1
|
Bordbar F, Rigi A, Mastanabad MV, Rohani F, Ghaedi E, Dhiaa SM, Asadi F, Maragheh SM. Investigating miR-9 and miR-222 in CSF and Plasma of Neuroblastoma Patients as Metastatic and Apoptotic-Related Markers. Cell Biochem Biophys 2025; 83:1605-1615. [PMID: 39663279 DOI: 10.1007/s12013-024-01570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 12/13/2024]
Abstract
Neuroblastoma is a cancer that occurs due to abnormal development of the sympathetic nervous system. The dysregulation of miR-9 and miR-222 plays a crucial role in neuroblastoma development. These microRNAs have a significant relationship with PTEN, caspase-9, and MMP14, which can potentially form the basis for the specific diagnosis and treatment of this disease. In our study, two neuroblastoma cell lines were divided into three groups based on whether they had been treated with miR-9, anti-miR-9, miR-222, or both. We evaluated various parameters in these groups, including migration (through a wound healing assay), apoptosis (using flow cytometry), and gene expression (through qRT-PCR). Additionally, we measured the expression levels of MMP14, miR-9, and miR-222 in plasma and CSF samples from neuroblastoma patients using ELISA and qRT-PCR. We found that patients with neuroblastoma had higher levels of MMP14 and miR-222 mRNA expression but lower levels of miR-9 mRNA expression. Furthermore, after treating the cell lines with anti-miR-9 and anti-miR-222, we observed increased levels of MMP14 expression, as well as PTEN and caspase-9. Additionally, the treatment with anti-miR-222 and anti-miR-9 led to an increase in the frequency of apoptosis and migration of cancer cells. Our research shows that the dysregulation of miR-9, miR-222, and MMP14 could be key indicators in the pathogenesis of neuroblastoma. We also found that up-regulation of miR-9 was associated with decreased disease severity, whereas up-regulation of miR-222 and MMP14 was linked to increased disease severity.
Collapse
Affiliation(s)
- Farhad Bordbar
- Key Laboratory of Chicken Genetics, Breeding And Reproduction, Ministry of Agriculture And Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Fattah Rohani
- Faculty of Veterinary Medicine of Shahrekord, Shahrekord, Iran
| | - Elham Ghaedi
- Department of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Fatemeh Asadi
- Department of Genetics, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Salar Momen Maragheh
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Biotechnology, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| |
Collapse
|
2
|
Wang J, Wang Y, Zhu J, Zhu X, Su T, Wu G, Fan L, Li J, Liu Y, Gao F, Xin N, Yu D. Endogenous enzyme-activated AND-gate DNA nanomachines for intracellular miRNA detection and cell-selective imaging. Talanta 2025; 283:127087. [PMID: 39471719 DOI: 10.1016/j.talanta.2024.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
The occurrence and development of tumors are accompanied by the abnormal expression of specific microRNAs (miRNAs). Therefore, miRNAs are considered as an important biomarker. The establishment of efficient, simple and sensitive miRNA imaging methods in living cells will contribute to the early diagnosis, treatment and drug development of diseases. In this study, we developed an endogenous enzyme-initiated AND logic circuit using gold nanocubes (AuNCs) as carriers for simultaneous detection of miRNA-21 and miRNA-210 in cells. Apurinic/apyrimidinic endonuclease 1 (APE1) and telomerase (TE), which are overexpressed in cancer cells, act as control switches in a logic circuit that enables sensitive in situ analysis of intracellular miRNAs without additional external intervention. At the same time, due to the lack of necessary enzymes as activation switches, the DNA circuit in normal cells remains in an inactive state. This strategy effectively reduces the risk of false positive signal generation. Our research results show that the logic circuit can not only distinguish between cancer cells and normal cells, and able to distinguish between different types of cancer cells. This finding provides a promising approach to accurately identify cell types.
Collapse
Affiliation(s)
- Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yun Wang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Jun Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tianyu Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liying Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Junjie Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yufan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ning Xin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Dehong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; The Affiliated Pizhou Hospital of Xuzhou Medical University, Pizhou, Jiangsu, 221399, China.
