune gene modules of HCC were identified that were consistent in both patient cohorts. The immune subtypes showed distinct cellular and clinical characteristics. The IS1 and IS3 immune subtypes were immunologically "cold". The IS2 and IS4 immune subtypes were immunologically "hot", and the immune checkpoint genes and immunogenic cell death genes were upregulated in these subtypes. IS1-related modules were identified with the WGCNA algorithm. Ultimately, five hub genes (RBP4, KNG1, METTL7A, F12, and ABAT) were identified, and they might be potential biomarkers for mRNA vaccines. CONCLUSION AURKA, CCNB1, CDC25C, CDK1, TRIP13, PES1, MCM3, PPM1G, NEK2, KIF2C, PTTG1, KPNA2, and PRC1 have been identified as candidate HCC antigens for mRNA vaccine development. The IS1 and IS3 immune subtypes are suitable populations for mRNA vaccination. RBP4, KNG1, METTL7A, F12, and ABAT are potential biomarkers for mRNA vaccines.
Collapse
Affiliation(s)
- Tai-Liang Lu
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Cheng-Long Li
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yong-Qiang Gong
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Fu-Tao Hou
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Chao-Wu Chen
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
4
|
Long L, Gao J, Zhang R. PTTG1 Enhances Oncolytic Adenovirus 5 Entry into Pancreatic Adenocarcinoma Cells by Increasing CXADR Expression. Viruses 2023; 15:v15051153. [PMID: 37243239 DOI: 10.3390/v15051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in various types of tumors and functions as an oncogene; it could also be a potential target in tumor therapy. Meanwhile, the high mortality of pancreatic adenocarcinoma (PAAD) largely depends on the limited effectiveness of therapy. Based on the promising potential of PTTG1 in cancer treatment, we explored the influence of PTTG1 on the treatment of PAAD in this study. The Cancer Genome Atlas Program (TCGA) data showed that higher expression of PTTG1 was associated with higher clinical stages and worse prognosis of pancreatic cancer. In addition, the CCK-8 assay showed that the IC50 of gemcitabine and 5-fluorouracil (5-FU) was increased in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells. The TIDE algorithm indicated that the immune checkpoint blockades' (ICBs) efficiency is poor in the PTTG1 high group. Furthermore, we found that the efficiency of OAd5 was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and poor in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells. We used the OAd5 expressing GFP for transduction. As a result, the fluorescence intensity was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and decreased in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells 24 h after OAd5 transduction. The fluorescence intensity indicated that PTTG1 increased OAd5 entry. The flow cytometry assay showed that OAd5 receptor CXADR expression was enhanced by PTTG1. PTTG1 failed to further enhance OAd5 transduction in the case of CXADR knockdown. In summary, PTTG1 enhanced OAd5 transduction into pancreatic cancer cells by increasing CXADR expression on the cell surface.
Collapse
Affiliation(s)
- Lu Long
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ruiyang Zhang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
Liu X, Zeng W, Zheng D, Tang M, Zhou W. Clinical significance of securin expression in solid cancers: A PRISMA-compliant meta-analysis of published studies and bioinformatics analysis based on TCGA dataset. Medicine (Baltimore) 2022; 101:e30440. [PMID: 36123907 PMCID: PMC9478268 DOI: 10.1097/md.0000000000030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Numerous studies have investigated the clinical significance of securin expression in solid cancers; however, the results have been inconsistent. Hence, we performed a meta-analysis of published studies to assess the clinical value of securin expression in patients with solid cancers. METHODS The Chinese National Knowledge Infrastructure, Web of Science, PubMed, and EMDASE databases were searched for eligible studies (from inception up to April 2021). Bioinformatics analysis based on The Cancer Genome Atlas dataset was also performed to evaluate the prognostic value of securin expression. RESULTS A total of 25 articles with 26 studies were included in the meta-analysis. The results of the meta-analysis implied that high securin expression was positively correlated with unfavorable overall survival (OS) (hazard ratio = 1.52, 95% CI, 1.33-1.73; P < .001) and lymph node metastasis (odd ratio = 2.96, 95% CI, 2.26-3.86; P < .001). Consistently, our bioinformatics analysis showed that increased securin expression was associated with worse OS and shorter disease-free survival in cancer patients. CONCLUSION Our study indicated that securin overexpression was positively associated with metastasis and inversely related to the prognosis of patients with solid cancers. However, additional high-quality studies should be conducted to validate these findings.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wei Zeng
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Dayang Zheng
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Min Tang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wangyan Zhou
- Department of Medical Humanities and Education Department, the First Affiliated Hospital, University of South China, Hengyang, China
- * Correspondence: Wangyan Zhou, Department of Medical Humanities and Education Department, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang 421001, China (e-mail: )
| |
Collapse
|
6
|
Liu Z, Qi Y, Wang H, Zhang Q, Wu Z, Wu W. Risk model of hepatocellular carcinoma based on cuproptosis-related genes. Front Genet 2022; 13:1000652. [PMID: 36186455 PMCID: PMC9521278 DOI: 10.3389/fgene.2022.1000652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Owing to the heterogeneity displayed by hepatocellular carcinoma (HCC) and the complexity of tumor microenvironment (TME), it is noted that the long-term effectiveness of the cancer therapy poses a severe clinical challenge. Hence, it is essential to categorize and alter the treatment intervention decisions for these tumors. Materials and methods: "ConsensusClusterPlus" tool was used for developing a secure molecular classification system that was based on the cuproptosis-linked gene expression. Furthermore, all clinical properties, pathway characteristics, genomic changes, and immune characteristics of different cell types involved in the immune pathways were also assessed. Univariate Cox regression and the least absolute shrinkage and selection operator (Lasso) analyses were used for designing the prognostic risk model associated with cuproptosis. Results: Three cuproptosis-linked subtypes (clust1, clust2, and clust3) were detected. Out of these, Clust3 showed the worst prognosis, followed by clust2, while Clust1 showed the best prognosis. Three subtypes had significantly different enrichment in pathways related to Tricarboxylic Acid (TCA) cycle, cell cycle, and cell senescence (p < 0.01). The clust3 subtype with poor prognosis had a low "ImmuneScore" and low immune cell infiltration, and the three subtypes had significant differences in the antigen processing and presentation pathway of the macrophages. Clust1 had a low TIDE score and was sensitive to immunotherapy. Then, according to the prognosis-related genes of cuproptosis, a prognosis risk model related to cuproptosis was constructed, containing seven genes (KIF2C, PTTG1, CENPM, CDC20, CYP2C9, SFN, and CFHR3). "High" group had a higher TIDE score compared to the TIDE score value shown by the "Low" group, which benefited less from immunotherapy, whereas the "High" group patients were more sensitive to the conventional drugs. Finally, the prognosis risk model related to cuproptosis was combined with clinical pathological characteristics to further improve the prognostic model and survival prediction. Conclusion: Three new molecular subgroups based on cuproptosis-linked genes were revealed, and a cuproptosis-related prognostic risk model comprising seven genes was established in this study, which could assist in predicting the prognosis and identifying the patients benefit from immunotherapy.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qikun Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Demin DE, Stasevich EM, Murashko MM, Tkachenko EA, Uvarova AN, Schwartz AM. Full and D-BOX-Deficient PTTG1 Isoforms: Effects on Cell Proliferation. Mol Biol 2022. [DOI: 10.1134/s0026893322060061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Li JD, Farah AA, Huang ZG, Zhai GQ, Wang RG, Liu JL, Wang QJ, Zhang GL, Lei ZL, Dang YW, Li SH. Clinical significance and potential regulatory mechanism of overexpression of pituitary tumor-transforming gene transcription factor in bladder cancer. BMC Cancer 2022; 22:713. [PMID: 35768832 PMCID: PMC9241226 DOI: 10.1186/s12885-022-09810-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pituitary tumor transforming gene-1 (PTTG1) transcription factor is identified as carcinogenic and associated with tumor invasiveness, but its role in bladder cancer (BLCA) remains obscure. This research is intended to analyze the aberrant expression and clinical significance of PTTG1 in BLCA, explore the relationship between PTTG1 and tumor microenvironment characteristics and predict its potential transcriptional activity in BLCA tissue. Methods We compared the expression discrepancy of PTTG1 mRNA in BLCA and normal bladder tissue, using the BLCA transcriptomic datasets from GEO, ArrayExpress, TCGA, and GTEx. In-house immunohistochemical staining was implemented to determine the PTTG1 protein intensity. The prognostic value of PTTG1 was evaluated using the Kaplan-Meier Plotter. CRISPR screen data was utilized to estimate the effect PTTG1 interference has on BLCA cell lines. We predicted the abundance of the immune cells in the BLCA tumor microenvironment using the microenvironment cell populations-counter and ESTIMATE algorithms. Single-cell RNA sequencing data was applied to identify the major cell types in BLCA, and the dynamics of BLCA progression were revealed using pseudotime analysis. PTTG1 target genes were predicted by CistromeDB. Results The elevated expression level of PTTG1 was confirmed in 1037 BLCA samples compared with 127 non-BLCA samples, with a standardized mean difference value of 1.04. Higher PTTG1 expression status exhibited a poorer BLCA prognosis. Moreover, the PTTG1 Chronos genetic effect scores were negative, indicating that PTTG1 silence may inhibit the proliferation and survival of BLCA cells. With PTTG1 mRNA expression level increasing, higher natural killer, cytotoxic lymphocyte, and monocyte lineage cell infiltration levels were observed. A total of four candidate targets containing CHEK2, OCIAD2, UBE2L3, and ZNF367 were determined ultimately. Conclusions PTTG1 mRNA over-expression may become a potential biomarker for BLCA prognosis. Additionally, PTTG1 may correlate with the BLCA tumor microenvironment and exert transcriptional activity by targeting CHEK2, OCIAD2, UBE2L3, and ZNF367 in BLCA tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09810-y.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Abdirahman Ahmed Farah
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Gao-Qiang Zhai
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Rui-Gong Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Jia-Lin Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Qin-Jie Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Guan-Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Zi-Long Lei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China.
