1
|
Porada M, Bułdak Ł. From Pathophysiology to Practice: Evolving Pharmacological Therapies, Clinical Complications, and Pharmacogenetic Considerations in Portal Hypertension. Metabolites 2025; 15:72. [PMID: 39997697 PMCID: PMC11857179 DOI: 10.3390/metabo15020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Portal hypertension is a major complication of chronic liver diseases, leading to serious issues such as esophageal variceal bleeding. The increase in portal vein pressure is driven by both an organic component and a functional component, including tonic contraction of hepatic stellate cells. These processes result in a pathological rise in intrahepatic vascular resistance, stemming from partial impairment of hepatic microcirculation, which is further exacerbated by abnormalities in extrahepatic vessels, including increased portal blood flow. Objectives: This review aims to provide a comprehensive overview of the evolving pharmacological therapies for portal hypertension, with consideration and discussion of pathophysiological mechanisms, clinical complications, and pharmacogenetic considerations, highlighting potential directions for future research. Methods: A review of recent literature was performed to evaluate current knowledge and potential therapeutic strategies in portal hypertension. Results: For over 35 years, non-selective beta-blockers have been the cornerstone therapy for portal hypertension by reducing portal vein inflow as an extrahepatic target, effectively preventing decompensation and variceal hemorrhages. However, since not all patients exhibit an adequate response to non-selective beta-blockers (NSBBs), and some may not tolerate NSBBs, alternative or adjunctive therapies that enhance the effects of NSBBs on portal pressure are being investigated in preclinical and early clinical studies. Conclusions: A better understanding of pharmacogenetic factors and pathophysiological mechanisms could lead to more individualized and effective treatments for portal hypertension. These insights highlight potential directions for future research.
Collapse
Affiliation(s)
- Michał Porada
- Students’ Scientific Society, Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
2
|
Pun CK, Huang HC, Chang CC, Chuang CL, Hsu SJ, Hou MC, Lee FY. Fructooligosaccharides reverses hepatic vascular dysfunction and dysbiosis in rats with liver cirrhosis and portal hypertension. Eur J Clin Invest 2024; 54:e14287. [PMID: 39017981 DOI: 10.1111/eci.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Portal hypertension leads to lethal complications in liver cirrhosis. Oxidative stress induced hepatic vascular dysfunction, which exaggerated vasoconstriction and increases hepatic vascular resistance (HVR). Gut dysbiosis further exacerbates portal hypertension. Fructooligosaccharides are prebiotics with potent antioxidant effect. This study aimed to evaluate the roles of fructooligosaccharides in portal hypertension-related vascular dysregulation and gut microbiome. METHODS Sprague-Dawley rats received bile duct ligation to induce cirrhosis or sham operation as controls. The rats then randomly received fructooligosaccharides or vehicle for 4 weeks. Experiments were performed on the 29th day after operations. RESULTS Fructooligosaccharides did not affect portal pressure. Interestingly, fructooligosaccharides significantly attenuated HVR (p = .03). Malondialdehyde, an oxidative stress marker, reduced significantly in the liver in fructooligosaccharides-treated group. In addition, superoxide dismutase and trolox equivalent antioxidant capacity increased in the treatment group. On the other hand, vasodilatation-related protein expressions, GTPCH and phospho-eNOS, enhanced significantly. Fructooligosaccharides had no adverse vasodilatation effects on splanchnic vascular system or porto-systemic collateral systems. Locomotor function was not affected by fructooligosaccharides. Faecal microbiota analysis showed that Negativicutes, Selenomonadales and Lactobacillus salivarius reduced in the fructooligosaccharides-treated group. CONCLUSION In conclusion, fructooligosaccharides attenuate hepatic vascular dysfunction in cirrhotic rats via at least partly, ameliorate of dysbiosis and oxidative stress.
Collapse
Affiliation(s)
- Chon Kit Pun
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Chih Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 PMCID: PMC11906189 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Sheng JY, Meng ZF, Li Q, Yang YS. Recent advances in promising drugs for primary prevention of gastroesophageal variceal bleeding with cirrhotic portal hypertension. Hepatobiliary Pancreat Dis Int 2024; 23:4-13. [PMID: 37580228 DOI: 10.1016/j.hbpd.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis. Although primary prevention drugs, including non-selective β-blockers, have effectively reduced the incidence of bleeding, their efficacy is limited due to side effects and related contraindications. With recent advances in precision medicine, precise drug treatment provides better treatment efficacy. DATA SOURCES Literature search was conducted in PubMed, MEDLINE and Web of Science for relevant articles published up to May 2022. Information on clinical trials was obtained from https://clinicaltrials.gov/ and http://www.chictr.org.cn/. RESULTS The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs. According to the site of action, these drugs could be classified into four classes: intrahepatic, extrahepatic, both intrahepatic and extrahepatic targets and others. All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension. CONCLUSIONS This review classified and summarized the promising drugs, which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension, demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Ji-Yao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China
| | - Zi-Fan Meng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China
| | - Qiao Li
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Sheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
5
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Abstract
AIM Fibrosis is a common pathological feature of most types of chronic liver injuries. There is no specific treatment for liver fibrosis at present. The liver microenvironment, which fosters the survival and activity of liver cells, plays an important role in maintaining the normal structure and physiological function of the liver. The aim of this review is to deeply understand the role of the liver microenvironment in the dynamic and complicated development of liver fibrosis. METHODS After searching in Elsevier ScienceDirect, PubMed and Web of Science databases using 'liver fibrosis' and 'microenvironment' as keywords, studies related to microenvironment in liver fibrosis was compiled and examined. RESULTS The homeostasis of the liver microenvironment is disrupted during the development of liver fibrosis, affecting liver cell function, causing various types of cell reactions, and changing the cell-cell and cell-matrix interactions, eventually affecting fibrosis formation. CONCLUSION Liver microenvironment may be important for identifying potential therapeutic targets, and restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.KEY MESSAGESThe homeostasis of the liver microenvironment is disrupted in liver fibrosis;A pro-fibrotic microenvironment is formed during the development of liver fibrosis;Restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.
Collapse
Affiliation(s)
- Ying Meng
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tong Zhao
- Department of Orthopedics, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Zhengyi Zhang
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Huang S, Wang Y, Xie S, Lai Y, Mo C, Zeng T, Kuang S, Zhou C, Zeng Z, Chen Y, Huang S, Gao L, Lv Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154117. [PMID: 35489326 DOI: 10.1016/j.phymed.2022.154117] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Liver fibrosis is a major disease that threatens people's health around the world. However, there is a lack of effective treatment to completely reverse liver fibrosis. Liver transplantation is currently the only curative option for patients with advanced cirrhosis. Ferroptosis is a newly discovered type of cell death and plays an important role in the process of liver fibrosis, but the specific mechanism needs to be clarified. HYPOTHESIS/PURPOSE To explore the regulatory mechanism of isoliquiritigenin (ISL) in the process of liver fibrosis and the relationship between Cav-1 and ferroptosis. METHODS In this research, zebrafish, HSC-T6 cells, and mice were used as the research object. Different ROS probes to visually detect the content and distribution of ROS in live zebrafish and cells. Lentivirus and siRNA-mediated transfection techniques were used for the construction of Cav-1 overexpression and knockdown cell lines to verify the important role of Cav-1 in vitro. RESULTS Generally, we first elucidated that ISL relieved liver fibrosis by inducing hepatic stellate cells (HSCs) ferroptosis through repressing GPX4 expression and increasing the expression of TFR and DMT1, thus producing a large number of ROS, we also found that Cav-1 exerted its anti-hepatic fibrosis effect by promoting HSCs ferroptosis. CONCLUSION Our results have shown that Cav-1-mediated HSCs ferroptosis is necessary for ISL to play an anti-fibrotic effect in vitro and in vivo.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Chan Mo
- Medical Laboratory of the Third affiliated Hospital of Shenzhen University, Shenzhen, 518001, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Zhiyun Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong,510515, China.
| |
Collapse
|
9
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
10
|
Liao K, Lv DY, Yu HL, Chen H, Luo SX. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. Int Immunopharmacol 2021; 101:108334. [PMID: 34768128 DOI: 10.1016/j.intimp.2021.108334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cigarette smoke (CS) is associated with vascular injury and dysfunction, which may be mediated by iNOS and NLRP3. However, the exact mechanism is unknown. METHODS iNOS-knockout and NLRP3-knockout C57BL/6 mice were exposed to air or CS. The vascular structure was examined by hematoxylin-eosin staining. The vascular tension was measured by a vascular reactivity assay. The expression of iNOS, NLRP3, caspase-1p20, IL-1β and eNOS were measured by western blotting. Human aortic endothelial cells (HAECs) were exposed to L-NIL (iNOS inhibitor), MCC950 (NLRP3 inhibitor), ODQ (sGC inhibitor), KT5823 (PKG inhibitor) or TAPI-1 (TACE/ADAM17 inhibitor) for 1 h prior to cigarette smoke extract (CSE) treatment. The cell viability and lactate dehydrogenase activity were assessed and pyroptosis was determined by scanning electron microscopy. The mRNA expression of TNF-α, and protein expression of iNOS, active-TACE, NLRP3, caspase-1p20, IL-1β, and eNOS were measured. RESULTS CS resulted in shrinkage of endothelial cells, impaired aorta relaxation, reduced eNOS expression, and induced expression of iNOS, NLRP3, caspase-1p20 and IL-1β, which could be prevented by knockdown of iNOS and NLRP3. CSE reduced cell viability, induced LDH release and pyroptosis, and promoted iNOS, NLRP3, caspase-1p20, and IL-1β expression and reduced eNOS reduction, which could be reversed by inhibition of iNOS or NLRP3 in HAECs. Altogether, activation of the NLRP3 inflammasome by iNOS in CS-exposed HAECs may be mediated by the sGC/cGMP/PKG/TACE/TNF- α pathway. CONCLUSION These results link iNOS to NLRP3 in CSE-stimulated HAECs through the sGC/cGMP/PKG/TACE/TNF-α pathway. The findings identify a mechanism through which iNOS and NLRP3 contribute to the pathogenesis of CS-induced pyroptosis and impaired aorta relaxation in HAECs.