| |
Collapse
|
3
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Long Y, Wang W, Liu S, Wang X, Tao Y. The survival prediction analysis and preliminary study of the biological function of YEATS2 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2297-2316. [PMID: 39718737 DOI: 10.1007/s13402-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE Our study aims to develop and validate a novel molecular marker for the prognosis and diagnosis of hepatocellular carcinoma (HCC) MATERIALS & METHODS: We retrospectively analyzed mRNA expression profile and clinicopathological data of HCC patients fetched from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and The International Cancer Genome Consortium (ICGC) datasets. Univariate Cox regression analysis was performed to collect differentially expressed mRNA (DEmRNAs) from HCC and non-tumor tissues, and YEATS2, a prognostic marker, was identified by further analysis. ROC curve, survival analysis and multivariate Cox regression analysis as well as nomograms were used to evaluate the prognosis of this gene. Finally, the biological function of this gene was preliminarily discussed by using single gene Gene Set Enrichment Analysis (GSEA), and the YEATS2 overexpression and knockdown hepatoma cell line was used to verify the results in vitro and in vivo. RESULTS Based on the clinical information of HCC in TCGA, GEO and ICGC databases, the gene YEATS2 with significant differences from HCC was identified. There was a statistical difference in the survival prognosis between the two databases and the ROC curve showed that the survival of HCC in both TCGA, GSE14520 and ICGC groups had a satisfactory predictive effect. Univariate and multivariate Cox regression analysis showed that YEATS2 was an independent prognostic factor for HCC, and Nomograms, which combined this prognostic feature with significant clinical features, provided an important reference for the clinical prognostic diagnosis of HCC. Next, we constructed overexpression and knockdown YEATS2 cell line in Hep3B and LM3 cells, and further proved that overexpression YEATS2 promote the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays, and knockdown YEATS2 inhibited the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays. Finally, the biological function of YEATS2 was preliminarily explored through GSEA analysis of a single gene, and it was found that it was significantly correlated with cell cycle and DNA repair, which provided us with ideas for further analysis. Furthermore, the knockdown of YEATS2 promoted radiation-induced DNA damage, enhanced radiosensitivity, and ultimately inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo. CONCLUSIONS Our study identified a promising prognostic marker for hepatocellular carcinoma that is useful for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Yao Long
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shouping Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
5
|
Rahdan F, Saberi A, Saraygord-Afshari N, Hadizadeh M, Fayeghi T, Ghanbari E, Dianat-Moghadam H, Alizadeh E. Deciphering the multifaceted role of microRNAs in hepatocellular carcinoma: Integrating literature review and bioinformatics analysis for therapeutic insights. Heliyon 2024; 10:e39489. [PMID: 39498055 PMCID: PMC11532857 DOI: 10.1016/j.heliyon.2024.e39489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health challenge, necessitating innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as pivotal regulators of HCC pathogenesis, influencing key processes such as self-renewal, angiogenesis, glycolysis, autophagy, and metastasis. This article integrates findings from a comprehensive literature review and bioinformatics analysis to elucidate the role of miRNAs in HCC. We discuss how dysregulation of miRNAs can drive HCC initiation, progression, and metastasis by modulating various signaling pathways and target genes. Moreover, leveraging high-throughput technology and bioinformatics tools, we identify key miRNAs involved in multiple cancer hallmarks, offering insights into potential combinatorial therapeutic strategies. Through our analysis considering p-values and signaling pathways associated with key features, we unveil miRNAs with simultaneous roles across critical cancer characteristics, providing a basis for the development of high-performance biomarkers. The microRNAs, miR-34a-5p, miR-373-3p, miR-21-5p, miR-214-5p, miR-195-5p, miR-139-5p were identified to be shared microRNAs in stemness, angiogenesis, glycolysis, autophagy, EMT, and metastasis of HCC. However, challenges such as miRNA stability and delivery hinder the translation of miRNA-based therapeutics into clinical practice. This review underscores the importance of further research to overcome existing barriers and realize the full potential of miRNA-based interventions for HCC management.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahura Fayeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Zhang H, Zhu J, Zhang J, Liu Y, Zhao B, Yang X, Zhou W, Chen B, Zhang S, Huang R, Chen S. miR-19a-3p promotes the growth of hepatocellular carcinoma by regulating p53/SOX4. Heliyon 2024; 10:e36282. [PMID: 39253193 PMCID: PMC11381758 DOI: 10.1016/j.heliyon.2024.e36282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Objective This study aims to investigate the potential functions of miR-19a-3p in HCC. Method We collected serum samples to analyze miR-19a-3p expression. We utilized CCK8 and Transwell assays to access miR-19a-3p's influence on HCC cells malignancy. We used dual-luciferase reporter and western blotting to validate the impact of p53/miR-19 on miR-19/SOX4. Results The results demonstrated that miR-19a-3p was highly expressed in pre-operative serum samples and HCC cells, which can promote cell proliferation, migration and invasion in HCC under in vitro conditions. Additionally, there was a p53 binding site on the upstream of miR-19a-3p, which was inhibited by p53. SOX4 was the direct gene targeted by miR-19a-3p. The imbalance of p53-miR-19-SOX4 loop was one reason for the progress of HCC. Conclusion Our findings validate the mechanisms of miR-19a-3p and highlight its potential as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- Medical College, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Jiajun Zhu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- Medical College, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Liu