| |
Collapse
|
9
|
Pituitary Tumor-Transforming Gene 1/Delta like Non-Canonical Notch Ligand 1 Signaling in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23136897. [PMID: 35805898 PMCID: PMC9267054 DOI: 10.3390/ijms23136897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
The management of chronic liver diseases (CLDs) remains a challenge, and identifying effective treatments is a major unmet medical need. In the current review we focus on the pituitary tumor transforming gene (PTTG1)/delta like non-canonical notch ligand 1 (DLK1) axis as a potential therapeutic target to attenuate the progression of these pathological conditions. PTTG1 is a proto-oncogene involved in proliferation and metabolism. PTTG1 expression has been related to inflammation, angiogenesis, and fibrogenesis in cancer and experimental fibrosis. On the other hand, DLK1 has been identified as one of the most abundantly expressed PTTG1 targets in adipose tissue and has shown to contribute to hepatic fibrosis by promoting the activation of hepatic stellate cells. Here, we extensively analyze the increasing amount of information pointing to the PTTG1/DLK1 signaling pathway as an important player in the regulation of these disturbances. These data prompted us to hypothesize that activation of the PTTG1/DLK1 axis is a key factor upregulating the tissue remodeling mechanisms characteristic of CLDs. Therefore, disruption of this signaling pathway could be useful in the therapeutic management of CLDs.
Collapse
|
10
|
Perramón M, Carvajal S, Reichenbach V, Fernández‐Varo G, Boix L, Macias‐Muñoz L, Melgar‐Lesmes P, Bruix J, Melmed S, Lamas S, Jiménez W. The pituitary tumour-transforming gene 1/delta-like homologue 1 pathway plays a key role in liver fibrogenesis. Liver Int 2022; 42:651-662. [PMID: 35050550 PMCID: PMC9303549 DOI: 10.1111/liv.15165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrβ, Tgfrβ, Timp1, Timp2 and Mmp2. CONCLUSIONS Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Meritxell Perramón
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Silvia Carvajal
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Vedrana Reichenbach
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Guillermo Fernández‐Varo
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Loreto Boix
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of MedicineUniversity of BarcelonaBarcelonaSpain,Barcelona‐Clínic Liver Cancer GroupHospital Clínic UniversitariBarcelonaSpain
| | - Laura Macias‐Muñoz
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Pedro Melgar‐Lesmes
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of BiomedicineUniversity of BarcelonaBarcelonaSpain,Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jordi Bruix
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of MedicineUniversity of BarcelonaBarcelonaSpain,Barcelona‐Clínic Liver Cancer GroupHospital Clínic UniversitariBarcelonaSpain
| | - Shlomo Melmed
- Department of Medicine, Cedars‐Sinai Research InstituteUniversity of California School of MedicineLos AngelesCAUSA
| | - Santiago Lamas
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)MadridSpain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of BiomedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
11
|
Zhang H, Wang P, Song T, Bonnette UL, Zhang Z. Screening and identification of key genes in imatinib-resistant chronic myelogenous leukemia cells: a bioinformatics study. ACTA ACUST UNITED AC 2021; 26:408-414. [PMID: 34053416 DOI: 10.1080/16078454.2021.1931740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic myelogenous leukemia (CML) is one of the most common cancers in the world. Imatinib is one of the most effective therapeutic strategies to inhibit the BCR-ABL tyrosine Kinase in patients with CML, but resistance is increasingly encountered. MATERIAL AND METHODS Microarray data GSE7114, GSE92624 and GSE97562 were downloaded and analyzed from Gene Expression Omnibus (GEO) to identify the candidate genes in the imatinib-resistant CML cells. The differentially expressed genes (DEGs) were appraised, and the protein-protein interaction (PPI) network was created by using STRING and Cytoscape. RESULTS We screened a total of 217 DEGs, including 151 upregulated genes and 66 downregulated genes. The enriched functions and pathways of genes include insulin-like growth factor I binding, cysteine-type endopeptidase inhibitor activity involved in apoptotic process, cell adhesion, positive regulation of nitric oxide biosynthetic process and hematopoietic cell lineage. Nine hub genes were appraised and Gene Ontology enrichment analysis revealed that these genes are mainly enriched in cell cycle, peptidase inhibitor activity and cell division. Several genes such as BIRC5, CCNE2 and MCM4 were identified in survival analysis and these genes alteration are significantly associated with worse overall survival and disease-free survival. CONCLUSIONS These genes have the potential to become surrogate markers for a clinical evaluation of imatinib-resistant CML patients. Our results provide potential target genes for diagnosis and treatment of imatinib-resistant CML patients.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Fine Chemicals, School of Life Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Peiran Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, People's Republic of China
| | - Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, People's Republic of China
| | - Uwituze Laura Bonnette
- State Key Laboratory of Fine Chemicals, School of Life Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Life Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
12
|
Lee SS, Choi JH, Lim SM, Kim GJ, Lee SK, Jeon YK. Alteration of Pituitary Tumor Transforming Gene 1 by MicroRNA-186 and 655 Regulates Invasion Ability of Human Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22031021. [PMID: 33498448 PMCID: PMC7864193 DOI: 10.3390/ijms22031021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Pituitary tumor-transforming gene 1 (PTTG1) was recently shown to be involved in the progression as well as the metastasis of cancers. However, their expression and function in the invasion of oral squamous cell carcinoma (SCC) remain unclear. Methods: The expressions of PTTG1 and PTTG1-targeted miRNA in oral SCC cell lines and their invasion capability depended on PTTG1 expression were analyzed by quantitative RT-PCR, Western blots, the transwell insert system and Zymography. Results: Invasion abilities were decreased in oral SCC cells treated with siRNA-PTTG1. When PTTG1 were downregulated in oral SCC cells treated with microRNA-186 and -655 inhibited their invasion abilities via MMP-9 activity. Conclusions: These results indicate that alteration of expression of PTTG1 in oral SCC cells by newly identified microRNA-186 and -655 can regulate invasion activity. Therefore, these data offer new insights into further understanding PTTG1 function in oral SCC and should provide new strategies for diagnostic markers for oral SCC.
Collapse
Affiliation(s)
- Sang Shin Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.H.C.); (S.K.L.)
- Correspondence: (S.S.L.); (Y.K.J.)
| | - Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.H.C.); (S.K.L.)
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seoul 13488, Korea; (S.M.L.); (G.J.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seoul 13488, Korea; (S.M.L.); (G.J.K.)
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.H.C.); (S.K.L.)
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (S.S.L.); (Y.K.J.)
| |
Collapse
|
13
|
Bai H, Luo X, Liao D, Xiong W, Zeng M, Zheng B. Long Noncoding RNA PTTG3P Expression Is an Unfavorable Prognostic Marker for Patients With Hepatocellular Carcinoma. Technol Cancer Res Treat 2020; 18:1533033819887981. [PMID: 31829099 PMCID: PMC6909275 DOI: 10.1177/1533033819887981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: PTTG3P, which maps to chromosome 8q13.1, is a novel long noncoding RNA with oncogenic properties in cancers. In this study, we aimed to investigate the prognostic value of PTTG3P in terms of overall survival and recurrence-free survival and its potential regulatory network and transcription pattern in patients with hepatocellular carcinoma. Patients and Methods: An in silico analysis was performed using data from the Cancer Genome Atlas-Liver Hepatocellular Carcinoma. Results: Results showed that the high PTTG3P expression group was consistently associated with shorter overall survival and recurrence-free survival, regardless of pathological stages or tumor grade. High PTTG3P expression was an independent indicator of shorter overall survival (hazard ratio: 2.177, 95% confidence interval: 1.519-3.121, P < .001) and recurrence-free survival (hazard ratio: 2.222, 95% confidence interval: 1.503-3.283, P < .001). The genes strongly coexpressed with PTTG3P are enriched in several KEGG pathways that are closely associated with carcinogenesis and malignant transformation of hepatocellular carcinoma. Conclusion: Based on the findings, we infer that PTTG3P expression might serve as an independent prognostic biomarker in primary hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hansong Bai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Luo
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongxu Liao
- The First Department of General Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Xiong
- Department of Hepatobiliary surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ming Zeng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zheng
- Department of Hepatobiliary surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
14
|
Demin DE, Uvarova AN, Klepikova AV, Schwartz AM. The Influence of the Minor Short Isoform of Securin (PTTG1) on Transcription is Significantly Different from the Impact of the Full Isoform. Mol Biol 2020. [DOI: 10.1134/s0026893320010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Parte S, Virant-Klun I, Patankar M, Batra SK, Straughn A, Kakar SS. PTTG1: a Unique Regulator of Stem/Cancer Stem Cells in the Ovary and Ovarian Cancer. Stem Cell Rev Rep 2019; 15:866-879. [PMID: 31482269 PMCID: PMC10723898 DOI: 10.1007/s12015-019-09911-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Origin of cancer stem cells (CSCs) and mechanisms by which oncogene PTTG1 contributes to tumor progression via CSCs is not known. Ovarian CSCs exhibit characteristics of self-renewal, tumor-initiation, growth, differentiation, drug resistance, and tumor relapse. A common location of putative origin, namely the ovarian surface epithelium, is shared between the normal stem and CSC compartments. Existence of ovarian stem cells and their co-expression with CSC signatures suggests a strong correlation between origin of epithelial cancer and CSCs. We hereby explored a putative oncogene PTTG1 (Securin), reported to be overexpressed in various tumors, including ovarian. We report a previously overlooked role of PTTG1 as a marker of CSCs thereby modulating CSC, germline, and stemness-related genes. We further characterized PTTG1's ability to regulate (cancer) stem cell-associated self-renewal and epithelial-mesenchymal transition pathways. Collectively, the data sheds light on a potential target expressed during ovarian tumorigenesis and metastatically disseminated ascites CSCs in the peritoneal cavity. Present study highlights this unconventional, under-explored role of PTTG1 in regulation of stem and CSC compartments in ovary, ovarian cancer and ascites and highlights it as a potential candidate for developing CSC specific targeted therapeutics.