Collapse
Affiliation(s)
- Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ding-Yi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hui-Lin Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
11
|
Electroacupuncture Synergistically Inhibits Proinflammatory Cytokine Production and Improves Cognitive Function in Rats with Cognitive Impairment due to Hepatic Encephalopathy through p38MAPK/STAT3 and TLR4/NF- κB Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7992688. [PMID: 34630618 PMCID: PMC8500758 DOI: 10.1155/2021/7992688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Objective To investigate the effect of electroacupuncture (EA) on cognitive dysfunction in rats with hepatic encephalopathy and its underlying mechanism. Methods Fifty Wistar rats were randomly divided into a normal group (n = 10) and model group (n = 40). Rat models of hepatic encephalopathy were established by administration of carbon tetrachloride and thioacetamide for a total of 12 weeks. At the 9th week after modeling, rats with cognitive impairment in the model group were identified by conducting the Morris water maze test, which were then randomly divided into a control group (CCl4) and treatment groups including EA group (CCl4 + EA), lactulose group (CCl4 + Lac), and EA plus lactulose group (CCl4 + CM), with 9 rats in each group. At the end of the 9th week, rats in CCl4 + Lac and CCl4 + CM groups had lactulose gavage at a dose of 10 mL/kg body weight, while normal control and CCl4 groups had gavage with the same volume of normal saline once a day for 21 days until the end of the experiment. Rats in CCl4 + EA and CCl4 + CM groups underwent acupuncture at Baihui (GV[DU]20), Shenting (GV[DU]24), and Zusanli (ST36) acupoints, among which EA at Baihui and Shenting acupoints were given once daily for 30 min lasting for 21 consecutive days. The effect of the treatment was measured by the Morris water maze test for learning and memory ability and magnetic resonance spectroscopy (MRS) for neuronal metabolism in the hippocampus of rats with hepatic encephalopathy. Pathological change in the rat hippocampus was observed by HE staining, while serum ammonia and liver function markers were detected. Western blot and real-time fluorescent quantitative PCR were used to detect the expressions of specific genes and proteins in the brain tissue. Results Compared with those in the control group, rats undergoing EA had significantly shortened escape latency and increased number of platform crossing. H&E staining confirmed that EA improved brain tissue necrosis and ameliorated nuclear pyknosis in rats with hepatic encephalopathy. Significantly decreased levels of serum ammonia, alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBil), and total bile acid (TBA) were observed in rats undergoing EA, as well as improved levels of total protein (TP) and albumin (ALB). In addition, EA inhibited the brain expressions of TNF-α, IL-1β, IL-6, iNOS, TLR4, MyD88, NF-κB, p38MAPK, phosphorylated (p)-p38MAPK, STAT3, and p-STAT3 genes, as well as protein expressions of TNF-α, IL-6, TLR4, MyD88, NF-κB, p38MAPK, p-p38MAPK, STAT3, and p-STAT3. MRS showed increased Glx/Cr and decreased NAA/Cr, Cho/Cr and mI/Cr in the control group, and EA significantly reversed such changes in Glx/Cr and mI/Cr values. Conclusion EA ameliorated the production of excessive proinflammatory cytokines in the hippocampus of rats with cognitive dysfunction secondary to hepatic encephalopathy, which also gave rise to subsequent changes such as reduced blood ammonia level, brain-protective activated astrocytes, and lower degree of brain tissue injury. The p38MAPK/STAT3 and TLR4/MyD88/NF-κB signaling pathways may be involved. EA can also improve the metabolism of NAA and Cho in the rat hippocampus and thereby improve learning and memory abilities.
Collapse
|
12
|
Milewski K, Czarnecka AM, Albrecht J, Zielińska M. Decreased Expression and Uncoupling of Endothelial Nitric Oxide Synthase in the Cerebral Cortex of Rats with Thioacetamide-Induced Acute Liver Failure. Int J Mol Sci 2021; 22:6662. [PMID: 34206365 PMCID: PMC8268495 DOI: 10.3390/ijms22136662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.
Collapse
Affiliation(s)
| | | | | | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106 Warsaw, Poland; (K.M.); (A.M.C.); (J.A.)
| |
Collapse
|
13
|
Cantrell MS, Soto-Avellaneda A, Wall JD, Ajeti AD, Morrison BE, Warner LR, McDougal OM. Repurposing Drugs to Treat Heart and Brain Illness. Pharmaceuticals (Basel) 2021; 14:ph14060573. [PMID: 34208502 PMCID: PMC8235459 DOI: 10.3390/ph14060573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Drug development is a complicated, slow and expensive process with high failure rates. One strategy to mitigate these factors is to recycle existing drugs with viable safety profiles and have gained Food and Drug Administration approval following extensive clinical trials. Cardiovascular and neurodegenerative diseases are difficult to treat, and there exist few effective therapeutics, necessitating the development of new, more efficacious drugs. Recent scientific studies have led to a mechanistic understanding of heart and brain disease progression, which has led researchers to assess myriad drugs for their potential as pharmacological treatments for these ailments. The focus of this review is to survey strategies for the selection of drug repurposing candidates and provide representative case studies where drug repurposing strategies were used to discover therapeutics for cardiovascular and neurodegenerative diseases, with a focus on anti-inflammatory processes where new drug alternatives are needed.
Collapse
Affiliation(s)
- Maranda S. Cantrell
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.D.W.); (A.D.A.)
| | - Alejandro Soto-Avellaneda
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Department of Biology, Boise State University, Boise, ID 83725, USA
| | - Jackson D. Wall
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.D.W.); (A.D.A.)
| | - Aaron D. Ajeti
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.D.W.); (A.D.A.)
| | - Brad E. Morrison
- Department of Biology, Boise State University, Boise, ID 83725, USA
- Correspondence: (B.E.M.); (L.R.W.); (O.M.M.)
| | - Lisa R. Warner
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Correspondence: (B.E.M.); (L.R.W.); (O.M.M.)
| | - Owen M. McDougal
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Correspondence: (B.E.M.); (L.R.W.); (O.M.M.)
| |
Collapse
|
14
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
15
|
Huang Y, Jiao B, Zhu B, Xiong B, Lu P, Ai L, Yang N, Zhao Y, Xu H. Nitric Oxide in the Spinal Cord Is Involved in the Hyperalgesia Induced by Tetrahydrobiopterin in Chronic Restraint Stress Rats. Front Neurosci 2021; 15:593654. [PMID: 33867911 PMCID: PMC8044835 DOI: 10.3389/fnins.2021.593654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
It has been well recognized that exposure to chronic stress could increase pain responding and exacerbate pain symptoms, resulting in stress-induced hyperalgesia. However, the mechanisms underlying stress-induced hyperalgesia are not yet fully elucidated. To this end, we observed that restraint as a stressful event exacerbated mechanical and thermal hyperalgesia, accompanied with up-regulation of nitric oxide (NO) (P < 0.001), GTP cyclohydrolase 1 (GCH1) (GCH1 mRNA: P = 0.001; GCH1 protein: P = 0.001), and tetrahydrobiopterin (BH4) concentration (plasma BH4: P < 0.001; spinal BH4: P < 0.001) on Day 7 in restraint stress (RS) rats. Intrathecal injection of N ω-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase inhibitor, or N-([3-(aminomethyl)phenyl]methyl) ethanimidamide, a special inhibitor of inducible NO synthase (iNOS), for seven consecutive days attenuated stress-induced hyperalgesia and decreased the production of NO (P < 0.001). Interestingly, 7-nitro indazole, a special inhibitor of neuronal NO synthase, alleviated stress-induced hyperalgesia but did not affect spinal NO synthesis. Furthermore, intrathecal injection of BH4 not only aggravated stress-induced hyperalgesia but also up-regulated the expression of spinal iNOS (iNOS mRNA: P = 0.015; iNOS protein: P < 0.001) and NO production (P < 0.001). These findings suggest that hyperalgesia induced by RS is associated with the modulation of the GCH1-BH4 system and constitutively expressed spinal iNOS. Thus, the GCH1-BH4-iNOS signaling pathway may be a new novel therapeutic target for pain relief in the spinal cord.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu, China
| | - Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Ai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Matyas C, Haskó G, Liaudet L, Trojnar E, Pacher P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nat Rev Cardiol 2021; 18:117-135. [PMID: 32999450 DOI: 10.1038/s41569-020-0433-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
The liver is a crucial metabolic organ that has a key role in maintaining immune and endocrine homeostasis. Accumulating evidence suggests that chronic liver disease might promote the development of various cardiac disorders (such as arrhythmias and cardiomyopathy) and circulatory complications (including systemic, splanchnic and pulmonary complications), which can eventually culminate in clinical conditions ranging from portal and pulmonary hypertension to pulmonary, cardiac and renal failure, ascites and encephalopathy. Liver diseases can affect cardiovascular function during the early stages of disease progression. The development of cardiovascular diseases in patients with chronic liver failure is associated with increased morbidity and mortality, and cardiovascular complications can in turn affect liver function and liver disease progression. Furthermore, numerous infectious, inflammatory, metabolic and genetic diseases, as well as alcohol abuse can also influence both hepatic and cardiovascular outcomes. In this Review, we highlight how chronic liver diseases and associated cardiovascular effects can influence different organ pathologies. Furthermore, we explore the potential roles of inflammation, oxidative stress, vasoactive mediator imbalance, dysregulated endocannabinoid and autonomic nervous systems and endothelial dysfunction in mediating the complex interplay between the liver and the systemic vasculature that results in the development of the extrahepatic complications of chronic liver disease. The roles of ageing, sex, the gut microbiome and organ transplantation in this complex interplay are also discussed.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA.