- Medical College, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Baicheng Zhao
- Medical College, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Xiaoyi Yang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Wenhan Zhou
- Medical College, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Bozhou Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Shuangshuang Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Ruotong Huang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- Medical College, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| |
Collapse
|
7
|
Shen XT, Chen ZC, Wang XY, Wang XF, Xie SZ, Zheng X, Yang LY, Lu L. Establishment of homotrimer collagen type I signature and its association with clinical manifestation and tertiary lymphoid structures formation in liver cancer. Heliyon 2024; 10:e31320. [PMID: 38841477 PMCID: PMC11152946 DOI: 10.1016/j.heliyon.2024.e31320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Background collagen type I is a fundamental composition of extracellular matrix. Typically it exists in the form of a heterotrimer, consisting of two α1 chains encoded by COL1A1 and one α2 chain encoded by COL1A2. However, in cancer a homotrimeric form of collagen type I comprises three α1 chains encoded by COL1A1 was founded. There is still a lack of transcriptional and histologic methods for detecting homotrimeric collagen type I. Furthermore, a comprehensive analysis of the pan-cancer distribution pattern and clinical relevance of homotrimeric collagen type I is conspicuously absent. Method Using transcriptional and immunoflourance method, we established homocol signature, which is able to transcriptionally and histologically detect homotrimeric collagen type I. We investigated the diagnostic and prognostic potential of homocol as a novel cancer biomarker in a pan-cancer cohort. Furthermore, we assessed its association with clinical manifestations in a liver cancer cohort undergoing treatment at our institute. Result Homotrimer Collagen Type I is predominantly expressed by cancer cells and is linked to several critical cancer hallmarks, particularly inflammatory response and proliferation. Survival analyses have indicated that a high Homocol expression is correlated with poor outcomes in most types of cancer studied. In terms of cancer detection, Homocol demonstrated strong performance in Receiver Operating Characteristic (ROC) analysis, with an Area Under Curve (AUC) of 0.83 for pan-cancer detection and between 0.72 and 0.99 for individual cancers.In cohorts undergoing PD1 treatment, we noted a higher presence of Homocol in the response group. In a Hepatocellular Carcinoma (HCC) clinical set, high Homocol expression was associated with an increased formation of intra-tumor tertiary lymphoid structures (TLS), larger tumor sizes, more advanced Barcelona Clinic Liver Cancer (BCLC) stages, higher microvascular invasion (MVI) grades, absence of a capsule, and an enriched para-tumor collagen presence. Conclusion our research has led to the development of a novel gene signature that facilitates the detection of Homotrimer Collagen Type I. This may greatly assist efforts in cancer detection, prognosis, treatment response prediction, and further research into Homotrimer Collagen Type I.
Collapse
Affiliation(s)
- Xiao-Tian Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhen-Chao Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xu-Feng Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Zheng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu-Yu Yang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
9
|
Li Y, Zhou P, Wang Z, Ren Y, Zhu X, Wang J, Yan H, Hua L, Gao F. Sea Anemone-like Nanomachine Based on DNA Strand Displacement Composed of Three Boolean Logic Gates: Diversified Input for Intracellular Multitarget Detection. Anal Chem 2024; 96:4120-4128. [PMID: 38412037 DOI: 10.1021/acs.analchem.3c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.
Collapse
Affiliation(s)
- Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Zhenxin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Hua
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
10
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
11
|
Vianello C, Monti E, Leoni I, Galvani G, Giovannini C, Piscaglia F, Stefanelli C, Gramantieri L, Fornari F. Noncoding RNAs in Hepatocellular Carcinoma: Potential Applications in Combined Therapeutic Strategies and Promising Candidates of Treatment Response. Cancers (Basel) 2024; 16:766. [PMID: 38398157 PMCID: PMC10886468 DOI: 10.3390/cancers16040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing, and 40% of patients are diagnosed at advanced stages. Over the past 5 years, the number of clinically available treatments has dramatically increased for HCC, making patient management particularly complex. Immune checkpoint inhibitors (ICIs) have improved the overall survival of patients, showing a durable treatment benefit over time and a different response pattern with respect to tyrosine kinase inhibitors (TKIs). Although there is improved survival in responder cases, a sizeable group of patients are primary progressors or are ineligible for immunotherapy. Indeed, patients with nonviral etiologies, such as nonalcoholic steatohepatitis (NASH), and alterations in specific driver genes might be less responsive to immunotherapy. Therefore, improving the comprehension of mechanisms of drug resistance and identifying biomarkers that are informative of the best treatment approach are required actions to improve patient survival. Abundant evidence indicates that noncoding RNAs (ncRNAs) are pivotal players in cancer. Molecular mechanisms through which ncRNAs exert their effects in cancer progression and drug resistance have been widely investigated. Nevertheless, there are no studies summarizing the synergistic effect between ncRNA-based strategies and TKIs or ICIs in the preclinical setting. This review aims to provide up-to-date information regarding the possible use of ncRNAs as therapeutic targets in association with molecular-targeted agents and immunotherapies and as predictive tools for the selection of optimized treatment options in advanced HCCs.