Collapse
Affiliation(s)
- Seema Parte
- Department of Physiology, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 322, Louisville, KY, 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska, Omaha, NE, USA
| | - Alex Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Sham S Kakar
- Department of Physiology, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 322, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Khan AA, Alanazi AM, Jabeen M, Chauhan A, Ansari MA. Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice. Sci Rep 2019; 9:15825. [PMID: 31676815 PMCID: PMC6825139 DOI: 10.1038/s41598-019-52142-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Short interfering RNA (siRNA) possesses special ability of silencing specific gene. To increase siRNA stability, transportation and its uptake by tumor cells, effective delivery to the appropriate target cells is a major challenge of siRNA-based therapy. In the present study, an effective, safe and biocompatible survivin siRNA encapsulated, GalNAc decorated PEGylated PLGA nanoconjugates (NCs) viz., GalNAc@PEG@siRNA-PLGA were engineered and their synergistic antitumor efficacy was evaluated for targeted delivery in HCC bearing experimental mice. GalNAc@PEG@siRNA-PLGA NCs were characterized for size, bioavailability, toxicity and biocompatibility. Their antitumor potential was evaluated considering gene silencing, apoptosis, histopathology and survival of treated mice. Exceptional accumulation of hepatocytes, reduction in survivin expression and prominent regression in tumor size confirmed the ASGPR-mediated uptake of ligand-anchored NCs and silencing of survivin gene in a targeted manner. Increased DNA fragmentation and potential modulation of caspase-3, Bax and Bcl-2 factors specified the induction of apoptosis that helped in significant inhibition of HCC progression. The potential synchronous and tumor selective delivery of versatile NCs indicated the effective payloads towards the target site, increased apoptosis in cancer cells and improved survival of treated animals.
Collapse
Affiliation(s)
- Azmat Ali Khan
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Amer M. Alanazi
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mumtaz Jabeen
- 0000 0004 1937 0765grid.411340.3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Arun Chauhan
- 0000 0004 1936 8163grid.266862.eDepartment of Neuroimmunology, School of Health and Medicine, University of North Dakota, Grand Forks, ND USA
| | - Mohammad Azam Ansari
- 0000 0004 0607 035Xgrid.411975.fDepartment of Epidemic Disease Research, Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| |
Collapse
|
17
|
Xiong Z, Li X, Yang Q. PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas. Protein Pept Lett 2019; 26:800-818. [PMID: 37020362 DOI: 10.2174/0929866526666190722145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/22/2022]
Abstract
Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Kong J, Wang T, Zhang Z, Yang X, Shen S, Wang W. Five Core Genes Related to the Progression and Prognosis of Hepatocellular Carcinoma Identified by Analysis of a Coexpression Network. DNA Cell Biol 2019; 38:1564-1576. [PMID: 31633379 DOI: 10.1089/dna.2019.4932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular mechanism of tumorigenesis of the prevalent cancer hepatocellular carcinoma (HCC) is unclear. In this study, through weighted gene coexpression network analysis, a coexpression network was constructed by selecting the top 25% most variant genes in the dataset GSE62232. The average linkage hierarchical clustering identified 24 modules, and among them, the pink module associated with prognosis of HCC was screened. Five gene candidates (PCNA, RFC4, PTTG1, H2AFZ, and RRM1) with a common network in the module were screened after the protein-protein interaction network complex was combined with the coexpression network. After progression and survival analysis, all candidates were identified as real core genes. According to the Human Protein Atlas and the Oncomine database, these genes were dysregulated in HCC samples. The receiver operating characteristic curve proved that the expression levels of the core genes had high diagnostic efficacy. The results of gene set enrichment analysis and functional enrichment analysis demonstrated the importance of the cell cycle-related pathways in HCC progression and prognosis. In conclusion, the five real core genes and cell cycle-related pathways identified in this study could greatly improve the knowledge about HCC progression and contribute to HCC treatment.
Collapse
Affiliation(s)
- Junjie Kong
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Tao Wang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Zifei Zhang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Xianwei Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Shu Shen
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Wentao Wang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
19
|
Lim JH, Kim DG, Yu DY, Kang HM, Noh KH, Kim DS, Park D, Chang TK, Im DS, Jung CR. Stabilization of E2-EPF UCP protein is implicated in hepatitis B virus-associated hepatocellular carcinoma progression. Cell Mol Life Sci 2019; 76:2647-2662. [PMID: 30903204 PMCID: PMC6586911 DOI: 10.1007/s00018-019-03066-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/18/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is associated with hepatocarcinogenesis. E2-EPF ubiquitin carrier protein (UCP) catalyzes ubiquitination of itself and von Hippel-Lindau protein (pVHL) for degradation and associates with tumor growth and metastasis. However, it remains unknown whether HBx modulates the enzyme activity of UCP and thereby influences hepatocarcinogenesis. Here, we show that UCP is highly expressed in liver tissues of HBx-transgenic mice, but not non-transgenic mice. UCP was more frequently expressed in HBV-positive liver cancers than in HBV-negative liver cancers. HBx binds to UCP specifically and serotype independently, and forms a ternary complex with UCP and pVHL. HBx inhibits self-ubiquitination of UCP, but enhances UCP-mediated pVHL ubiquitination, resulting in stabilization of hypoxia-inducible factor-1α and -2α. HBx and UCP stabilize each other by mutually inhibiting their ubiquitination. HBx promotes cellular proliferation and metastasis via UCP. Our findings suggest that UCP plays a key role in HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Ghon Kim
- Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Dae-Yeul Yu
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dongmin Park
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Kyung Chang
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong-Soo Im
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Shan S, Chen W, Jia JD. Transcriptome Analysis Revealed a Highly Connected Gene Module Associated With Cirrhosis to Hepatocellular Carcinoma Development. Front Genet 2019; 10:305. [PMID: 31001331 PMCID: PMC6454075 DOI: 10.3389/fgene.2019.00305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/19/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction Cirrhosis is one of the most important risk factors for development of hepatocellular carcinoma (HCC). Recent studies have shown that removal or well control of the underlying cause could reduce but not eliminate the risk of HCC. Therefore, it is important to elucidate the molecular mechanisms that drive the progression of cirrhosis to HCC. Materials and Methods Microarray datasets incorporating cirrhosis and HCC subjects were identified from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were determined by GEO2R software. Functional enrichment analysis was performed by the clusterProfiler package in R. Liver carcinogenesis-related networks and modules were established using STRING database and MCODE plug-in, respectively, which were visualized with Cytoscape software. The ability of modular gene signatures to discriminate cirrhosis from HCC was assessed by hierarchical clustering, principal component analysis (PCA), and receiver operating characteristic (ROC) curve. Association of top modular genes and HCC grades or prognosis was analyzed with the UALCAN web-tool. Protein expression and distribution of top modular genes were analyzed using the Human Protein Atlas database. Results Four microarray datasets were retrieved from GEO database. Compared with cirrhotic livers, 125 upregulated and 252 downregulated genes in HCC tissues were found. These DEGs constituted a liver carcinogenesis-related network with 272 nodes and 2954 edges, with 65 nodes being highly connected and formed a liver carcinogenesis-related module. The modular genes were significantly involved in several KEGG pathways, such as “cell cycle,” “DNA replication,” “p53 signaling pathway,” “mismatch repair,” “base excision repair,” etc. These identified modular gene signatures could robustly discriminate cirrhosis from HCC in the validation dataset. In contrast, the expression pattern of the modular genes was consistent between cirrhotic and normal livers. The top modular genes TOP2A, CDC20, PRC1, CCNB2, and NUSAP1 were associated with HCC onset, progression, and prognosis, and exhibited higher expression in HCC compared with normal livers in the HPA database. Conclusion Our study revealed a highly connected module associated with liver carcinogenesis on a cirrhotic background, which may provide deeper understanding of the genetic alterations involved in the transition from cirrhosis to HCC, and offer valuable variables for screening and surveillance of HCC in high-risk patients with cirrhosis.