| |
Collapse
|
17
|
Abdel-Kawy HS. Effect of carvedilol versus propranolol on acute and chronic liver toxicity in rats. Drug Chem Toxicol 2021; 44:101-111. [PMID: 30810389 DOI: 10.1080/01480545.2019.1576718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Non-selective β-blockers have largely been used for prophylaxis of bleeding from gastroesophageal varices, but their hepatic effects and their influence on the development of varices has yet to be clarified. This study examined whether carvedilol would reduce acute and chronic liver injury in rats in comparison to propranolol. Experiment (1) Investigated the effects of carvedilol (1.2 mg/kg) and propranolol (4.0 mg/kg) administered daily for 7 days by gavage on paracetamol (1500 mg/kg i.p.) -induced acute liver injury in rats. Experiment (2) Investigated the effects of carvedilol (1.2 mg/kg) and propranolol (4.0 mg/kg) by gavage daily for 8 weeks on CCl4 -induced chronic liver injury in rats. Biochemical markers and histopathology of the livers were studied. Liver perfusion studies were carried out on CCl4 treated rats. Experiment (1) Carvedilol significantly improved the functional state of the liver in paracetamol-induced acute toxic hepatitis to a greater extent than propranolol. This was evidenced by a greater reduction in elevated serum levels of ALT and AST, hepatic MDA and TNF-α, attenuation of the paracetamol-induced decrease in GSH, together with improvement in the histological architecture of the liver. Experiment (2) Carvedilol was superior to propranolol against CCl4-induced hepatic injury and fibrogenesis. It suppressed hepatic inflammation, attenuated hepatic oxidative stress, and inhibited HSC activation. Carvedilol also decreased portal perfusion pressure. These results suggest that carvedilol might be a therapeutic anti-fibrogenic candidate against hepatic fibrosis, protecting the liver from acute and chronic toxic injury, in addition to lowering portal pressure.
Collapse
Affiliation(s)
- Hala Salah Abdel-Kawy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Gedahh, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Novel therapeutics for portal hypertension and fibrosis in chronic liver disease. Pharmacol Ther 2020; 215:107626. [DOI: 10.1016/j.pharmthera.2020.107626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
|
19
|
Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol 2020; 26:6111-6140. [PMID: 33177789 PMCID: PMC7596642 DOI: 10.3748/wjg.v26.i40.6111] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 blockers, which target the components of the classical renin angiotensin system (RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant off-target effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective -blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs. Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.
Collapse
Affiliation(s)
- Lakmie S Gunarathne
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Harinda Rajapaksha
- School of Molecular Science, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Peter W Angus
- Department of Gastroenterology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170, Australia
| |
Collapse
|
20
|
Kreisel W, Schaffner D, Lazaro A, Trebicka J, Merfort I, Schmitt-Graeff A, Deibert P. Phosphodiesterases in the Liver as Potential Therapeutic Targets of Cirrhotic Portal Hypertension. Int J Mol Sci 2020; 21:6223. [PMID: 32872119 PMCID: PMC7503357 DOI: 10.3390/ijms21176223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is a frequent condition with high impact on patients' life expectancy and health care systems. Cirrhotic portal hypertension (PH) gradually develops with deteriorating liver function and can lead to life-threatening complications. Other than an increase in intrahepatic flow resistance due to morphological remodeling of the organ, a functional dysregulation of the sinusoids, the smallest functional units of liver vasculature, plays a pivotal role. Vascular tone is primarily regulated by the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, wherein soluble guanylate cyclase (sGC) and phosphodiesterase-5 (PDE-5) are key enzymes. Recent data showed characteristic alterations in the expression of these regulatory enzymes or metabolite levels in liver cirrhosis. Additionally, a disturbed zonation of the components of this pathway along the sinusoids was detected. This review describes current knowledge of the pathophysiology of PH with focus on the enzymes regulating cGMP availability, i.e., sGC and PDE-5. The results have primarily been obtained in animal models of liver cirrhosis. However, clinical and histochemical data suggest that the new biochemical model we propose can be applied to human liver cirrhosis. The role of PDE-5 as potential target for medical therapy of PH is discussed.
Collapse
Affiliation(s)
- Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Denise Schaffner
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany;
- Department of Radiology–Medical Physics, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Adhara Lazaro
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, Goethe University Clinic Frankfurt, 60590 Frankfurt, Germany;
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany;
| | | | - Peter Deibert
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
| |
Collapse
|
21
|
Lu L, Wu C, Lu BJ, Xie D, Wang Z, Bahaji Azami NL, An YT, Wang HJ, Ye G, Sun MY. BabaoDan cures hepatic encephalopathy by decreasing ammonia levels and alleviating inflammation in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112301. [PMID: 31622746 DOI: 10.1016/j.jep.2019.112301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BabaoDan (BBD) is a famous traditional Chinese formula frequently used in TCM clinics to eliminate jaundice and treat infectious viral hepatitis. This paper assesses BBD's preventive and therapeutic effects on hepatic encephalopathy after liver cirrhosis (CHE) and acute liver failure (AHE) in rats and explains its possible mechanism of action. METHODS CHE rat model was established by injection of carbon tetrachloride (CCl4) twice a week for a total of 9 weeks and then by injection of thioacetamide (TAA) to induce hepatic encephalopathy. AHE rat model was established by injection of TAA once a day for a total of 3 days. In CHE rat model, BBD was gavaged once a day at the end of the 6th week until the experiment ended. In AHE rat model,BBD was gavaged once a day 3 days before TAA injection until the experiment ended. The preventive and therapeutic effects of BBD on brain dysfunction, as well as liver injury, pathology and fibrosis were evaluated in vivo. The role of BBD in the regulation of inflammatory factors and myeloid differentiation factor 88/Toll-like receptor 4/nuclear factor kappa-B (TLR4/MyD88/NK-κ B) pathway was detected in both liver and brain in vivo. The rat bone marrow derived macrophages (BMDMs) were activated by Lipopolysaccharide (LPS), and the role of BBD in the regulation of inflammatory factors and NK-κ B pathway were detected in vitro. RESULTS In CHE rat model: BBD significantly improved the total distance as well as the activity rate of rats. BBD also improved the learning and memory abilities of rats compared with the control group. In addition, BBD effectively decreased ammonia levels and significantly decreased the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBil) and total bile acid (TBA), as well as improved the levels of total protein (TP) and albumin (Alb). In the liver, BBD not only inhibited the gene expressions of tumor necrosis factor alpha (TNF-α), interleukini-6 (IL-6), TLR4, MyD88, and NF-κ B but also inhibited the protein expressions of TLR4, MyD88, NK-κ B and TNF-α. In the brain, BBD inhibited the gene expressions of iNOS, IL-6, TNF-α, TLR-4, MyD88, and NF-κ B, as well as inhibited the protein expressions of TLR4, MyD88, P65 TNF-α and ionized calcium binding adapter molecule 1 (Iba-1). BBD also decreased NO and TNF-α in the blood. IN AHE RAT MODEL BBD improved neurological scores, blood ammonia levels and the brain inflammatory gene expressions of iNOS, TNF-α and IL-1β. BBD also improved liver function biomarkers such as ALT, TBil, TBA, TP, ALB and inflammatory and apoptotic gene expressions of TNF-α, IL-1β, IL-6, Bax, Bcl-2, caspase-9, caspase-3 and NF-κ B. In LPS-activated rat BMDMs, BBD decreased NO and TNF-α production in BMDM culture supernatant. In addition, BBD inhibited the gene expressions of TNF-α, IL-1 β and IL-6 as well as the phosphorylation of P65. CONCLUSION BBD can prevent and cure hepatic encephalopathy (HE) derived from both chronic and acute liver diseases. BBD can reduce hyperammonemia as well as the systematic and neurological inflammation. Inflammation is likely an important target of BBD to treat HE. The anti-inflammatory role of BBD may lie in its regulation of the TLR4/MyD88/NF-κ B pathways.