Collapse
Affiliation(s)
- Clara Vianello
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisa Monti
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Ilaria Leoni
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Giuseppe Galvani
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy; (C.G.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy; (C.G.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesca Fornari
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| |
Collapse
|
12
|
Fattahi M, Rahdan F, Shaterabadi D, Zamani Sani M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Movahedpour A, Ghasemi H. MicroRNA biosensors for the detection of liver cancer. Clin Chim Acta 2024; 554:117796. [PMID: 38272250 DOI: 10.1016/j.cca.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
13
|
Abou-Shanab AM, Gaser OA, Salah RA, El-Badri N. Application of the Human Amniotic Membrane as an Adjuvant Therapy for the Treatment of Hepatocellular Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:129-146. [PMID: 38036871 DOI: 10.1007/5584_2023_792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity and mortality worldwide. Current therapeutic approaches suffer significant side effects and lack of clear understanding of their molecular targets. Recent studies reported the anticancer effects, immunomodulatory properties, and antiangiogenic effects of the human amniotic membrane (hAM). hAM is a transparent protective membrane that surrounds the fetus. Preclinical studies showed pro-apoptotic and antiproliferative properties of hAM treatment on cancer cells. Herein, we present the latest findings of the application of the hAM in combating HCC tumorigenesis and the underlying molecular pathogenies and the role of transforming growth factor-beta (TGFβ), P53, WNT/beta-catenin, and PI3K/AKT pathways. The emerging clinical applications of hAM in cancer therapy provide evidence for its diverse and unique features and suitability for the management of a wide range of pathological conditions.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
14
|
Dong X, Ren G, Chen Y, Yong H, Zhang T, Yin Q, Zhang Z, Yuan S, Ge Y, Duan S, Liu H, Wang D. Effects of MRI radiomics combined with clinical data in evaluating lymph node metastasis in mrT1-3a staging rectal cancer. Front Oncol 2023; 13:1194120. [PMID: 37909021 PMCID: PMC10614283 DOI: 10.3389/fonc.2023.1194120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Objective To investigate the value of a clinical-MRI radiomics model based on clinical characteristics and T2-weighted imaging (T2WI) for preoperatively evaluating lymph node (LN) metastasis in patients with MRI-predicted low tumor (T) staging rectal cancer (mrT1, mrT2, and mrT3a with extramural spread ≤ 5 mm). Methods This retrospective study enrolled 303 patients with low T-staging rectal cancer (training cohort, n = 213, testing cohort n = 90). A total of 960 radiomics features were extracted from T2WI. Minimum redundancy and maximum relevance (mRMR) and support vector machine were performed to select the best performed radiomics features for predicting LN metastasis. Multivariate logistic regression analysis was then used to construct the clinical and clinical-radiomics combined models. The model performance for predicting LN metastasis was assessed by receiver operator characteristic curve (ROC) and clinical utility implementing a nomogram and decision curve analysis (DCA). The predictive performance for LN metastasis was also compared between the combined model and human readers (2 seniors). Results Fourteen radiomics features and 2 clinical characteristics were selected for predicting LN metastasis. In the testing cohort, a higher positive predictive value of 75.9% for the combined model was achieved than those of the clinical model (44.8%) and two readers (reader 1: 54.9%, reader 2: 56.3%) in identifying LN metastasis. The interobserver agreement between 2 readers was moderate with a kappa value of 0.416. A clinical-radiomics nomogram and decision curve analysis demonstrated that the combined model was clinically useful. Conclusion T2WI-based radiomics combined with clinical data could improve the efficacy in noninvasively evaluating LN metastasis for the low T-staging rectal cancer and aid in tailoring treatment strategies.
Collapse
Affiliation(s)
- Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Ren
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Yong
- Department of Radiology, Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Tingting Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufeng Yin
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyang Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijun Yuan
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqiong Ge
- Department of Medicine, GE Healthcare China, Shanghai, China
| | - Shaofeng Duan
- Department of Medicine, GE Healthcare China, Shanghai, China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
You R, Yang Y, Yin G, Jiang H, Lu Y, Gui L, Bao J, Xu Q, Feng L. CPEB2 Suppresses Hepatocellular Carcinoma Epithelial-Mesenchymal Transition and Metastasis through Regulating the HIF-1α/miR-210-3p/CPEB2 Axis. Pharmaceutics 2023; 15:1887. [PMID: 37514073 PMCID: PMC10386397 DOI: 10.3390/pharmaceutics15071887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and high-mortality cancer worldwide, and its complexity necessitates novel strategies for drug selection and design. Current approaches primarily focus on reducing gene expression, while promoting gene overexpression remains a challenge. In this work, we studied the effect of cytoplasmic polyadenylation element binding protein 2 (CPEB2) in HCC by constructing tissue microarrays (TAMs) from 90 HCC cases and corresponding para-cancerous tissues. Our analysis showed that CPEB2 expression was significantly reduced in HCC tissues, and its low expression was associated with a higher recurrence risk and poorer prognosis in patients with head and neck cancer. CPEB2 was found to regulate HCC epithelial-mesenchymal transition (EMT) and metastasis through the HIF-1α/miR-210-3p/CPEB2 feedback circuit. Using the RNA binding protein immunoprecipitation (RIP) assay, we demonstrated that miR-210 directly governs the expression of CPEB2. The inverse relationship between CPEB2 expression and miR-210-3p in HCC tissues suggested that this regulatory mechanism is directly linked to HCC metastasis, EMT, and clinical outcomes. Moreover, utilizing the SM2miR database, we identified drugs that can decrease miR-210-3p expression, consequently increasing CPEB2 expression and providing new insights for drug development. In conclusion, our findings illustrated a novel HIF-1α/miR-210-3p/CPEB2 regulatory signaling pathway in HCC and highlighted the potential of enhancing CPEB2 expression through targeting miR-210-3p as a novel predictive biomarker and therapeutic strategy in HCC, as it is modulated by the HIF-1α/miR-210-3p/CPEB2 feedback circuit.