Collapse
Affiliation(s)
- Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
22
|
Kwak SY, Han HD, Ahn HJ. A T7 autogene-based hybrid mRNA/DNA system for long-term shRNA expression in cytoplasm without inefficient nuclear entry. Sci Rep 2019; 9:2993. [PMID: 30816180 PMCID: PMC6395690 DOI: 10.1038/s41598-019-39407-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
The transient silencing effects currently demonstrated by nonviral siRNA delivery systems limit the therapeutic utility of RNAi, but it remains a technical challenge to prolong duration of gene silencing. We have developed a T7 autogene-based hybrid mRNA/DNA system to enable long-term expression of shRNA in cytoplasm in vitro and in vivo. This hybrid mRNA/DNA system consists of T7 polymerase (T7pol) mRNA, pT7/shRNA-encoding DNA fragment and T7 autogene plasmid, and it can generate higher levels of T7pol proteins, compared to pCMV-triggering T7 autogene system, especially without the need of nuclear entry of any gene. A large amount of T7pol proteins produced are used to induce pT7-driven expression of shRNA in cytoplasm, and through cellular processing of RNA hairpins, mature siRNAs are generated for more than 13 days. We here demonstrate that a single liposomal delivery of this hybrid system leads to the long-term silencing effects in vitro and in vivo, in contrast to the conventional siRNA methods relying on the repeated administrations every 2 or 3 days. These sustainable shRNA expression properties in cytoplasm can provide an efficient strategy to address the limitations caused by shRNA-encoding plasmid DNA systems such as low nuclear entry efficiency and short-term silencing effect. The development of long-term shRNA expression system in vivo could scale down administration frequency of RNAi therapeutics in the treatment of chronic diseases, thereby increasing its clinical utility.
Collapse
Affiliation(s)
- Seo Young Kwak
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea.
| |
Collapse
|
23
|
Zhang J, Li Y, Li H, Zhu B, Wang L, Guo B, Xiang L, Dong J, Liu M, Xiang G. GDF11 Improves Angiogenic Function of EPCs in Diabetic Limb Ischemia. Diabetes 2018; 67:2084-2095. [PMID: 30026260 DOI: 10.2337/db17-1583] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been shown to promote stem cell activity and rejuvenate the function of multiple organs in old mice, but little is known about the functions of GDF11 in the diabetic rat model of hindlimb ischemia. In this study, we found that systematic replenishment of GDF11 rescues angiogenic function of endothelial progenitor cells (EPCs) and subsequently improves vascularization and increases blood flow in diabetic rats with hindlimb ischemia. Conversely, anti-GDF11 monoclonal antibody treatment caused impairment of vascularization and thus, decreased blood flow. In vitro treatment of EPCs with recombinant GDF11 attenuated EPC dysfunction and apoptosis. Mechanistically, the GDF11-mediated positive effects could be attributed to the activation of the transforming growth factor-β/Smad2/3 and protein kinase B/hypoxia-inducible factor 1α pathways. These findings suggest that GDF11 repletion may enhance EPC resistance to diabetes-induced damage, improve angiogenesis, and thus, increase blood flow. This benefit of GDF11 may lead to a new therapeutic approach for diabetic hindlimb ischemia.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA
| | - Huan Li
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Biao Zhu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Li Wang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Bei Guo
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Min Liu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| |
Collapse
|
24
|
Demin DE, Bogolyubova AV, Zlenko DV, Uvarova AN, Deikin AV, Putlyaeva LV, Belousov PV, Mitkin NA, Korneev KV, Sviryaeva EN, Kulakovskiy IV, Tatosyan KA, Kuprash DV, Schwartz AM. The Novel Short Isoform of Securin Stimulates the Expression of Cyclin D3 and Angiogenesis Factors VEGFA and FGF2, but Does Not Affect the Expression of MYC Transcription Factor. Mol Biol 2018. [DOI: 10.1134/s0026893318030032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Karim ME, Tha KK, Othman I, Borhan Uddin M, Chowdhury EH. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers. Pharmaceutics 2018; 10:E65. [PMID: 29861465 PMCID: PMC6026921 DOI: 10.3390/pharmaceutics10020065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
RNA Interference (RNAi) has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Mohammad Borhan Uddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
26
|
Iliadis A, Virvili MA, Flaris NA, Pervana S, Pazarli E, Tripsianis G, Grigoriou ME, Efstratiou I, Kanakis DN. PTTG-1 (Securin) immunoexpression in meningiomas correlates with tumor grade and proliferation rate: potential use as a diagnostic marker of malignancy. APMIS 2018; 126:295-302. [PMID: 29575197 DOI: 10.1111/apm.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
This study essentially aims to contribute to the immunohistochemical investigation of the use of pituitary tumor transforming gene (PTTG) as a marker of cell proliferation or advanced tumor grade in meningiomas of various WHO grades. In all, 51 cases were recovered in total, 21 Grade-I, 23 Grade-II and 7 Grade-III meningiomas. Mitotic index (MI), Ki-67/MiB-1 positivity percentage and PTTG expression were analyzed in correlation to each other as well as to the tumor WHO grades. All three biomarkers showed a high diagnostic significance and a strong association with WHO grades. In comparison, PTTG expression was on a par with the other two indices, and performed very well regarding identification of advanced grade tumors. PTTG may be considered an important diagnostic tool and serve in the future as a novel prognosticator of the biological behavior of all grade meningiomas as well as a useful high-risk patient selection tool.
Collapse
Affiliation(s)
- Alexandros Iliadis
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria-Aikaterini Virvili
- Laboratory of Developmental Biology & Molecular Neurobiology, Health Sciences School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nicolaos A Flaris
- Department of Pathology, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Stavroula Pervana
- Department of Pathology, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | - Elissabet Pazarli
- Department of Pathology, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | - Grigoris Tripsianis
- Department of Medical Statistics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Health Sciences School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Efstratiou
- Department of Pathology, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | | |
Collapse
|
27
|
Schmidt M, Mock A, Jungk C, Sahm F, Ull AT, Warta R, Lamszus K, Gousias K, Ketter R, Roesch S, Rapp C, Schefzyk S, Urbschat S, Lahrmann B, Kessler AF, Löhr M, Senft C, Grabe N, Reuss D, Beckhove P, Westphal M, von Deimling A, Unterberg A, Simon M, Herold-Mende C. Transcriptomic analysis of aggressive meningiomas identifies PTTG1 and LEPR as prognostic biomarkers independent of WHO grade. Oncotarget 2018; 7:14551-68. [PMID: 26894859 PMCID: PMC4924735 DOI: 10.18632/oncotarget.7396] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
Meningiomas are frequent central nervous system tumors. Although most meningiomas are benign (WHO grade I) and curable by surgery, WHO grade II and III tumors remain therapeutically challenging due to frequent recurrence. Interestingly, relapse also occurs in some WHO grade I meningiomas. Hence, we investigated the transcriptional features defining aggressive (recurrent, malignantly progressing or WHO grade III) meningiomas in 144 cases. Meningiomas were categorized into non-recurrent (NR), recurrent (R), and tumors undergoing malignant progression (M) in addition to their WHO grade. Unsupervised transcriptomic analysis in 62 meningiomas revealed transcriptional profiles lining up according to WHO grade and clinical subgroup. Notably aggressive subgroups (R+M tumors and WHO grade III) shared a large set of differentially expressed genes (n=332; p<0.01, FC>1.25). In an independent multicenter validation set (n=82), differential expression of 10 genes between WHO grades was confirmed. Additionally, among WHO grade I tumors differential expression between NR and aggressive R+M tumors was affirmed for PTTG1, AURKB, ECT2, UBE2C and PRC1, while MN1 and LEPR discriminated between NR and R+M WHO grade II tumors. Univariate survival analysis revealed a significant association with progression-free survival for PTTG1, LEPR, MN1, ECT2, PRC1, COX10, UBE2C expression, while multivariate analysis identified a prediction for PTTG1 and LEPR mRNA expression independent of gender, WHO grade and extent of resection. Finally, stainings of PTTG1 and LEPR confirmed malignancy-associated protein expression changes. In conclusion, based on the so far largest study sample of WHO grade III and recurrent meningiomas we report a comprehensive transcriptional landscape and two prognostic markers.
Collapse
Affiliation(s)
- Melissa Schmidt
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Theresa Ull
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ralf Ketter
- Department of Neurosurgery, Saarland University, Medical School, Homburg, Germany
| | - Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Schefzyk
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University, Medical School, Homburg, Germany
| | - Bernd Lahrmann
- Bioquant, Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Almuth F Kessler
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christian Senft
- Department of Neurosurgery, University of Frankfurt, Frankfurt, Germany
| | - Niels Grabe
- Bioquant, Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology, RCI and University Medical Center of Regensburg, Regensburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Simon
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Xu X, Cao L, Zhang Y, Yin Y, Hu X, Cui Y. Network analysis of DEGs and verification experiments reveal the notable roles of PTTG1 and MMP9 in lung cancer. Oncol Lett 2018; 15:257-263. [PMID: 29387220 PMCID: PMC5768071 DOI: 10.3892/ol.2017.7329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2017] [Indexed: 01/05/2023] Open
Abstract
Lung cancer, a malignant tumor, is the most frequently fatal cancer, with poor survival rates in the advanced stages. In order to improve the understanding of this disease, and to improve the outcomes of patients, additional studies are required. In the present study, differentially expressed genes (DEGs) in patients with lung cancer compared with controls were identified. To understand how these DEGs act together to account for the initiation of lung cancer, a protein interaction network and a transcriptional regulatory network were constructed to explore the clusters and pathways in lung cancer, and the results indicated that PTTG1 and MMP9 served major roles in the development of lung cancer in the regulatory system. Consistent with this, mRNA and protein expression levels of PTTG1 and MMP9 were significantly upregulated in lung cancer tissues compared with normal lung tissues. The overexpression of PTTG1 or MMP9 was induced in the human bronchial epithelial BEAS-2B cell line, indicating that increased PTTG1 or MMP9 alone may not only facilitate cell migration, proliferation and induce colony formation, but also suppress cell apoptosis. In summary, PTTG1 and MMP9 were identified as potential targets for therapeutic intervention through gene therapy in lung cancer.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yan Yin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
29
|
Feng C, Wang T, Zhang Y, Qu K, Tang S. Novel Survivin-Targeted Small Interfering RNA Delivered by Nanoparticles. Am J Med Sci 2017; 354:506-512. [DOI: 10.1016/j.amjms.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/26/2023]
|
30
|
Jung HR, Kang HM, Ryu JW, Kim DS, Noh KH, Kim ES, Lee HJ, Chung KS, Cho HS, Kim NS, Im DS, Lim JH, Jung CR. Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo. Sci Rep 2017; 7:10499. [PMID: 28874716 PMCID: PMC5585316 DOI: 10.1038/s41598-017-10828-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial–mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.