Collapse
Affiliation(s)
- Lu Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing-Jie Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zheng Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Tong An
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Hui-Jun Wang
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Guan Ye
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Ming-Yu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
22
|
Zou Z, Yan X, Li C, Li X, Ma X, Zhang C, Ju S, Tian J, Qi X. von Willebrand factor as a biomarker of clinically significant portal hypertension and severe portal hypertension: a systematic review and meta-analysis. BMJ Open 2019; 9:e025656. [PMID: 31473610 PMCID: PMC6720471 DOI: 10.1136/bmjopen-2018-025656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This meta-analysis was performed to investigate the correlation between von Willebrand factor (vWF) antigen and hepatic venous pressure gradient (HVPG) and to evaluate the diagnostic performance of vWF to detect clinically significant portal hypertension (CSPH) and severe portal hypertension (SPH). DESIGN Systematic review and meta-analysis. METHODS MEDLINE, EMBASE, Web of Science and the Cochrane Library were screened up to 5 April 2018. Studies related to the diagnostic performance of vWF to detect CSPH and/or SPH with HVPG as the reference standard were included. Study quality was assessed by using the Quality Assessment of Diagnostic Accuracy Studies scale. Two authors independently used a standardised form to extract data. OUTCOMES The primary outcome was the correlation coefficient between vWF and HVPG. The secondary outcome was the diagnostic performance of vWF to detect CSPH or SPH. RESULTS A total of six articles involving 994 patients were included in this study. Five of the included articles were used to stratify the results for the correlation coefficient, three for the diagnostic performance of CSPH and two for SPH. The pooled correlation coefficient based on the random effects model was 0.54 (95% CI 0.35 to 0.69), thus suggesting a moderate correlation between vWF and HVPG. The pooled sensitivity, specificity and area under the curve of vWF for CSPH detection were 82% (95% CI 78 to 86), 76% (95% CI 68 to 83) and 0.87 (95% CI 0.80 to 0.94), respectively. Regarding the ability of vWF to detect SPH, the pooled sensitivity and specificity were 86% (95% CI 80 to 90) and 75% (95% CI 66 to 83), respectively. These results supported the satisfactory diagnostic performance of vWF for CSPH and SPH detection. CONCLUSIONS vWF, as a novel biomarker, has a moderate correlation with HVPG and shows a satisfactory performance for the diagnosis of CSPH and SPH in patients with cirrhosis.
Collapse
Affiliation(s)
- Ziyuan Zou
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinwen Yan
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofeng Li
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaolong Qi
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Shenoda B, Boselli J. Vascular syndromes in liver cirrhosis. Clin J Gastroenterol 2019; 12:387-397. [PMID: 30980261 DOI: 10.1007/s12328-019-00956-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Liver cirrhosis is associated with multiple vascular syndromes affecting almost all body systems. Many of these syndromes are directly related to impaired liver function and sometimes reversible after liver transplantation while others arise secondary to portal hypertension and ascites. Altered expression of angiogenic and vasoactive compounds (most importantly nitric oxide), endothelial dysfunction, dysregulated neurohormonal control, and systemic inflammatory state play differential roles in mediating homeostatic instability and abnormal vasogenic response. Important vascular features encountered in liver disease include portal hypertension, splanchnic overflow, abnormal angiogenesis and shunts, portopulmonary syndrome, hepatopulmonary syndrome, and systemic hyperdynamic circulation. Redistribution of effective circulatory volume deviating from vital organs and pooling in splanchnic circulation is also encountered in liver patients which may lead to devastating outcomes as hepatorenal syndrome. Etiologically, vascular syndromes are not isolated phenomena and vascular dysfunction in one system may lead to the development of another in a different system. This review focuses on understanding the pathophysiological factors underlying vascular syndromes related to chronic liver disease and the potential links among them. Many of these syndromes are associated with high mortality, thus it is crucial to look for early biomarkers for these syndromes and develop novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Botros Shenoda
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Joseph Boselli
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA. .,Drexel Internal Medicine, 205 N. Broad Street, Philadelphia, 19107, USA.
| |
Collapse
|
24
|
Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16:221-234. [PMID: 30568278 DOI: 10.1038/s41575-018-0097-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain. .,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland.
| | - Giusi Marrone
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
25
|
Xie L, Hu D, Qin H, Zhang W, Zhang S, Feng Y, Yao H, Xiao Y, Yao K, Huang X. In vivo gum arabic-coated tetrahydrobiopterin protects against myocardial ischemia reperfusion injury by preserving eNOS coupling. Life Sci 2019; 219:294-302. [PMID: 30668954 DOI: 10.1016/j.lfs.2019.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
AIMS Exogenous tetrahydrobiopterin (BH4), an indispensable cofactor of endothelial nitric oxide synthase (eNOS), supplementation has been proved to be of advantage to improve cardiovascular function. Nevertheless, due to its highly redox-sensitive and easy to be oxidized, there is an urgent need to develop an appropriate BH4 formulation for clinical therapy. Gum Arabic (GA) has been considered as an alternative biopolymer for the stabilization and coating of drugs. The effects of GA on protecting BH4 from being oxidized were investigated in a rat model of myocardial ischemia-reperfusion (I/R). MAIN METHODS Rats were subjected to 60-min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic GA-coated BH4 supplementation (10 mg/kg, oral). Myocardial infarction, fibrotic area and left ventricle ejection fraction were correlated with cardiac BH4 content, eNOS protein, NOS enzyme activity, and ROS/NO generation. KEY FINDINGS Pretreatment of rats with GA-coated 6R-BH4, 24 h before myocardial ischemia, resulted in smaller myocardial infarction, improved left ventricular function and inhibited fibrosis, correlated with maintained high levels of cardiac BH4 content, preserved eNOS activation and dimerization, and decreased ROS generation. However in uncoated group, 6R-BH4 treatment did not reduce acute and chronic myocardial I/R injury compared with control I/R rats, which was closely related with the marked loss of myocardial BH4 levels during I/R. SIGNIFICANCE These findings provide evidence that in vivo pre-ischemic oral GA-coated BH4 administration preserves eNOS function secondary to maintaining cardiac BH4 content, and confers cardioprotection after I/R.
Collapse
Affiliation(s)
- Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, China
| | - Huan Qin
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Wenliang Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Shiyao Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Yuan Feng
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Haozhe Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Ying Xiao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Kai Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China.
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| |
Collapse
|
26
|
Vilaseca M, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J. Advances in therapeutic options for portal hypertension. Therap Adv Gastroenterol 2018; 11:1756284818811294. [PMID: 30505350 PMCID: PMC6256317 DOI: 10.1177/1756284818811294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Portal hypertension represents one of the major clinical consequences of chronic liver disease, having a deep impact on patients' prognosis and survival. Its pathophysiology defines a pathological increase in the intrahepatic vascular resistance as the primary factor in its development, being subsequently aggravated by a paradoxical increase in portal blood inflow. Although extensive preclinical and clinical research in the field has been developed in recent decades, no effective treatment targeting its primary mechanism has been defined. The present review critically summarizes the current knowledge in portal hypertension therapeutics, focusing on those strategies driven by the disease pathophysiology and underlying cellular mechanisms.
Collapse
Affiliation(s)
- Marina Vilaseca
- Hepatic Hemodynamic Laboratory, IDIBAPS
Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Department of Biomedical Research, University of
Bern, Bern, Switzerland
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona
Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute,
CIBEREHD, Rosselló 149, 4th floor, 08036 Barcelona, Spain
| |
Collapse
|
27
|
Schaffner D, Lazaro A, Deibert P, Hasselblatt P, Stoll P, Fauth L, Baumstark MW, Merfort I, Schmitt-Graeff A, Kreisel W. Analysis of the nitric oxide-cyclic guanosine monophosphate pathway in experimental liver cirrhosis suggests phosphodiesterase-5 as potential target to treat portal hypertension. World J Gastroenterol 2018; 24:4356-4368. [PMID: 30344420 PMCID: PMC6189851 DOI: 10.3748/wjg.v24.i38.4356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential effect of inhibitors of phosphodiesterase-5 (PDE-5) for therapy of portal hypertension in liver cirrhosis. METHODS In the rat model of thioacetamide-induced liver fibrosis/cirrhosis the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway was investigated. Expression and localization of PDE-5, the enzyme that converts vasodilating cGMP into inactive 5'-GMP, was in the focus of the study. Hepatic gene expression of key components of the NO-cGMP pathway was determined by qRT-PCR: Endothelial NO synthase (eNOS), inducible NO synthase (iNOS), soluble guanylate cyclase subunits α1 and β1 (sGCa1, sGCb1), and PDE-5. Hepatic PDE-5 protein expression and localization were detected by immunohistochemistry. Serum cGMP concentrations were measured using ELISA. Acute effects of the PDE-5 inhibitor Sildenafil (0.1 mg/kg or 1.0 mg/kg) on portal and systemic hemodynamics were investigated using pressure transducers. RESULTS Hepatic gene expression of eNOS (2.2-fold; P = 0.003), sGCa1 (1.7-fold; P = 0.003), sGCb1 (3.0-fold; P = 0.003), and PDE-5 (11-fold; P = 0.003) was increased in cirrhotic livers compared to healthy livers. Overexpression of PDE-5 (7.7-fold; P = 0.006) was less pronounced in fibrotic livers. iNOS expression was only detected in fibrotic and cirrhotic livers. In healthy liver, PDE-5 protein was localized primarily in zone 3 hepatocytes and to a lesser extent in perisinusoidal cells. This zonation was disturbed in cirrhosis: PDE-5 protein expression in perisinusoidal cells was induced approximately 8-fold. In addition, PDE-5-expressing cells were also found in fibrous septa. Serum cGMP concentrations were reduced in rats with cirrhotic livers by approximately 40%. Inhibition of PDE-5 by Sildenafil caused a significant increase in serum cGMP concentrations [+ 64% in healthy rats (P = 0.024), + 85% in cirrhotic rats (P = 0.018)]. Concomitantly, the portal venous pressure was reduced by 19% in rats with liver cirrhosis. CONCLUSION Overexpression and abrogated zonation of PDE-5 likely contribute to the pathogenesis of cirrhotic portal hypertension. PDE-5 inhibition may therefore be a reasonable therapeutic approach for portal hypertension.