Collapse
Affiliation(s)
- Ran You
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guowen Yin
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hao Jiang
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yousheng Lu
- Department of Hepatobiliary Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Liang Gui
- Department of Hepatobiliary Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jun Bao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qingyu Xu
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
17
|
Guo J, Zhou X, Cheng L, Gao X. Construction of a miRNA-mRNA network related to exosomes in metastatic hepatocellular carcinoma. Heliyon 2023; 9:e15428. [PMID: 37101627 PMCID: PMC10123261 DOI: 10.1016/j.heliyon.2023.e15428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Aims This study aimed to construct a miRNA-mRNA network to elucidate the molecular mechanism of exosome function in metastatic HCC. Methods We explored the Gene Expression Omnibus (GEO) database and then analyzed the RNAs of 50 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) involved in the progression of metastatic HCC. Next, a miRNA-mRNA network related to exosomes in metastatic HCC was constructed on the basis of the identified DEMs and DEGs. Finally, the function of the miRNA-mRNA network was explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Immunohistochemistry was performed to validate expression of NUCKS1 in HCC specimens. Based on the immunohistochemistry, the score of the NUCKS1 expression was calculated, and the patients were divided into high- and low-expression patients, and the differences in survival between the two groups were compared. Results Through our analysis, 149 DEMs and 60 DEGs were identified. In addition, a miRNA-mRNA network, including 23 miRNAs and 14 mRNAs, was constructed. Low expression of NUCKS1 was validated in the majority of HCCs compared with their matched adjacent cirrhosis specimens (P < 0.001), which was consistent with our result of differential expression analyses. HCC patients with low expression of NUCKS1 had shorter overall survival than those with high NUCKS1 expression (P = 0.0441). Conclusions The novel miRNA-mRNA network will provide new insights into the underlying molecular mechanisms of exosomes in metastatic HCC. NUCKS1 might serve a potential therapeutic target to restrain the development of HCC.
Collapse
Affiliation(s)
- Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Long Cheng
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xuesong Gao
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Corresponding author. No. 8 Jingshun East Street, Chaoyang District, Beijing, China.
| |
Collapse
|
18
|
Zhou XH, Li JR, Zheng TH, Chen H, Cai C, Ye SL, Gao B, Xue TC. Portal vein tumor thrombosis in hepatocellular carcinoma: molecular mechanism and therapy. Clin Exp Metastasis 2023; 40:5-32. [PMID: 36318440 DOI: 10.1007/s10585-022-10188-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Portal vein tumor thrombosis (PVTT), a common complication of advanced hepatocellular carcinoma (HCC), remains the bottleneck of the treatments. Liver cancer cells potentially experienced multi-steps during PVTT process, including cancer cells leave from cancer nest, migrate in extracellular matrix, invade the vascular barrier, and colonize in the portal vein. Accumulated evidences have revealed numerous of molecular mechanisms including genetic and epigenetic regulation, cancer stem cells, immunosuppressive microenvironment, hypoxia, et al. contributed to the PVTT formation. In this review, we discuss state-of-the-art PVTT research on the potential molecular mechanisms and experimental models. In addition, we summarize PVTT-associated clinical trials and current treatments for PVTT and suppose perspectives exploring the molecular mechanisms and improving PVTT-related treatment for the future.
Collapse
Affiliation(s)
- Xing-Hao Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Jing-Ru Li
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Tang-Hui Zheng
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Hong Chen
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Chen Cai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Sheng-Long Ye
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai Medical College, Shanghai, 200032, China.