Collapse
Affiliation(s)
- Hong-Ryul Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Eun-Su Kim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Ho-Joon Lee
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Nam-Soon Kim
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Dong-Soo Im
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea.
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea. .,Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.
| |
Collapse
|
31
|
Kakar SS, Parte S, Carter K, Joshua IG, Worth C, Rameshwar P, Ratajczak MZ. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget 2017; 8:74494-74505. [PMID: 29088802 PMCID: PMC5650357 DOI: 10.18632/oncotarget.20170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of deaths due to cancer among women in the United States. In 2017, 22,440 women are expected to be diagnosed with ovarian cancer and 14,080 women will die with it. Currently used chemotherapies (Cisplatin or platinum/taxane combination) targets cancer cells, but spares cancer stem cells (CSCs), which are responsible for tumor relapse leading to recurrence of cancer. Aldehyde dehydrogenase I (ALDH1) positive cancer stem cells are one of the major populations in ovarian tumor and have been related to tumor progression and metastasis. In our studies, we observed expression of ALDH1 in both ovarian surface epithelium (OSE) and cortex with high levels of expression in OSE in normal ovary and benign (BN) tumor, compared to borderline (BL) and high grade (HG) ovarian tumors. In contrast, high levels of expression of ALDH1 were observed in cortex in BL and HG tumors compared to normal ovary and BN tumor. Withaferin A (WFA) alone or in combination with cisplatin (CIS) significantly inhibited the spheroid formation (tumorigenic potential) of isolated ALDH1 CSCs in vitro and significantly reduced its expression in tumors collected from mice bearing orthotopic ovarian tumor compared to control. Treatment of animals with CIS alone significantly increased the ALDH1 CSC population in tumors, suggesting that CIS targets cancer cells but spares cancer stem cells, which undergo amplification. WFA and CIS combination suppresses the expression of securin an “oncogene”, suggesting that securin may serve as a downstream signaling gene to mediate the antitumor effects of WFA.
Collapse
Affiliation(s)
- Sham S Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Seema Parte
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kelsey Carter
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Irving G Joshua
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Christopher Worth
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
32
|
Liu Z, Wang T, Zhang Z, Tang S, Feng S, Yue M, Hu M, Xuan L, Chen Y. Survivin downregulation using siRNA nanoliposomes inhibits cell proliferation and promotes the apoptosis of MHCC-97H hepatic cancer cells: An in vitro and in vivo study. Oncol Lett 2017; 13:2723-2730. [PMID: 28454458 PMCID: PMC5403348 DOI: 10.3892/ol.2017.5754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
At present, survivin is one of the most cancer-specific proteins that has been identified. The present study aimed to investigate the antitumor effects of novel survivin small interfering RNA (siRNA) nanoliposomes targeting survivin in human hepatocellular carcinoma MHCC-97H cells and xenograft mouse models. Survivin-targeted siRNA nanoliposomes were prepared and transfected into MHCC-97H cells and MHCC-97H-bearing nude mice. Survivin expression was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Cell viability was analyzed using an MTT assay and apoptosis was evaluated using Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide staining. Tumor growth in MHCC-97H-bearing mice was monitored following treatment and tumor samples were obtained for survivin expression analysis using RT-qPCR, western blotting and immunohistochemistry staining. Survivin expression levels were significantly downregulated by nanoliposome-mediated survivin siRNA delivery and this was associated with a significant inhibition of cell growth and an increase in the apoptosis of MHCC-97H cells. Downregulation of survivin expression using survivin siRNA nanoliposomes inhibited tumor growth in the MHCC-97H xenograft models without significant treatment-associated toxicity. Therefore, a cationic nanoliposome-based survivin siRNA delivery system was constructed and demonstrated to be efficient for survivin siRNA delivery in in vitro and in vivo studies. These results demonstrate that survivin downregulation was able to significantly attenuate cell proliferation and induce the apoptosis of MHCC-97H cells, as well as inhibit tumor cell growth in MHCC-97H xenograft models, indicating that survivin suppression using siRNA may contribute to the inhibition of tumor development by suppressing cell proliferation and promoting apoptosis.
Collapse
Affiliation(s)
- Ziqin Liu
- Department of Pediatrics, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children's Hospital, Capital Medical University, Xicheng, Beijing 100045, P.R. China
| | - Zhaoxia Zhang
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Suoqin Tang
- Department of Pediatrics, People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shunqiao Feng
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Mei Yue
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Mengze Hu
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Litian Xuan
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Yanfei Chen
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| |
Collapse
|
33
|
The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget 2016; 6:29413-27. [PMID: 26320179 PMCID: PMC4745736 DOI: 10.18632/oncotarget.5003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Deregulation of the pituitary tumor transforming gene (PTTG1), a newly discovered oncogene, is a hallmark of various malignancies, including pituitary tumors. However, the mechanisms regulating PTTG1 expression are still needed to be explored. MicroRNAs (miRNAs) are a novel class of small RNA molecules that act as posttranscriptional regulators of gene expression and can play a significant role in tumor development. Here, we identified a series of miRNAs, namely, miR-329, miR-300, miR-381 and miR-655, which could target PTTG1 messenger RNA and inhibit its expression. Interestingly, all four miRNAs significantly that are downregulated in pituitary tumors were mapped to the 14q32.31 locus, which acts as a tumor suppressor in several cancers. Functional studies show that the PTTG1-targeting miRNAs inhibit proliferation, migration and invasion but induce apoptosis in GH3 and MMQ cells. Furthermore, overexpression of a PTTG1 expression vector lacking the 3′UTR partially reverses the tumor suppressive effects of these miRNAs. Next, we identified the promoter region of PTTG1-targeting miRNAs with binding sites for p53. In our hands, p53 transcriptionally activated the expression of these miRNAs in pituitary tumor cells. Finally, we found that PTTG1 could inhibit p53 transcriptional activity to the four miRNAs. These data indicate the existence of a feedback loop between PTTG1 targeting miRNAs, PTTG1 and p53 that promotes pituitary tumorigenesis. Together, these findings suggest that these PTTG1-targeting miRNAs are important players in the regulation of pituitary tumorigenesis and that these miRNAs may serve as valuable therapeutic targets for cancer treatment.
Collapse
|
34
|
Noll JE, Vandyke K, Hewett DR, Mrozik KM, Bala RJ, Williams SA, Kok CH, Zannettino AC. PTTG1 expression is associated with hyperproliferative disease and poor prognosis in multiple myeloma. J Hematol Oncol 2015; 8:106. [PMID: 26445238 PMCID: PMC4595141 DOI: 10.1186/s13045-015-0209-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023] Open
Abstract
Background Multiple myeloma (MM) is an incurable haematological malignancy characterised by the clonal proliferation of malignant plasma cells within the bone marrow. We have previously identified pituitary tumour transforming gene 1 (Pttg1) as a gene that is significantly upregulated in the haematopoietic compartment of the myeloma-susceptible C57BL/KaLwRij mouse strain, when compared with the myeloma-resistant C57BL/6 mouse. Over-expression of PTTG1 has previously been associated with malignant progression and an enhanced proliferative capacity in solid tumours. Methods In this study, we investigated PTTG1 gene and protein expression in MM plasma cells from newly diagnosed MM patients. Gene expression profiling was used to identify gene signatures associated with high PTTG1 expression in MM patients. Additionally, we investigated the effect of short hairpin ribonucleic acid (shRNA)-mediated PTTG1 knockdown on the proliferation of the murine myeloma plasma cell line 5TGM1 in vitro and in vivo. Results PTTG1 was found to be over-expressed in 36–70 % of MM patients, relative to normal controls, with high PTTG1 expression being associated with poor patient outcomes (hazard ratio 2.49; 95 % CI 1.28 to 4.86; p = 0.0075; log-rank test). In addition, patients with high PTTG1 expression exhibited increased expression of cell proliferation-associated genes including CCNB1, CCNB2, CDK1, AURKA, BIRC5 and DEPDC1. Knockdown of Pttg1 in 5TGM1 cells decreased cellular proliferation, without affecting cell cycle distribution or viability, and decreased expression of Ccnb1, Birc5 and Depdc1 in vitro. Notably, Pttg1 knockdown significantly reduced MM tumour development in vivo, with an 83.2 % reduction in tumour burden at 4 weeks (p < 0.0001, two-way ANOVA). Conclusions This study supports a role for increased PTTG1 expression in augmenting tumour development in a subset of MM patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0209-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline E Noll
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Kate Vandyke
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. .,SA Pathology, Adelaide, Australia.