Collapse
MESH Headings
- Animals
- Cyclic GMP/blood
- Cyclic GMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism
- Guanosine Monophosphate/metabolism
- Humans
- Hypertension, Portal/blood
- Hypertension, Portal/drug therapy
- Hypertension, Portal/etiology
- Hypertension, Portal/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Experimental/blood
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/complications
- Liver Cirrhosis, Experimental/pathology
- Male
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/metabolism
- Phosphodiesterase 5 Inhibitors/pharmacology
- Phosphodiesterase 5 Inhibitors/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Signal Transduction/drug effects
- Sildenafil Citrate/pharmacology
- Sildenafil Citrate/therapeutic use
- Thioacetamide/toxicity
- Treatment Outcome
Collapse
Affiliation(s)
- Denise Schaffner
- Institute for Exercise-und Occupational Medicine, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg 79104, Germany
| | - Adhara Lazaro
- Institute for Exercise-und Occupational Medicine, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Peter Deibert
- Institute for Exercise-und Occupational Medicine, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Patrick Stoll
- Anaesthesiological Practice, Freiburg 79104, Germany
| | - Lisa Fauth
- Institute of Clinical Pathology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Manfred W Baumstark
- Institute for Exercise-und Occupational Medicine, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg 79104, Germany
| | - Annette Schmitt-Graeff
- Institute of Clinical Pathology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| |
Collapse
|
28
|
Xu X, Zhang C, Shi C, Hu N, Sun B, Kong D, Xu J. Antiviral therapy effectively improves liver hemodynamics as evidenced by serum biomarker and contrast-enhanced ultrasound examinations in patients with hepatitis B cirrhosis. PeerJ 2018; 6:e5484. [PMID: 30225162 PMCID: PMC6139013 DOI: 10.7717/peerj.5484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/29/2018] [Indexed: 12/29/2022] Open
Abstract
Background and Aims To prospectively evaluate the effects of antiviral therapy on liver hemodynamics in patients with hepatitis B cirrhosis. Methods Seventy consecutive eligible HBV-related cirrhotic inpatients were enrolled in the prospective study. Fifty-two received different nucleoside analogs monotherapy and 18 denied antiviral therapy. Their liver biochemistry profiles and HBV-DNA were measured at the baseline and every 3 months. Peripheral blood vWF and sCD163, as well as liver ultrasound Doppler parameters including portal vein diameter (PVD), portal vein velocity (PVV), portal vein congestion index (PV-CI), hepatic vein damping index (HV-DI), hepatic arterial arrival time (HAAT), hepatic vein arrival time (HVAT) and intrahepatic cycle time (HV-HA), were measured at the baseline and the follow-up periods. Results In the antiviral group, all patients achieved complete virologic and liver biochemical responses after 3-month antiviral treatment. Furthermore, the response states were maintained till the follow-up endpoint. However, in the non-antiviral group, HBV DNA replication resulted in higher levels of ALT and AST compared to the baseline values (P < 0.05). In the antiviral group, PVD, PV-CI, HV-DI, vWF-Ag and sCD163 were all significantly reduced than the baseline values (P < 0.05), and PVV was significantly increased than the baseline value (P < 0.05). Conclusions Antiviral therapy could effectively suppress hepatocyte inflammation and alleviate the dysfunction of intrahepatic vascular endothelial and hepatic macrophages, which might improve hepatic hemodynamic function in HBV-related cirrhosis.
Collapse
Affiliation(s)
- Xiaoyong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Shi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Naizhong Hu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Sun
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Balasubramanian V, Mehta G, Jones H, Sharma V, Davies NA, Jalan R, Mookerjee RP. Post-Transcriptional Regulation of Hepatic DDAH1 with TNF Blockade Leads to Improved eNOS Function and Reduced Portal Pressure In Cirrhotic Rats. Sci Rep 2017; 7:17900. [PMID: 29263339 PMCID: PMC5738445 DOI: 10.1038/s41598-017-18094-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Portal hypertension (PH) is a major cause of morbidity and mortality in chronic liver disease. Infection and inflammation play a role in potentiating PH and pro-inflammatory cytokines, including TNF, are associated with severity of PH. In this study, cirrhotic bile duct ligated (BDL) rats with PH were treated with Infliximab (IFX, a monoclonal antibody against TNF) and its impact on modulation of vascular tone was assessed. BDL rats had increased TNF and NFkB compared to sham operated rats, and their reduction by IFX was associated with a reduction in portal pressure. IFX treatment also reduced hepatic oxidative stress, and biochemical markers of hepatic inflammation and injury. IFX treatment was associated with an improvement in eNOS activity and increased l-arginine/ADMA ratio and DDAH1 expression. In vitro analysis of HepG2 hepatocytes showed that DDAH1 protein expression is reduced by oxidative stress, and this is in part mediated by post-transcriptional regulation by the 3′UTR. This study supports a role for the DDAH1/ADMA axis on the effect of inflammation and oxidative stress in PH and provides insight for new therapies.
Collapse
Affiliation(s)
- V Balasubramanian
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - G Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - H Jones
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - V Sharma
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - N A Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - R Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - R P Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.
| |
Collapse
|
30
|
Shihata WA, Putra MRA, Chin-Dusting JPF. Is There a Potential Therapeutic Role for Caveolin-1 in Fibrosis? Front Pharmacol 2017; 8:567. [PMID: 28970796 PMCID: PMC5609631 DOI: 10.3389/fphar.2017.00567] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a process of dysfunctional wound repair, described by a failure of tissue regeneration and excessive deposition of extracellular matrix, resulting in tissue scarring and subsequent organ deterioration. There are a broad range of stimuli that may trigger, and exacerbate the process of fibrosis, which can contribute to the growing rates of morbidity and mortality. Whilst the process of fibrosis is widely described and understood, there are no current standard treatments that can reduce or reverse the process effectively, likely due to the continuing knowledge gaps surrounding the cellular mechanisms involved. Several cellular targets have been implicated in the regulation of the fibrotic process including membrane domains, ion channels and more recently mechanosensors, specifically caveolae, particularly since these latter contain various signaling components, such as members of the TGFβ and MAPK/ERK signaling pathways, all of which are key players in the process of fibrosis. This review explores the anti-fibrotic influences of the caveola, and in particular the key underpinning protein, caveolin-1, and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Waled A Shihata
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Mohammad R A Putra
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Jaye P F Chin-Dusting
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| |
Collapse
|
31
|
Kang SH, Kim MY, Baik SK. Novelties in the pathophysiology and management of portal hypertension: new treatments on the horizon. Hepatol Int 2017; 12:112-121. [DOI: 10.1007/s12072-017-9806-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
|
32
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Chang CC, Hsu YH, Chou HC, Lee YCG, Juan SH. 3-Methylcholanthrene/Aryl-Hydrocarbon Receptor-Mediated Hypertension Through eNOS Inactivation. J Cell Physiol 2016; 232:1020-1029. [PMID: 27442426 DOI: 10.1002/jcp.25497] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/20/2016] [Indexed: 11/12/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) modulates vascular blood pressure and is predominantly expressed in endothelial cells and activated through the protein kinase B (Akt/PKB)-dependent pathway. We previously reported that 3-methylcholanthrene (3MC) activates the aryl hydrocarbon receptor (AhR) and reduces PI3K/Akt phosphorylation. This study investigated the mechanism underlying the downregulatory effects of 3-MC on nitric oxide (NO) production occurring through the AhR/RhoA/Akt-mediated mechanism. The mechanism underlying the effects of 3-MC on eNOS activity and blood pressure was examined in vitro and in vivo through genetic and pharmacological approaches. Results indicated that 3-MC modified heat shock protein 90 (HSP90), caveolin-1, dynein, and eNOS mRNA and protein expression through the AhR/RhoA-dependent mechanism in mouse cerebral vascular endothelial cells (MCVECs) and that 3-MC reduced eNOS phosphorylation through the AhR/RhoA-mediated inactivation of Akt1. The upregulation of dynein expression was associated with decreased eNOS dimer formation (eNOS dimer; an activated form of the enzyme). Coimmunoprecipitation assay results indicated that 3-MC significantly reduced the interaction between eNOS and its regulatory proteins, including Akt1 and HSP90, but increased the interaction between eNOS and caveolin-1. Immunofluorescence and Western blot analysis revealed that 3-MC reduced the amount of membrane-bound activated eNOS, and a modified Griess assay revealed that 3-MC concomitantly reduced NO production. However, simvastatin reduced 3-MC-mediated murine hypertension. Our study results indicate that AhR, RhoA, and eNOS have major roles in blood pressure regulation. Statin intervention might provide a potential therapeutic approach for reducing hypertension caused by 3-MC. J. Cell. Physiol. 232: 1020-1029, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chih-Cheng Chang
- Departmentof Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Nephrology, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Chii G Lee
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Departmentof Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Nair H, Berzigotti A, Bosch J. Emerging therapies for portal hypertension in cirrhosis. Expert Opin Emerg Drugs 2016; 21:167-81. [PMID: 27148904 DOI: 10.1080/14728214.2016.1184647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Counteracting splanchnic vasodilatation and increased portal-collateral blood flow has been the mainstay for the treatment of portal hypertension (PH) over the past three decades. However, there is still large room for improvement in the treatment of PH. AREAS COVERED The basic mechanism leading to portal hypertension is the increased hepatic vascular resistance to portal blood flow caused by liver structural abnormalities inherent to cirrhosis and increased hepatic vascular tone. Molecules modulating microvascular dysfunction which have undergone preclinical and clinical trials are summarized, potential drug development issues are addressed, and situations relevant to design of clinical trials are considered. EXPERT OPINION Experimental and clinical evidence indicates that molecules modulating liver microvascular dysfunction may allow for 30-40% reduction in portal pressure. Several agents could be utilized in the earlier stages of cirrhosis (antifibrotics, antiangiogenics, etiological therapies) may allow reduction of fibrosis and halt progression of PH. This 'nip at the bud' policy, by combining therapies with existing agents used in advanced phase of cirrhosis and novel agents which could be used in early phase of cirrhotic spectrum, which are likely to hit the market soon would be the future strategy for PH therapy.