| | - Tong-Chun Xue
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Ji F, Zhang J, Liu N, Gu Y, Zhang Y, Huang P, Zhang N, Lin S, Pan R, Meng Z, Feng XH, Roessler S, Zheng X, Ji J. Blocking hepatocarcinogenesis by a cytochrome P450 family member with female-preferential expression. Gut 2022; 71:2313-2324. [PMID: 34996827 DOI: 10.1136/gutjnl-2021-326050] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
OBJECTS The incidence of hepatocellular carcinoma (HCC) shows an obvious male dominance in rodents and humans. We aimed to identify the key autosomal liver-specific sex-related genes and investigate their roles in hepatocarcinogenesis. DESIGN Two HCC cohorts (n=551) with available transcriptome and metabolome data were used. Class comparisons of omics data and ingenuity pathway analysis were performed to explore sex-related molecules and their associated functions. Functional assays were employed to investigate roles of the key candidates, including cellular assays, molecular assays and multiple orthotopic HCC mouse models. RESULTS A global comparison of multiple omics data revealed 861 sex-related molecules in non-tumour liver tissues between female and male HCC patients, which denoted a significant suppression of cancer-related diseases and functions in female liver than male. A member of cytochrome P450 family, CYP39A1, was one of the top liver-specific candidates with significantly higher levels in female vs male liver. In HCC tumours, CYP39A1 expression was dramatically reduced in over 90% HCC patients. Exogenous CYP39A1 significantly blocked tumour formation in both female and male mice and partially reduced the sex disparity of hepatocarcinogenesis. The HCC suppressor role of CYP39A1 did not rely on its known P450 enzyme activity but its C-terminal region, by which CYP39A1 impeded the transcriptional activation activity of c-Myc, leading to a significant inhibition of hepatocarcinogenesis. CONCLUSIONS The liver-specific CYP39A1 with female-preferential expression was a strong suppressor of HCC development. Strategies to up-regulate CYP39A1 might be promising methods for HCC treatment in both women and men in future.
Collapse
Affiliation(s)
- Fubo Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianjuan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Niya Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanzhuo Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peipei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nachuan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengda Lin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Pan
- Department of Pathology and Pathophysiology, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xin Zheng
- Taoharmony Biotech L.L.C, Hangzhou, Zhejiang, China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Prognostic Value of Stem Cell Index-Related Characteristics in Primary Hepatocellular Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2672033. [PMID: 35800238 PMCID: PMC9200557 DOI: 10.1155/2022/2672033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
The objective of this study is to form a cancer stem cell index-based model to stratify HCC risk and predict survival. After screening the Tumor Genome Atlas (TCGA) of liver and normal liver tissue samples, we obtained differentially expressed genes (DEGs). We employed a weighted correlation network analysis (WGCNA) and differentially expressed genes were studied in HCC to find the modules most associated with cancer stem cells (mRNAsi). At the same time, gene ontology and Kyoto Genome Encyclopedia (KEGG) were used for functional annotation and combined with LASSO, univariate, and multivariate COX regression analyses, a prediction model of key module genes of cancer stem cells was developed. The model's clinical efficacy was measured using the C index, calibration curve, multiindex ROC curve, and clinical decision curve. WGCNA found that black modules were most correlated with tumour stem cell index. Seven genes (CSDC2, GNA14, LGI2, MMRN1, PDE2A, SELP, and STK32B) were filtered by univariate, LASSO, and multivariate Cox regression analyses to establish the primary HCC model. The survival analysis and ROC curve in the TCGA training and validation cohort showed good performance. The independent prognostic factor of primary HCC was risk score, according to univariate and multivariate Cox regression analyses. It is found that the stem cell index model of 7 genes could predict factors independently, indicating that signatures of the stem cell will play a significant role in liver cancer survival prediction and risk stratification.
Collapse
|
22
|
Nazarnezhad MA, Barazesh M, Kavousipour S, Mohammadi S, Eftekhar E, Jalili S. The Computational Analysis of Single Nucleotide Associated with MicroRNA Affecting Hepatitis B Infection. Microrna 2022; 11:139-162. [PMID: 35579134 DOI: 10.2174/2211536611666220509103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a pivotal role in Hepatitis B Virus (HBV) infection and its complications by targeting the cellular transcription factors required for gene expression or directly binding to HBV transcripts. Single Nucleotide Polymorphisms (SNPs) in miRNA genes affect their expression and the regulation of target genes, clinical course, diagnosis, and therapeutic interventions of HBV infection. METHODS Computational assessment and cataloging of miRNA gene polymorphisms targeting mRNA transcripts straightly or indirectly through the regulation of hepatitis B infection by annotating the functional impact of SNPs on mRNA-miRNA and miRNA-RBS (miRNA binding sites) interaction were screened by applying various universally available datasets such as the miRNA SNP3.0 software. RESULTS 2987 SNPs were detected in 139 miRNAs affecting hepatitis B infection. Among them, 313 SNPs were predicted to have a significant role in the progression of hepatitis B infection. The computational analysis also revealed that 45 out of the 313 SNPs were located in the seed region and were more important than others. Has-miR-139-3p had the largest number of SNPs in the seed region (n=6). On the other hand, proteoglycans in cancer, adherens junction, lysine degradation, NFkappa B signaling cascade, ECM-receptor binding, viral carcinogenesis, fatty acid metabolism, TGF-beta signaling pathway, p53 signaling pathway, immune evasion related pathways, and fatty acid biosynthesis were the most important pathways affected by these 139 miRNAs. CONCLUSION The results revealed 45 SNPs in the seed region of 25 miRNAs as the catalog in miRNA genes that regulated the hepatitis B infection. The results also showed the most important pathways regulated by these miRNAs that can be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Mirza Ali Nazarnezhad
- Infectious and Tropical Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Minatel BC, Cohn DE, Pewarchuk ME, Barros-Filho MC, Sage AP, Stewart GL, Marshall EA, Telkar N, Martinez VD, Reis PP, Robinson WP, Lam WL. Genetic and Epigenetic Mechanisms Deregulate the CRL2pVHL Complex in Hepatocellular Carcinoma. Front Genet 2022; 13:910221. [PMID: 35664333 PMCID: PMC9159809 DOI: 10.3389/fgene.2022.910221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.