| | - Duncan R Hewett
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Rachel J Bala
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Sharon A Williams
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Chung H Kok
- Leukaemia Research Group, Cancer Theme, SAHMRI, Adelaide, Australia.
| | - Andrew Cw Zannettino
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. .,Discipline of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide, Cancer Theme, Level 5 South, SAHMRI, PO Box 11060, Adelaide, SA, 5001, Australia.
| |
Collapse
|
35
|
Chen B, Li C, Zhang L, Lv J, Tong Y. Screening of biomarkers in cervical squamous cell carcinomas via gene expression profiling. Mol Med Rep 2015; 12:6985-9. [PMID: 26398134 DOI: 10.3892/mmr.2015.4322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, gene expression profiles of high-grade squamous intraepithelial lesions (HSIL) and invasive cervical squamous cell carcinomas (CSCC) were analyzed using bioinformatic tools to identify key genes and potential biomarkers. Analyses of differentially expressed genes (DEGs) were performed for HSIL vs. normal control and invasive CSCC vs. normal control tissues using the Limma package in R. Pathway enrichment analysis was performed using KOBAS. A protein‑protein interaction (PPI) network for the DEGs in invasive CSCC was constructed using String. Functional enrichment analysis was performed for the DEGs in the PPI network using DAVID. Relevant small molecules were predicted using Cmap. A total of 633 and 881 DEGs were identified in HSIL and invasive CSCC, respectively, and the two groups had 305 DEGs in common. Genes associated with the mitogen-activated protein kinase signaling pathway were enriched in the HSIL, while cell cycle-associated genes were over‑represented in invasive CSCC. The PPI network, containing 72 upregulated genes and 434 edges, was illustrated. Functional enrichment analysis showed that the cell cycle was the most significant gene ontology term. A total of six small molecules associated with the pathology of CSCC were identified, including the anti-cancer drug piperlongumine, which showed a negative correlation. The findings of the present study not only enhanced the current understanding of the pathogenesis of CSCC, but may also be a basis for the development of novel therapies.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Chundong Li
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Lei Zhang
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Jiahui Lv
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Ying Tong
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| |
Collapse
|
36
|
Zheng Y, Guo J, Zhou J, Lu J, Chen Q, Zhang C, Qing C, Koeffler HP, Tong Y. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics 2015; 8:49. [PMID: 26264222 PMCID: PMC4534164 DOI: 10.1186/s12920-015-0126-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis is the major cause of cancer-related death. Forkhead Box M1 (FoxM1) is a master regulator of tumor metastasis. This study aims to identify new FoxM1 targets in regulating tumor metastasis using bioinformatics tools as well as biological experiments. Methods Illumina microarray was used to profile WT and PTTG1 knockout HCT116 cells. R2 Genomics Analysis was used to identify PTTG1 as a potential FoxM1 targeted gene. Luciferase reporter array, EMSA and Chromatin Immunoprecipitation (ChIP) were used to determine the binding of FoxM1 to PTTG1 promoter. Boyden chamber assay was used to evaluate the effects of FoxM1-PTTG1 on cell migration and invasion. Splenic-injection induced liver metastasis model was used to evaluate the effects of FoxM1-PTTG1 on liver metastasis of colorectal cancer. Results Analyses of multiple microarray datasets derived from human colorectal cancer indicated that correlation levels of FoxM1 and pituitary tumor transforming gene (PTTG1) are highly concordant (R = 0.68 ~ 0.89, p = 2.1E-226 ~ 9.6E-86). FoxM1 over-expression increased and knock-down decreased PTTG1 expression. Luciferase reporter assay identified that the −600 to −300 bp region of PTTG1 promoter is important for FoxM1 to enhance PTTG1 promoter activity. EMSA and ChIP assays confirmed that FoxM1 directly binds to PTTG1 promoter at the −391 to −385 bp region in colorectal cancer cells. Boyden chamber assay indicated that both FoxM1 and PTTG1 regulate migration and invasion of HCT116 and SW620 colorectal cancer cells. Further in vivo assays indicated that PTTG1 knock out decreased the liver metastasis of FoxM1 over-expressing HCT116 cells. Microarray analyses identified 662 genes (FDR < 0.05) differentially expressed between WT and PTTG1−/− HCT116 cells. Among them, dickkopf homolog 1 (DKK1), a known WNT pathway inhibitor, was suppressed by PTTG1 and FoxM1. Conclusions PTTG1 is a FoxM1 targeted gene. FoxM1 binds to PTTG1 promoter to enhance PTTG1 transcription, and FoxM1-PTTG1 pathway promotes colorectal cancer migration and invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0126-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinjun Guo
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jin Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Qi Chen
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Cui Zhang
- Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| | - Chen Qing
- School of Pharmaceutical Science, Kunming Medical University, 1168 Western Chunrong Road,Yuhua Street, Chenggong New City, Kunming, China.
| | - H Philip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Yunguang Tong
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| |
Collapse
|
37
|
Buko V, Belonovskaya E, Naruta E, Lukivskaya O, Kanyuka O, Zhuk O, Kranc R, Stoika R, Sybirna N. Pituitary tumor transforming gene as a novel regulatory factor of liver fibrosis. Life Sci 2015; 132:34-40. [PMID: 25936962 DOI: 10.1016/j.lfs.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/16/2015] [Accepted: 04/16/2015] [Indexed: 12/12/2022]
Abstract
AIMS Pituitary tumor-transforming gene (PTTG) is involved in multiple cellular pathways. We studied the development of liver fibrosis induced by thioacetamide (TAA) in knockout (PTTG-/-) and wildtype (PTTG+/+) mice. MAIN METHODS Liver fibrosis in PTTG+/+ and PTTG-/- mice was induced by escalating dose TAA treatment (50-400mg/kg, i.p.) for 12 weeks and assessed by histochemistry, immunohistochemistry, liver hydroxyproline, serum fibrosis markers and fibrosis-related mRNA expression by real-time PCR determination. KEY FINDINGS Both PTTG+/+ and PTTG-/- mice treated with TAA developed signs of fibrosis and inflammatory cell infiltration. However, histological signs of bridging fibrosis and connective tissue square morphometry were significantly attenuated in mice lacking PTTG. α-SMA immunohistochemistry revealed that hepatic stellate cell activation was markedly reduced in PTTG-/- mice compared to wildtype controls. Hepatic hydroxyproline levels were significantly lower in fibrotic PTTG-/- group. The serum TNFα and hepatic TNFα mRNA expression were significantly lower in fibrotic PTTG-/- animals, as well as hepatic TGFβ and VEGF mRNA levels compared to TAA-treated wildtype controls. Serum hyaluronate and TGFβ levels were markedly elevated in fibrotic mice of both genotypes, but were not altered by the absence of PTTG. SIGNIFICANCE TAA-induced fibrosis development is significantly ameliorated in PTTG-/- mice. These animals demonstrated diminished stellate cell activation, suppressed circulating serum markers of inflammation, fibrogenesis and angiogenesis. The presented findings suggest that PTTG is functionally required for hepatic fibrosis progression in an animal model of chronic liver injury. PTTG can be considered as a new important target for prevention and treatment of liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Vyacheslav Buko
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus; School of Medical Sciences, Bialystok, Poland.
| | - Elena Belonovskaya
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | - Elena Naruta
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | - Oxana Lukivskaya
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | | | - Olga Zhuk
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | | | - Rostislav Stoika
- Lviv National Ivan Franko University, Lviv, Ukraine; Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | | |
Collapse
|
38
|
Liang M, Liu J, Ji H, Chen M, Zhao Y, Li S, Zhang X, Li J. A Aconitum coreanum polysaccharide fraction induces apoptosis of hepatocellular carcinoma (HCC) cells via pituitary tumor transforming gene 1 (PTTG1)-mediated suppression of the P13K/Akt and activation of p38 MAPK signaling pathway and displays antitumor activity in vivo. Tumour Biol 2015; 36:7085-91. [DOI: 10.1007/s13277-015-3420-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022] Open
|
39
|
Girard A, Dufort I, Douville G, Sirard MA. Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle. Reprod Biol Endocrinol 2015; 13:17. [PMID: 25879740 PMCID: PMC4355352 DOI: 10.1186/s12958-015-0010-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The physiological state of the dominant follicle is important as it may be linked to the competence of the oocyte within. The objective of this study was to analyze, by transcriptomic analysis, the changes occurring in granulosa cells from dominant follicles at different phases of follicular growth. METHODS Granulosa cells were collected from slaughterhouse dairy cattle follicles with a diameter greater than 9 mm, and were classified at different phases of follicle growth based on flow cytometry profiles of DNA content after staining with propidium iodide. Three phases were identified based on the proportion of cells in -G1 (less than 2n DNA), G0-G1 (2n DNA) or S-M (more than 2n DNA) and follicles were thus allocated to the growing, plateau or atresia group. Between group analysis (BGA) showed clear segregation of the three groups, and the groups were contrasted against each other in a loop design to identify differently expressed genes. Ingenuity Pathway Analysis (IPA) was used to identify the functions and upstream regulators associated with the observed differently expressed genes. RESULTS Major differences were observed between the growth phases. Granulosa cells from follicles in the plateau phase had increased expression of TYRO3 and downregulation of JAM2 compared to growing follicles, supporting the idea of a shift from proliferation to differentiation. On the other hand, genes regulating the response to oxidative stress (VNN1) and angiogenesis (ANGPT2) were upregulated in granulosa cells from atretic follicles. While the predicted activated functions in cells at the plateau stage compared to cells at the growing stage included synthesis and transport of molecules, the predictions for atretic follicles relative to plateau ones included an increase in apoptosis and cell death. CONCLUSION Consistent with previous studies, these observations allowed us to match the presence of specific gene transcripts to a particular physiological status and consequently to classify follicles. The results also demonstrated that the plateau phase is not a simple 'in between' status between growth and atresia, as several characteristics are unique to this stage.