Collapse
Affiliation(s)
- Harikumar Nair
- a Inselspital Universitatsspital Bern , Bern , Switzerland
| | | | - Jaime Bosch
- a Inselspital Universitatsspital Bern , Bern , Switzerland.,b Hospital Clinic de Barcelona , University of Barcelona , Barcelona , Spain
| |
Collapse
|
35
|
The VITRO Score (Von Willebrand Factor Antigen/Thrombocyte Ratio) as a New Marker for Clinically Significant Portal Hypertension in Comparison to Other Non-Invasive Parameters of Fibrosis Including ELF Test. PLoS One 2016; 11:e0149230. [PMID: 26895398 PMCID: PMC4760704 DOI: 10.1371/journal.pone.0149230] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022] Open
Abstract
Background Clinically significant portal hypertension (CSPH), defined as hepatic venous pressure gradient (HVPG) ≥10 mmHg, causes major complications. HVPG is not always available, so a non-invasive tool to diagnose CSPH would be useful. VWF-Ag can be used to diagnose. Using the VITRO score (the VWF-Ag/platelet ratio) instead of VWF-Ag itself improves the diagnostic accuracy of detecting cirrhosis/ fibrosis in HCV patients. Aim This study tested the diagnostic accuracy of VITRO score detecting CSPH compared to HVPG measurement. Methods All patients underwent HVPG testing and were categorised as CSPH or no CSPH. The following patient data were determined: CPS, D’Amico stage, VITRO score, APRI and transient elastography (TE). Results The analysis included 236 patients; 170 (72%) were male, and the median age was 57.9 (35.2–76.3; 95% CI). Disease aetiology included ALD (39.4%), HCV (23.4%), NASH (12.3%), other (8.1%) and unknown (11.9%). The CPS showed 140 patients (59.3%) with CPS A; 56 (23.7%) with CPS B; and 18 (7.6%) with CPS C. 136 patients (57.6%) had compensated and 100 (42.4%) had decompensated cirrhosis; 83.9% had HVPG ≥10 mmHg. The VWF-Ag and the VITRO score increased significantly with worsening HVPG categories (P<0.0001). ROC analysis was performed for the detection of CSPH and showed AUC values of 0.92 for TE, 0.86 for VITRO score, 0.79 for VWF-Ag, 0.68 for ELF and 0.62 for APRI. Conclusion The VITRO score is an easy way to diagnose CSPH independently of CPS in routine clinical work and may improve the management of patients with cirrhosis.
Collapse
|
36
|
Tveden-Nyborg P, Birck MM, Ipsen DH, Thiessen T, Feldmann LDB, Lindblad MM, Jensen HE, Lykkesfeldt J. Diet-induced dyslipidemia leads to nonalcoholic fatty liver disease and oxidative stress in guinea pigs. Transl Res 2016; 168:146-160. [PMID: 26518991 DOI: 10.1016/j.trsl.2015.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Chronic dyslipidemia imposed by a high-fat and high-caloric dietary regime leads to debilitating disorders such as obesity, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. As disease rates surge, so does the need for high validity animal models to effectively study the causal relationship between diet and disease progression. The dyslipidemic guinea pig displays a high similarity with the human lipoprotein profile and may in this aspect be superior to other rodent models. This study investigated the effects of 2 long-term Westernized diets (0.35% cholesterol, 18.5% vegetable oil and either 15% or 20% sucrose) compared with isocaloric standard chow in adult guinea pigs. Biochemical markers confirmed dyslipidemia in agreement with dietary regimens; however, both high-fat groups displayed a decreased tissue fat percentage compared with controls. Macroscopic appearance, histopathologic evaluation, and plasma markers of liver function confirmed NAFLD in high-fat groups, supported by liver redox imbalance and markers suggesting hepatic endothelial dysfunction. Plasma markers indicated endothelial dysfunction in response to a high-fat diet, although atherosclerotic lesions were not evident. Evaluation of glucose tolerance showed no indication of insulin resistance. The 5% increase in sucrose between the 2 high-fat diets did not lead to significant differences between groups. In conclusion, we find the dyslipidemic guinea pig to be a valid model of diet imposed dyslipidemia, particularly with regards to hepatic steatosis and endothelial dysfunction. Furthermore, the absence of obesity supports the present study setup as targeting NAFLD in nonobese individuals.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Malene M Birck
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - David H Ipsen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Tina Thiessen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Linda de Bie Feldmann
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Maiken M Lindblad
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik E Jensen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
37
|
Iwakiri Y, Kim MY. Nitric oxide in liver diseases. Trends Pharmacol Sci 2015; 36:524-36. [PMID: 26027855 PMCID: PMC4532625 DOI: 10.1016/j.tips.2015.05.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and its derivatives play important roles in the physiology and pathophysiology of the liver. Despite its diverse and complicated roles, certain patterns of the effect of NO on the pathogenesis and progression of liver diseases are observed. In general, NO derived from endothelial NO synthase (eNOS) in liver sinusoidal endothelial cells (LSECs) is protective against disease development, while inducible NOS (iNOS)-derived NO contributes to pathological processes. This review addresses the roles of NO in the development of various liver diseases with a focus on recently published articles. We present here two recent advances in understanding NO-mediated signaling - nitrated fatty acids (NO2-FAs) and S-guanylation - and conclude with suggestions for future directions in NO-related studies on the liver.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Moon Young Kim
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
38
|
Antitumoral gene-based strategy involving nitric oxide synthase type III overexpression in hepatocellular carcinoma. Gene Ther 2015; 23:67-77. [PMID: 26204498 DOI: 10.1038/gt.2015.79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/14/2015] [Accepted: 07/16/2015] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO) synthase type III (NOS-3) overexpression induces cell death in hepatoblastoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. The first-generation adenoviruses were designed to overexpress NOS-3 or green fluorescent protein, and luciferase complementary DNA under the regulation of murine alpha-fetoprotein (AFP) and Rous Sarcoma Virus (RSV) promoters, respectively. Both adenovirus and Hepa 1-6 cells were used for in vitro and in vivo experiments. Adenoviruses were administered through the tail vein 2 weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8, -9 and -3 activities in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by Nω-nitro-l-arginine methyl ester hydrochloride, p53 and CD95 small interfering RNA. AFP-NOS-3/RSV-luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.
Collapse
|
39
|
Abstract
Portal hypertension is a common complication of chronic liver disease. Its relevance comes from the fact that it determines most complications leading to death or liver transplantation in patients with cirrhosis of the liver: bleeding from esophageal or gastric varices, ascites and renal dysfunction, sepsis and hepatic encephalopathy. Portal hypertension results from increased resistance to portal blood flow through the cirrhotic liver. This is caused by two mechanisms: (1) distortion of the liver vascular architecture due to the liver disease causing structural abnormalities (nodule formation, remodeling of liver sinusoids, fibrosis, angiogenesis and vascular occlusion), and (2) increased hepatic vascular tone due to sinusoidal endothelial dysfunction, which results in a defective production of endogenous vasodilators, mainly nitric oxide (NO), and increased production of vasoconstrictors (thromboxane A2, cysteinyl leukotrienes, angiotensin II, endothelins and an activated adrenergic system). Hepatic endothelial dysfunction occurs early in the course of chronic liver disease as a consequence of inflammation and oxidative stress, and determines loss of the normal phenotype of liver sinusoidal endothelial cells (LSECs) that become proliferative, prothrombotic, proinflammatory and vasoconstrictor. The cross-talk between LSECs and hepatic stellate cells (HSCs) induces activation of the latter, which in turn proliferate, migrate and increase collagen deposition around the sinusoids, contributing to fibrogenesis, architectural disruption and angiogenesis, which further increase the hepatic vascular resistance and worsen liver failure by interfering with the blood perfusion of the liver parenchyma. An additional factor further worsening portal hypertension is an increased blood flow through the portal system due to splanchnic vasodilatation. This is an adaptive response to decreased effective hepatocyte perfusion, and is maximal once portal pressure has increased sufficiently to promote the development of intrahepatic shunts and portal-systemic collaterals, including varices, through which portal blood flow bypasses the liver. In human portal hypertension collateralization and hyperdynamic circulation start at a portal pressure gradient >10 mm Hg. Rational therapy for portal hypertension aims at correcting these pathophysiological abnormalities: liver injury, fibrogenesis, increased hepatic vascular tone and splanchnic vasodilatation. Continuing liver injury may be counteracted specifically by etiological treatments (the best example being the direct-acting antivirals for hepatitis C viral infection), while architectural disruption and fibrosis can be ameliorated by a variety of antifibrotic drugs and antiangiogenic strategies. Several drugs in this category are currently under investigation in phase II-III randomized controlled trials. Sinusoidal endothelial dysfunction is ameliorated by statins as well as by other drugs increasing NO availability. It is of note that simvastatin has already been proven to be clinically effective in two randomized controlled trials. Splanchnic hyperemia can be counteracted by nonselective β-blockers (NSBBs), vasopressin analogs and somatostatin analogs, drugs that until recently were the only available treatments for portal hypertension, but that are not very effective in the initial stages of cirrhosis. There is experimental and clinical evidence indicating that a more effective reduction of portal pressure is obtained by combining agents acting on these different pathways. It is likely that the treatment of portal hypertension will evolve to use etiological treatments together with antifibrotic agents and/or drugs improving sinusoidal endothelial function in the initial stages of cirrhosis (preprimary prophylaxis), while NSBBs will be added in advanced stages of the disease.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS, Hospital Clinic de Barcelona, CIBEREHD, Barcelona, Spain
| | | | | |
Collapse
|
40
|
Reverter E, Mesonero F, Seijo S, Martínez J, Abraldes JG, Peñas B, Berzigotti A, Deulofeu R, Bosch J, Albillos A, García-Pagán JC. Effects of Sapropterin on Portal and Systemic Hemodynamics in Patients With Cirrhosis and Portal Hypertension: A Bicentric Double-Blind Placebo-Controlled Study. Am J Gastroenterol 2015; 110:985-92. [PMID: 26077176 DOI: 10.1038/ajg.2015.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tetrahydrobiopterin (BH4), a cofactor of nitric oxide synthase, might have a role in the treatment of portal hypertension (PHT) as its administration improves endothelial nitric oxide generation and hepatic endothelial dysfunction, and reduces portal pressure in experimental models of cirrhosis. Sapropterin is an oral synthetic analogue of BH4 recently approved for the treatment of phenylketonuria. This study evaluated the safety and effects of sapropterin on hepatic and systemic hemodynamics in patients with cirrhosis and PHT. METHODS Forty patients with cirrhosis and PHT (hepatic venous pressure gradient (HVPG) ≥10 mm Hg) were randomly allocated to receive sapropterin (n=19) for 2 weeks (5 mg/kg/day increased to 10 at day 8) or placebo (n=21) in a double-blind multicenter clinical trial. Randomization was stratified according to concomitant treatment with β-adrenergic blockers. We studied at baseline and post-treatment splanchnic (HVPG and hepatic blood flow (HBF)) and systemic hemodynamics, endothelial dysfunction and oxidative stress markers (von Willebrand factor and malondialdehyde), liver function tests, and safety variables. RESULTS HVPG was not modified by either sapropterin (16.0±4.4 vs. 15.8±4.7 mm Hg) or placebo (16.0±4.6 vs. 15.5±4.9 mm Hg). HBF, systemic hemodynamics, endothelial dysfunction markers, and liver function tests remained unchanged. Sapropterin was well tolerated (no patient required dose adjustment or withdrawal), and adverse events were mild and similar between groups. CONCLUSIONS Sapropterin, an oral synthetic analogue of BH4, at the used dose did not reduce portal pressure in patients with cirrhosis. Sapropterin was safe and no serious adverse effects or deleterious systemic hemodynamic effects were observed.