Collapse
Affiliation(s)
- Brenda C. Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- *Correspondence: David E. Cohn,
| | - Michelle E. Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Mateus C. Barros-Filho
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Adam P. Sage
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Nikita Telkar
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Patricia P. Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
24
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Mir IH, Jyothi KC, Thirunavukkarasu C. The prominence of potential biomarkers in the diagnosis and management of hepatocellular carcinoma: Current scenario and future anticipation. J Cell Biochem 2021; 123:1607-1623. [PMID: 34897788 DOI: 10.1002/jcb.30190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and truculent types of cancer. Early detection of HCC is a massive concern that can boost the overall survival rates of HCC patients. As a result, there is a continual quest for advancements in screening, diagnosis, and treatment strategies to enhance the prognosis at its early stages. However, the confluence of inflammation and cirrhosis hampers the early detection of HCC. The analysis of different types of biomarkers such as tissue biomarkers, serum biomarkers, protein biomarkers, autoantibody markers, and improved imaging techniques has played a vital role in ameliorating HCC monitoring responses. Therefore biomarkers that can identify HCC early with a high degree of sensitivity and specificity might be prodigiously serviceable in the diagnosis and treatment of this notorious disorder. This study offers an overview of the contemporary understanding of several types of biomarkers implicated in hepatocarcinogenesis and their applications in monitoring, diagnosis, and prognosis presage. In additament, we address the role of image techniques associated with HCC diagnosis.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - K C Jyothi
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
26
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Han JW, Sung PS, Jang JW, Choi JY, Yoon SK. Whole blood viscosity is associated with extrahepatic metastases and survival in patients with hepatocellular carcinoma. PLoS One 2021; 16:e0260311. [PMID: 34855786 PMCID: PMC8638904 DOI: 10.1371/journal.pone.0260311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Whole blood viscosity (WBV) is increased in cancer patients and associated with the advanced stage with systemic metastases. However, relevance of WBV in hepatocellular carcinoma (HCC) remains unclear. This pilot study included a discovery cohort of 148 treatment-naïve HCC patients with preserved liver function, and a validation cohort of 33 treatment-experienced HCC patients with nivolumab. Systolic and diastolic WBV was measured using an automated scanning capillary tube viscometer at diagnosis or before the nivolumab treatment. Extrahepatic metastases were observed in 15 treatment-naïve patients (11.3%) at diagnosis. Portal vein tumor thrombosis (PVTT), tumor size, number of tumors, and systolic/diastolic WBV were factors associated with extrahepatic metastases. Systolic WBV and diastolic WBV were significantly increased in patients with metastases compared with patients without metastases. Multivariate logistic regression showed that high diastolic WBV > 16 cP was an independent factor associated with metastases. Notably, patients who developed extrahepatic metastases during the observation period among patients without metastases at diagnosis had higher diastolic WBV initially. Patients with high diastolic WBV had poor survival, and multivariate Cox regression analyses showed high diastolic WBV was an independent risk factor for poor survival with the Child-Pugh B7 and PVTT. High diastolic WBV also predicted poor survival in patients with low alpha-fetoprotein (AFP) and proteins induced by vitamin K antagonist-II (PIVKA-II) levels. In 33 nivolumab-treated patients, high diastolic WBV before the treatment was also tended to be associated with overall and progression-free survival. Our study is the first in which high WBV is associated with the distant metastases and survival in patients with HCC, but future prospective, large cohort studies are necessary to validate the results.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
28
|
Molecular classification of hepatocellular carcinoma: prognostic importance and clinical applications. J Cancer Res Clin Oncol 2021; 148:15-29. [PMID: 34623518 DOI: 10.1007/s00432-021-03826-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal human malignancy with a very low overall and long-term survival rate. Poor prognostic outcomes are predominantly associated with HCC due to a huge landscape of heterogeneity found in the deadliest disease. However, molecular subtyping of HCC has significantly improved the knowledge of the underlying mechanisms that contribute towards the heterogeneity and progression of the disease. In this review, we have extensively summarized the current information available about molecular classification of HCC. This review can be of great significance for providing the insight information needed for development of novel, efficient and personalized therapeutic options for the treatment of HCC patients globally.