Collapse
Affiliation(s)
- Annie Girard
- Département des Sciences Animales, Pavillon INAF, Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, Québec, Québec, G1V 0A6, Canada.
| | - Isabelle Dufort
- Département des Sciences Animales, Pavillon INAF, Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, Québec, Québec, G1V 0A6, Canada.
| | - Gabriel Douville
- Département des Sciences Animales, Pavillon INAF, Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, Québec, Québec, G1V 0A6, Canada.
| | - Marc-André Sirard
- Département des Sciences Animales, Pavillon INAF, Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
40
|
Xia YH, Li M, Fu DD, Xu SL, Li ZG, Liu D, Tian ZW. Effects of PTTG down-regulation on proliferation and metastasis of the SCL-1 cutaneous squamous cell carcinoma cell line. Asian Pac J Cancer Prev 2015; 14:6245-8. [PMID: 24377512 DOI: 10.7314/apjcp.2013.14.11.6245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIMS To study effects of down-regulation of pituitary tumor-transforming gene (PTTG) on proliferation and metastasis ability of the SCL-1 cutaneous squamous cell carcinoma (CSCC) cell line and explore related mechanisms. METHODS SCL-1 cells were divided into 3 groups (untreated, siRNA control and PTTG siRNA). Cell proliferation assays were performed using a CCK-8 kit and proliferation and metastasis ability were analyzed using Boyden chambers. In addition, expression of MMP-2 and MMP-9 was detected by r-time qPCR and Western blotting. RESULTS Down-regulation of PTTG could markedly inhibit cell proliferation in SCL-1 cells, compared to untreated and control siRNA groups (P < 0.05). Real-time qPCR demonstrated that expression levels of PTTG, MMP-2 and MMP-9 in the PTTG siRNA group were 0.8%, 23.2% and 21.3% of untreated levels. Western blotting revealed that expression of PTTG, MMP-2 and MMP-9 proteins in the PTTG siRNA group was obviously down-regulated. The numbers of migrating cells (51.38 ± 4.71) in the PTTG siRNA group was obviously lower than that in untreated group (131.33 ± 6.12) and the control siRNA group (127.72 ± 5.20) (P < 0.05), suggesting that decrease of proliferation and metastasis ability mediated by PTTG knock-down may be closely correlated with down-regulation of MMP-2 and MMP-9 expression. CONCLUSION Inhibition of PTTG expression may be a new target for therapy of CSCC.
Collapse
Affiliation(s)
- Yong-Hua Xia
- Department of Dermatovenereology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
41
|
Wei C, Yang X, Xi J, Wu W, Yang Z, Wang W, Tang Z, Ying Q, Zhang Y. High expression of pituitary tumor-transforming gene-1 predicts poor prognosis in clear cell renal cell carcinoma. Mol Clin Oncol 2014; 3:387-391. [PMID: 25798272 DOI: 10.3892/mco.2014.478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/30/2014] [Indexed: 11/05/2022] Open
Abstract
Pituitary tumor-transforming gene-1 (PTTG1) is a recently identified oncogene involved in the progression of malignant tumors; however, the expression level of PTTG1 in clear cell renal cell carcinoma (ccRCC) and its potential value as a novel prognostic marker for ccRCC remains unclear. In this study, PTTG1 mRNA and protein levels were assessed in 44 paired ccRCC tissues and adjacent normal tissues by quantitative polymerase chain reaction (qPCR) and immunohistochemistry, respectively. Further immunohistochemical analysis was implemented in 192 samples of ccRCC to evaluate the associations between PTTG1 levels and the clinical characteristics in ccRCC. Reverse transcription qPCR and immunohistochemical analysis demonstrated that the PTTG1 mRNA and protein levels were significantly higher in ccRCC compared to normal tissues. In addition, the PTTG1 protein level in 192 ccRCC samples was found to be significantly correlated with T stage, N classification, metastasis, recurrence and Fuhrman grade, whereas it was not associated with age and gender. Patients with low PTTG1 levels exhibited a better survival outcome compared to those with a higher PTTG1 level. PTTG1 expression and N stage were identified as independent prognostic factors for the overall survival of ccRCC patients. The results suggested that the overexpression of PTTG1 indicates a poor prognosis in ccRCC patients and, therefore, PTTG1 may serve as a novel prognostic marker for ccRCC.
Collapse
Affiliation(s)
- Can Wei
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Xiaoliang Yang
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Junhua Xi
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Wei Wu
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Zhenxing Yang
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Wei Wang
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China ; Pathology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Zhiguo Tang
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China ; Pathology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Quansheng Ying
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China ; Pathology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Yanbin Zhang
- Departments of Urology, Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| |
Collapse
|
42
|
Castilla C, Flores ML, Medina R, Pérez-Valderrama B, Romero F, Tortolero M, Japón MA, Sáez C. Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1. Mol Cancer Ther 2014; 13:2372-83. [PMID: 25122070 DOI: 10.1158/1535-7163.mct-13-0405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting.
Collapse
Affiliation(s)
- Carolina Castilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - M Luz Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Rafael Medina
- Department of Urology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - Francisco Romero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - María Tortolero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Miguel A Japón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain. Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, Spain.
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain. Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, Spain.
| |
Collapse
|
43
|
Sarapata EA, de Pillis LG. A Comparison and Catalog of Intrinsic Tumor Growth Models. Bull Math Biol 2014; 76:2010-24. [DOI: 10.1007/s11538-014-9986-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/11/2014] [Indexed: 11/30/2022]
|
44
|
Zhang E, Liu S, Xu Z, Huang S, Tan X, Sun C, Lu L. Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in oral squamous cell carcinoma (OSCC) and promotes migration, invasion and epithelial-mesenchymal transition (EMT) in SCC15 cells. Tumour Biol 2014; 35:8801-11. [PMID: 24879625 DOI: 10.1007/s13277-014-2143-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is an important oncogenic transcription factor implicated in various malignancies, including oral squamous cell carcinoma (OSCC), a common malignancy of head and neck. Although PTTG1 is reportedly overexpressed in OSCC tissues, its role in human OSCC remains elusive. Thus, this study was conducted to explore the correlation between PTTG1 expression and tumorigenesis of OSCC. We first examined PTTG1 mRNA and protein expression in 28 pairs of OSCC tissues and adjacent non-tumor tissues. PTTG1 protein levels in 98 OSCC specimens were also evaluated by using immunohistochemistry. Our data showed that both mRNA and protein expression levels of PTTG1 in OSCC tissue specimens were markedly higher than that in the corresponding non-tumor tissue samples. A high level of PTTG1 protein expression was found in 74 out of 98 cases (75.51 %) and it was correlated with lymph node metastasis (P = 0.002) and tumor-node-metastasis (TNM) stage (P = 0.007) of patients with OSCC. Moreover, forced overexpression of PTTG1 enhanced SCC15 cell migration and invasion, whereas knockdown of PTTG1 resulted in reverse phenomena. In addition, elevated PTTG1 also increased the activities and expressions of matrix metalloproteinase (MMP)-2, and enhanced epithelial-mesenchymal-transition (EMT) process in SCC15 cells. The EMT changes were accompanied by downregulation of epithelial cadherin (E-cadherin) protein expression and upregulation of snail and vimentin. In summary, our results illustrate that PTTG1 may contribute to the development and progression of human OSCC.
Collapse
Affiliation(s)
- Enjiao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Karra H, Repo H, Ahonen I, Löyttyniemi E, Pitkänen R, Lintunen M, Kuopio T, Söderström M, Kronqvist P. Cdc20 and securin overexpression predict short-term breast cancer survival. Br J Cancer 2014; 110:2905-13. [PMID: 24853182 PMCID: PMC4056061 DOI: 10.1038/bjc.2014.252] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2014] [Accepted: 04/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cdc20 is an essential component of cell division and responsible for anaphase initiation regulated by securin degradation. Cdc20 function is strongly regulated by the spindle assembly checkpoint to ensure the timely separation of sister chromatids and integrity of the genome. We present the first results on Cdc20 in a large clinical breast cancer material. METHODS The study was based on 445 breast cancer patients with up to 20 years of follow-up (mean 10.0 years). DNA content was determined by image cytometry on cell imprints, and Cdc20 and securin immunohistochemistry on tissue microarrays of breast cancer tissue. RESULTS In our results, high Cdc20 and securin expression was associated with aneuploid DNA content. In prognostic analyses, high Cdc20 immunoexpression alone and in combination with high securin immunoexpression indicated aggressive course of disease and up to 6.8-fold (P<0.001) risk of breast cancer death. Particularly, high Cdc20 and securin immunoexpression identified a patient subgroup with extremely short, on average 2.4 years, breast cancer survival and triple-negative breast cancer (TNBC) subtype. CONCLUSIONS We report for the first time the association of high Cdc20 and securin immunoexpression with extremely poor outcome of breast cancer patients. Our experience indicates that Cdc20 and securin are promising candidates for clinical applications in breast cancer prognostication, especially in the challenging prognostic decisions of TNBC.