Collapse
Affiliation(s)
- Enric Reverter
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Francisco Mesonero
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Susana Seijo
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier Martínez
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Juan G Abraldes
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Beatriz Peñas
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Annalisa Berzigotti
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ramon Deulofeu
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Department of Biochemistry and Molecular Genetics, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jaume Bosch
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Agustín Albillos
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Joan Carles García-Pagán
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
41
|
Fernandez M. Molecular pathophysiology of portal hypertension. Hepatology 2015; 61:1406-15. [PMID: 25092403 DOI: 10.1002/hep.27343] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/11/2022]
Abstract
Over the past two decades the advances in molecular cell biology have led to significant discoveries about the pathophysiology of portal hypertension (PHT). In particular, great progress has been made in the study of the molecular and cellular mechanisms that regulate the increased intrahepatic vascular resistance (IHVR) in cirrhosis. We now know that the increased IHVR is not irreversible, but that both the structural component caused by fibrosis and the active component caused by hepatic sinusoidal constriction can be, at least partially, reversed. Indeed, it is now apparent that the activation of perisinusoidal hepatic stellate cells, which is a key event mediating the augmented IHVR, is regulated by multiple signal transduction pathways that could be potential therapeutic targets for PHT treatment. Furthermore, the complexity of the molecular physiology of PHT can also be appreciated when one considers the complex signals capable of inducing vasodilatation and hyporesponsiveness to vasoconstrictors in the splanchnic vascular bed, with several vasoactive molecules, controlled at multiple levels, working together to mediate these circulatory abnormalities. Added to the complexity is the occurrence of pathological angiogenesis during the course of disease progression, with recent emphasis given to understanding its molecular machinery and regulation. Although much remains to be learned, with the current availability of reagents and new technologies and the exchange of concepts and data among investigators, our knowledge of the molecular basis of PHT will doubtless continue to grow, accelerating the transfer of knowledge generated by basic research to clinical practice. This will hopefully permit a better future for patients with PHT.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Angiogenesis in Liver Disease Research Group, Institute of Biomedical Research IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Gracia-Sancho J, Maeso-Díaz R, Fernández-Iglesias A, Navarro-Zornoza M, Bosch J. New cellular and molecular targets for the treatment of portal hypertension. Hepatol Int 2015; 9:183-91. [PMID: 25788198 DOI: 10.1007/s12072-015-9613-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Portal hypertension (PH) is a common complication of chronic liver disease, and it determines most complications leading to death or liver transplantation in patients with liver cirrhosis. PH results from increased resistance to portal blood flow through the cirrhotic liver. This is caused by two mechanisms: (a) distortion of the liver vascular architecture and (b) hepatic microvascular dysfunction. Increment in hepatic resistance is latterly accompanied by splanchnic vasodilation, which further aggravates PH. Hepatic microvascular dysfunction occurs early in the course of chronic liver disease as a consequence of inflammation and oxidative stress and determines loss of the normal phenotype of liver sinusoidal endothelial cells (LSEC). The cross-talk between LSEC and hepatic stellate cells induces activation of the latter, which in turn proliferate, migrate and increase collagen deposition around the sinusoids, contributing to fibrogenesis, architectural disruption and angiogenesis. Therapy for PH aims at correcting these pathophysiological abnormalities: liver injury, fibrogenesis, increased hepatic vascular tone and splanchnic vasodilatation. Continuing liver injury may be counteracted specifically by etiological treatments, while architectural disruption and fibrosis can be ameliorated by a variety of anti-fibrogenic drugs and anti-angiogenic strategies. Sinusoidal endothelial dysfunction is ameliorated by statins and other drugs increasing NO availability. Splanchnic hyperemia can be counteracted by non-selective beta-blockers (NSBBs), vasopressin analogs and somatostatin analogs. Future treatment of portal hypertension will evolve to use etiological treatments together with anti-fibrotic agents and/or drugs improving microvascular function in initial stages of cirrhosis (pre-primary prophylaxis), while NSBBs will be added in advanced stages of the disease.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Rosselló 149, 4th Floor, 08036, Barcelona, Spain,
| | | | | | | | | |
Collapse
|
43
|
Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments. J Hepatol 2015; 62:S121-30. [PMID: 25920081 PMCID: PMC4519833 DOI: 10.1016/j.jhep.2015.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 01/08/2023]
Abstract
Among the common complication of cirrhosis portal hypertension witnessed a major improvement of prognosis during the past decades. Principally due to the introduction of rational treatments based on new pathophysiological paradigms (concepts of thought) developed in the 1980s. The best example being the use of non-selective beta-blockers and of vasopressin analogs, somatostatin, and its analogs. Further refinement in the knowledge of the molecular mechanisms involved in the regulation of both the splanchnic and hepatic circulation has led to the emergence of new treatments, which are based on evidence that show not only structural but also vasoactive components increase the hepatic vascular resistance, as well as of angiogenesis. This knowledge and future improvements will most likely result in more effective treatment of portal hypertension and effective prevention of its complications in early stages.
Collapse
Affiliation(s)
- Jaume Bosch
- Hospital Clínic-IDIBAPS, University of Barcelona and Centro de Investigación, Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| | | | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Abstract
Recent data indicate that hepatic angiogenesis, regardless of the etiology, takes place in chronic liver diseases (CLDs) that are characterized by inflammation and progressive fibrosis. Because anti-angiogenic therapy has been found to be efficient in the prevention of fibrosis in experimental models of CLDs, it is suggested that blocking angiogenesis could be a promising therapeutic option in patients with advanced fibrosis. Consequently, efforts are being directed to revealing the mechanisms involved in angiogenesis during the progression of liver fibrosis. Literature evidences indicate that hepatic angiogenesis and fibrosis are closely related in both clinical and experimental conditions. Hypoxia is a major inducer of angiogenesis together with inflammation and hepatic stellate cells. These profibrogenic cells stand at the intersection between inflammation, angiogenesis and fibrosis and play also a pivotal role in angiogenesis. This review mainly focuses to give a clear view on the relevant features that communicate angiogenesis with progression of fibrosis in CLDs towards the-end point of cirrhosis that may be translated into future therapies. The pathogenesis of hepatic angiogenesis associated with portal hypertension, viral hepatitis, non-alcoholic fatty liver disease and alcoholic liver disease are also discussed to emphasize the various mechanisms involved in angiogenesis during liver fibrogenesis.