Collapse
Affiliation(s)
- H Karra
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - H Repo
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - I Ahonen
- Department of Medical Statistics, Medical Faculty, University of Turku, Turku, Finland
| | - E Löyttyniemi
- Department of Medical Statistics, Medical Faculty, University of Turku, Turku, Finland
| | - R Pitkänen
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - M Lintunen
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - T Kuopio
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - M Söderström
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - P Kronqvist
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| |
Collapse
|
46
|
Zhang J, Yang Y, Chen L, Zheng D, Ma J. Overexpression of pituitary tumor transforming gene (PTTG) is associated with tumor progression and poor prognosis in patients with esophageal squamous cell carcinoma. Acta Histochem 2014; 116:435-9. [PMID: 24176776 DOI: 10.1016/j.acthis.2013.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023]
Abstract
Pituitary tumor transforming gene (PTTG) is a newly identified proto-oncogene that has been shown to be aberrantly overexpressed in a subset of human cancers. The aim of the present study was to examine PTTG expression in patients with esophageal squamous cell cancer (ESCC) and explore its clinical significance. PTTG protein expression was analyzed in 108 archived, paraffin-embedded primary ESCC specimens by immunohistochemistry and correlated with clinicopathological parameters and patients' outcome. Overexpression of PTTG was observed in 38.0% (41/108) of primary ESCC tissues and significantly correlated with differentiation, TNM stage, lymph node metastasis, and depth of invasion (P<0.05). Kaplan-Meier curves showed that ESCC patients with tumors expressing high levels of PTTG had substantially shorter overall survival compared with patients expressing low levels of PTTG (P=0.022, log-rank test). Cox multivariate regression analysis revealed that overexpression of PTTG was an independent prognostic factor in overall survival for ESCC patients (hazard ratio was 2.35, P=0.009). Overall, our data suggest that overexpression of PTTG may contribute to the malignant progression of ESCC and serve as a novel prognostic indicator for patients with ESCC.
Collapse
|
47
|
Pan Y, Wu H, Liu S, Zhou X, Yin H, Li B, Zhang Y. Potential Usefulness of Baculovirus-Mediated Sodium-Iodide Symporter Reporter Gene as Non-Invasively Gene Therapy Monitoring in Liver Cancer Cells: An In Vitro Evaluation. Technol Cancer Res Treat 2014; 13:139-48. [PMID: 23919394 DOI: 10.7785/tcrt.2012.500368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary liver cancer has one of the highest mortality rates of all cancers, and the main current treatments have a poor prognosis. This study aims to examine the efficiency of baculovirus vectors for transducing target gene into liver cancer cells and to evaluate the feasibility of using baculovirus vectors to deliver the sodium-iodide symporter (NIS) gene as a reporter gene through co-vector administration approach to monitor the expression of the target therapeutic gene in liver cancer gene therapy. We constructed (green fluorescent protein) GFP- and NIS-expressing baculovirus vectors (Bac-GFP and Bac-NIS), and measured the baculovirus transduction efficiency in HepG2 cells and other tumor cells (A549, SW1116 and 8505C), and it showed that the transduction efficiency and target gene expression level rose with increasing viral multiplicity of infection (MOI) in HepG2 cells, and HepG2 cells had a significantly higher transduction efficiency (60.8% at MOI = 200) than other tumor cells. Moreover, the baculovirus transduction was not cytotoxic to HepG2 cells at a higher MOI (MOI = 400). We also performed dynamic iodide uptake trials, and found that Bac-NIS-transduced HepG2 cells exhibited efficient iodide uptake which could be inhibited by sodium perchlorate (NaClO4). And we measured the correlation of fluorescent intensities and 125 I uptake amount in HepG2 cells after co-vector administration with Bac-NIS and Bac-GFP at different MOIs, and found a high correlation coefficient ( r2 = 0.8447), which provides a good basis for successfully evaluating the feasibility of baculovirus-mediated NIS reporter gene monitoring target gene expression in liver cancer therapy. Therefore, this study indicates that baculovirus vector is a potential vehicle for delivering therapeutic genes in studying liver cancer cells. And it is feasible to use a baculovirus vector to deliver NIS gene as a reporter gene to monitor the expression of target genes. It therefore provides an effective approach and a good basis for future baculovirus-mediated therapeutic gene delivering or therapeutic gene expression monitoring in liver cancer cells studies.
Collapse
Affiliation(s)
- Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Haifei Wu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Shuai Liu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Hongyan Yin
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| |
Collapse
|
48
|
PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery 2014; 154:1405-16; discussion 1416. [PMID: 24238056 DOI: 10.1016/j.surg.2013.06.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is associated with poor survival rates. The objective of the study was to analyze ACC gene expression profiling data for prognostic biomarkers and therapeutic targets. METHODS We profiled 44 ACC and 4 normal adrenals on Affymetrix U133 Plus 2 expression microarrays. Pathway and transcriptional enrichment analysis was performed. Protein levels were determined by Western blot. Drug efficacy was assessed against ACC cell lines. Previously published expression datasets were analyzed for validation. RESULTS Pathway enrichment analysis identified marked dysregulation of cyclin-dependent kinases and mitosis. Overexpression of PTTG1, which encodes securin, a negative regulator of p53, was identified as a marker of poor survival. Median survival for patients with tumors expressing high PTTG1 levels (log2 ratio of PTTG1 to average β-actin <-3.04) was 1.8 years compared with 9.0 years if tumors expressed lower levels of PTTG1 (P < .0001). Analysis of a previously published dataset confirmed the association of high PTTG1 expression with a poor prognosis. Treatment of 2 ACC cell lines with vorinostat decreased securin levels and inhibited cell growth (median inhibition concentrations of 1.69 μmol/L and 0.891 μmol/L, for SW-13 and H295R, respectively). CONCLUSION Overexpression of PTTG1 is correlated with poor survival in ACC. PTTG1/securin is a prognostic biomarker and warrants investigation as a therapeutic target.
Collapse
|
49
|
Ding G, Liu HD, Huang Q, Liang HX, Ding ZH, Liao ZJ, Huang G. HDAC6 promotes hepatocellular carcinoma progression by inhibiting P53 transcriptional activity. FEBS Lett 2013; 587:880-6. [PMID: 23402884 DOI: 10.1016/j.febslet.2013.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 11/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. HDAC6 is a transcriptional regulator of the histone deacetylase family, subfamily 2. Previous studies have shown that HDAC6 plays critical roles in transcription regulation, cell cycle progression and developmental events. However, its biological roles in the development of HCC remain largely unexplored. In the present study, we found that mRNA and protein levels of HDAC6 were up-regulated in HCC tissues and cell lines. The proinflammatory cytokines, which were up-regulated in the human HCC microenvironment, increased HDAC6 expression through a proximal NF-kappaB binding site on the HDAC6 gene promoter. Furthermore, overexpression of HDAC6 could promote cell proliferation in HCC cell lines. In contrast, HDAC6 knockdown using small interfering RNA inhibited cell proliferation. At the molecular level, we demonstrated that HDAC6 could interact with p53 and attenuate its transcriptional activity through promotion of its degradation. Therefore, our results suggest a previously unknown HDAC6-p53 molecular network controlling HCC development.
Collapse
Affiliation(s)
- Gang Ding
- Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Grizzi F, Di Biccari S, Fiamengo B, Štifter S, Colombo P. Pituitary tumor-transforming gene 1 is expressed in primary ductal breast carcinoma, lymph node infiltration, and distant metastases. DISEASE MARKERS 2013; 35:267-272. [PMID: 24344401 PMCID: PMC3810673 DOI: 10.1155/2013/912304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/28/2013] [Indexed: 12/20/2022]
Abstract
Despite the advances that have been made in the fields of molecular and cell biology, there is still considerable debate explaining how the breast cancer cells progress through carcinogenesis and acquire their metastatic ability. The lack of preventive methods and effective therapies underlines the pressing need to identify new biomarkers that can aid early diagnosis and may be targets for effective therapeutic strategies. In this study we explore the pituitary tumor-transforming gene 1 (PTTG1) expression in primary ductal breast carcinoma, lymph node infiltration, and distant metastases. Three human cell lines, 184B5 derived from normal mammary epithelium, HCC70 from a primary ductal carcinoma, and MDA-MB-361 from a breast metastasis, were used for quantifying PTTG1 mRNA expression. The PTTG1 immunohistochemical expression was carried out on specimens taken from eight patients with invasive ductal breast cancer who underwent surgical treatment and followup for five years retrospectively selected. The study demonstrated that PTTG1 is expressed gradually in primary ductal breast carcinoma, lymph node infiltration, and distant metastases. Our findings suggest that the immunohistochemical evaluation of PTTG1 expression might be a powerful biomarker of recognition and quantification of the breast cancer cells in routine pathological specimens and a potential target for developing an effective immunotherapeutic strategy for primary and metastatic breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Case-Control Studies
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Securin/genetics
- Securin/metabolism
Collapse
Affiliation(s)
- Fabio Grizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Sonia Di Biccari
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Barbara Fiamengo
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Sanja Štifter
- Department of Pathology, School of Medicine, University of Rijeka, Brace Branchetta St. No. 20, HR-51 000 Rijeka, Croatia
| | - Piergiuseppe Colombo
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|