Collapse
Affiliation(s)
- Gülsüm Özlem Elpek
- Gülsüm Özlem Elpek, Department of Pathology, Akdeniz University Medical School, 07070 Antalya, Turkey
| |
Collapse
|
45
|
Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015; 7:443-459. [PMID: 25848469 PMCID: PMC4381168 DOI: 10.4254/wjh.v7.i3.443] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Balasubramaniyan Vairappan, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
46
|
Lee PC, Yang YY, Lee WP, Lee KC, Hsieh YC, Lee TY, Lin HC. Comparative portal hypotensive effects as propranolol of vitamin D₃ treatment by decreasing intrahepatic resistance in cirrhotic rats. J Gastroenterol Hepatol 2015; 30:628-37. [PMID: 25187428 DOI: 10.1111/jgh.12721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Vitamin D₃ improves portal hypertension (PH) through the activation of vitamin D receptor (VDR) and calcium-sensing receptor (CaSR) in cirrhotic rats. Propranolol is a non-selective β-blocker that is recommended for the treatment of PH. The present study aims to investigate the detail systemic and hepatic mechanisms of vitamin D₃ and propranolol, alone or in combination, in cirrhotic rats. METHODS Common bile duct-ligated and thioacetamide cirrhotic rats were treated with vehicle, propranolol (30 mg/kg/day), vitamin D₃ (0.5 μg/100 g/day, twice weekly), or propranolol + vitamin D₃, separately. RESULTS Significantly, propranolol and vitamin D₃ produced a similar magnitude of reduction in portal venous pressure (PVP) in cirrhotic rats through different mechanisms: whereas propranolol decreased PVP by reducing splanchnic hyperemia and cardiac index, vitamin D₃ decreased PVP by decreasing intrahepatic resistance (IHR). However, propranolol + vitamin D₃ did not further decrease PVP in cirrhotic rats. Notably, a marked decrease in hepatic VDR and CaSR expressions was noted in cirrhotic human/rat livers compared with non-cirrhotic human/rat livers. In cirrhotic rats, vitamin D₃ administration decreasing IHR by inhibiting the renin-angiotensin system, hepatic oxidative stress, inflammation/fibrosis, angiotensin II (ANGII) production, CaSR-mediated ANGII hyperresponsiveness, ANGII-induced hepatic stellate cells contraction, and correcting hepatic endothelial dysfunction through upregulation of hepatic VDR, CaSR, and endothelial nitric oxide synthase expressions. CONCLUSION Chronic vitamin D₃ treatment alone results in comparative portal hypotensive effects as propranolol alone in cirrhotic rats with PH. Taken together, chronic vitamin D₃ administration was an ideal alternative strategy to effectively improve PH without unwanted systemic side-effects.
Collapse
Affiliation(s)
- Pei-Chang Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
La Mura V, Pasarín M, Rodriguez-Vilarrupla A, García-Pagán JC, Bosch J, Abraldes JG. Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible-nitric oxide synthase. J Hepatol 2014; 61:1321-1327. [PMID: 25038487 DOI: 10.1016/j.jhep.2014.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Sepsis is associated with microvascular dysfunction, which contributes to organ failure. Intrahepatic endothelial dysfunction occurs after exposure to lipopolysaccharide (LPS). The upregulation of inducible nitric oxide synthase (iNOS) has been shown to contribute to systemic vascular dysfunction after LPS administration. However, little is known about the effects of iNOS induction on the liver microcirculation. This study aimed at exploring, in the isolated rat liver perfusion model, the role of iNOS induction in liver microvascular dysfunction associated with endotoxemia. METHODS All experiments were conducted in male Wistar rats, after 24 h of LPS (5 mg/kg i.p.) or saline administration in the presence or absence of the iNOS inhibitor 1400 W (3 mg/kg i.p.), administered 3 and 23 h after LPS/saline injection. Liver microvascular function was assessed by isolated liver perfusion, followed by molecular studies and liver function tests. RESULTS At 24 h, LPS induced liver endothelial dysfunction, as shown by a decreased vasodilatory response to acetylcholine and decreased eNOS phosphorylation at Ser(1176). This was associated with liver injury, assessed by an increase in liver transaminases and decreased indocyanin green clearance, and increased nitrooxidative stress. iNOS inhibition prevented liver endothelial dysfunction, blunted the development of liver injury and attenuated LPS-induced nitrooxidative stress. CONCLUSIONS iNOS upregulation contributes to liver microvascular dysfunction in endotoxemia. This suggests that this mechanism deserves further exploration in studies addressing liver protection in the context of severe acute bacterial infection.
Collapse
Affiliation(s)
- Vincenzo La Mura
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università di Milano, Milano, Italy
| | - Marcos Pasarín
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Aina Rodriguez-Vilarrupla
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Juan Carlos García-Pagán
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Jaime Bosch
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Juan G Abraldes
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain; Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
48
|
Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 2014; 61:912-24. [PMID: 24911462 PMCID: PMC4346093 DOI: 10.1016/j.jhep.2014.05.047] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Chronic liver disease is associated with remarkable alterations in the intra- and extrahepatic vasculature. Because of these changes, the fields of liver vasculature and portal hypertension have recently become closely integrated within the broader vascular biology discipline. As developments in vascular biology have evolved, a deeper understanding of vascular processes has led to a better understanding of the mechanisms of the dynamic vascular changes associated with portal hypertension and chronic liver disease. In this context, hepatic vascular cells, such as sinusoidal endothelial cells and pericyte-like hepatic stellate cells, are closely associated with one another, where they have paracrine and autocrine effects on each other and themselves. These cells play important roles in the pathogenesis of liver fibrosis/cirrhosis and portal hypertension. Further, a variety of signaling pathways have recently come to light. These include growth factor pathways involving cytokines such as transforming growth factor β, platelet derived growth factor, and others as well as a variety of vasoactive peptides and other molecules. An early and consistent feature of liver injury is the development of an increase in intra-hepatic resistance; this is associated with changes in hepatic vascular cells and their signaling pathway that cause portal hypertension. A critical concept is that this process aggregates signals to the extrahepatic circulation, causing derangement in this system's cells and signaling pathways, which ultimately leads to the collateral vessel formation and arterial vasodilation in the splanchnic and systemic circulation, which by virtue of the hydraulic derivation of Ohm's law (pressure = resistance × flow), worsens portal hypertension. This review provides a detailed review of the current status and future direction of the basic biology of portal hypertension with a focus on the physiology, pathophysiology, and signaling of cells within the liver, as well as those in the mesenteric vascular circulation. Translational implications of recent research and the future directions that it points to are also highlighted.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- The Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Vijay Shah
- The Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Don C Rockey
- The Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
49
|
Mehta G, Gustot T, Mookerjee RP, Garcia-Pagan JC, Fallon MB, Shah VH, Moreau R, Jalan R. Inflammation and portal hypertension - the undiscovered country. J Hepatol 2014; 61:155-63. [PMID: 24657399 DOI: 10.1016/j.jhep.2014.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Portal hypertension has traditionally been viewed as a progressive process, involving ultrastructural changes including fibrosis, nodule formation, and vascular thrombosis, leading to increased intrahepatic resistance to flow. However, it is increasingly recognized that a significant component of this vascular resistance results from a dynamic process, regulated by complex interactions between the injured hepatocyte, the sinusoidal endothelial cell, the Kupffer cell and the hepatic stellate cell, which impact on sinusoidal calibre. Recent findings suggest these haemodynamic findings are most marked in patients with superimposed inflammation. The precise mechanisms for vascular dysfunction in cirrhosis with superimposed inflammation remain to be fully elucidated but several studies over the past decade have started to generate the hypothesis that inflammation may be a key mediator of the pathogenesis and severity of portal hypertension in this context. This review provides a comprehensive overview of the biological mechanisms for inflammation playing a key role in the severity of portal hypertension, and illustrates potential novel therapies that act by modifying these processes.
Collapse
Affiliation(s)
- Gautam Mehta
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Thierry Gustot
- Laboratory of Experimental Gastroenterology, ULB, Brussels, Belgium; Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme Hospital, ULB, Brussels, Belgium
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Juan Carlos Garcia-Pagan
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi-Sunyer (IDIBAPS), Ciber de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Michael B Fallon
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 4.234, Houston, TX 77030-1501, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Richard Moreau
- INSERM, U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Paris/Clichy, France; Université Paris-Diderot, Paris 7, UMR-S773, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Rajiv Jalan
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London NW3 2PF, United Kingdom.
| |
Collapse
|
50
|
Hernández-Guerra M, González-Méndez Y, de Ganzo ZA, Salido E, García-Pagán JC, Abrante B, Malagón AM, Bosch J, Quintero E. Role of gap junctions modulating hepatic vascular tone in cirrhosis. Liver Int 2014; 34:859-68. [PMID: 24350605 DOI: 10.1111/liv.12446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Gap junctions are formed by connexins (Cx), a family of proteins that couple endothelial and smooth muscle cells in systemic vessels. In this context, Cx allow the transmission of signals modulating vascular tone. Recently, vascular Cx have been observed in liver cells implicated in liver blood flow regulation. Here, we investigated the role of Cx in the regulation of intrahepatic vascular tone in cirrhosis. METHODS Livers of Sprague-Dawley control and cirrhotic (common bile duct ligation-CBDL and CCl4 ) rats were perfused, and concentration-effect curves in response to acetylcholine (ACh) precontracted with methoxamine were obtained in the presence of the specific Cx inhibitor 18-alpha-glycyrrhetinic acid or vehicle. Cx expression was assessed by immunofluorescence, western blot and reverse-transcription polymerase chain reaction in liver tissue, hepatic stellate cells, sinusoidal endothelial cells and hepatocytes isolated from control and cirrhotic rat livers. Cx protein expression was also determined in cirrhotic human tissue. RESULTS Gap junction blockade markedly attenuated relaxation of hepatic vasculature in response to ACh in control (maximal relaxation, -55 ± 10.5% vs. -95.3 ± 10% with vehicle; P < 0.01) and CBDL rats (50.9 ± 18.5% vs. -18.7 ± 5.5% with vehicle; P = 0.01). Livers from CBDL rats and patients with cirrhosis exhibited Cx overexpression. By contrast, CCl4 -cirrhotic rats did not show attenuated relaxation of hepatic vasculature after blockade and Cx expression was significantly lower than in controls. CONCLUSIONS Gap junctions may contribute to modulating portal pressure and intrahepatic vascular relaxation. Liver gap junctions may represent a new therapeutic target in cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Manuel Hernández-Guerra
- Liver Unit, University Hospital of the Canary Islands, Tenerife, Spain; Department of Internal Medicine, University of La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|