Collapse
|
29
|
Kawahara K, Nagata M, Yoshida R, Hirosue A, Tanaka T, Matsuoka Y, Arita H, Nakashima H, Sakata J, Yamana K, Kawaguchi S, Gohara S, Nagao Y, Hirayama M, Takahashi N, Hirayama M, Nakayama H. miR-30a attenuates drug sensitivity to 5-FU by modulating cell proliferation possibly by downregulating cyclin E2 in oral squamous cell carcinoma. Biochem Biophys Rep 2021; 28:101114. [PMID: 34589618 PMCID: PMC8461355 DOI: 10.1016/j.bbrep.2021.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
We aimed to determine the functional role of the miRNA, which affects drug sensitivity to 5-FU in oral squamous cell carcinoma (OSCC), using two types of 5-FU-resistant and parental OSCC cell lines. MiRNA microarray data showed that miR-30a was significantly upregulated in two resistant cell lines. Therefore, we investigated the effects and molecular mechanism of miR-30a on 5-FU sensitivity. Stable overexpression of miR-30a in parental OSCC cells decreased cell proliferation and attenuated drug sensitivity to 5-FU. Cell cycle analysis indicated that miR-30a overexpression increased the proportion of G1 phase cells and decreased the proportion of S phase cells. MiR-30a knockdown using siRNA reversed the effects of miR-30a overexpression. DNA microarray analysis using miR-30a-overexpressing cell lines and a TargetScan database search showed that cyclin E2 (CCNE2) is a target of miR-30a. A luciferase reporter assay confirmed that a miR-30a mimic interacted with the specific binding site in the 3' UTR of CCNE2. CCNE2 knockdown with siRNA in OSCC cells yielded decreased drug sensitivity to 5-FU, similar to miR-30a overexpressing cells. These findings suggest that miR-30a in OSCC may be a novel biomarker of 5-FU-resistant tumors, as well as a therapeutic target for combating resistance. miR-30a overexpression increased the proportion of G1 phase cells. miR-30a knockdown using si-RNA reversed the effects of miR-30a overexpression. CCNE2 knockdown with si-RNA in OSCC cells decreased drug sensitivity to 5-FU.
Collapse
Affiliation(s)
- Kenta Kawahara
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takuya Tanaka
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Dentistry and Oral Surgery, Amakusa Central General Hospital, Amakusa 863-0033, Japan
| | - Yuichiro Matsuoka
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Oral & Maxillofacial Surgery, Kyushu Central Hospital, Fukuoka 815-8588, Japan
| | - Junki Sakata
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Sho Kawaguchi
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shunsuke Gohara
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Hirayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Corresponding author.
| |
Collapse
|
30
|
Chen J, Zhou L, Yang J, Xie H, Liu L, Li Y. Knockdown of STK39 suppressed cell proliferation, migration, and invasion in hepatocellular carcinoma by repressing the phosphorylation of mitogen-activated protein kinase p38. Bioengineered 2021; 12:6529-6537. [PMID: 34519635 PMCID: PMC8806584 DOI: 10.1080/21655979.2021.1973876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a serious malignant tumor of the liver. It has been reported that serine/threonine kinase 39 (STK39) participates in tumorigenesis. However, the role of STK39 in HCC remains unknown. In this study, the qRT-PCR and western blot assay demonstrated that STK39 expression was enhanced in HCC patients and tissues. Moreover, CCK-8 and colony formation assays confirmed that knockdown of STK39 suppressed SK-HEP-1 and Huh7 cells proliferation. Furthermore, wound healing assay and transwell assay revealed that knockdown of STK39 repressed SK-HEP-1 and Huh7 cells migration and invasion. Interestingly, knockdown of STK39 reduced p-p38/p38 ratio and levels of c-Myc. Consistently, knockdown of STK39 inhibited the HCC tumor growth in vivo. In summary, knockdown of STK39 suppressed the proliferation, migration, and invasion of HCC cells by inducing the lower levels of p-p38, which might provide a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of DeYang City, Deyang City, Sichuan Province, China
| | - Luke Zhou
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of DeYang City, Deyang City, Sichuan Province, China
| | - Jie Yang
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of DeYang City, Deyang City, Sichuan Province, China
| | - Hui Xie
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of DeYang City, Deyang City, Sichuan Province, China
| | - Lin Liu
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of DeYang City, Deyang City, Sichuan Province, China
| | - Youwei Li
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of DeYang City, Deyang City, Sichuan Province, China
| |
Collapse
|
31
|
Hepatic Cancer Stem Cells: Molecular Mechanisms, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2021; 13:cancers13184550. [PMID: 34572776 PMCID: PMC8472624 DOI: 10.3390/cancers13184550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. HCC is associated with multiple risk factors and is characterized by a marked tumor heterogeneity that makes its molecular classification difficult to apply in the clinics. The lack of circulating biomarkers for the diagnosis, prognosis, and prediction of response to treatments further undermines the possibility of developing personalized therapies. Accumulating evidence affirms the involvement of cancer stem cells (CSCs) in tumor heterogeneity, recurrence, and drug resistance. Owing to the contribution of CSCs to treatment failure, there is an urgent need to develop novel therapeutic strategies targeting, not only the tumor bulk, but also the CSC subpopulation. Clarification of the molecular mechanisms influencing CSC properties, and the identification of their functional roles in tumor progression, may facilitate the discovery of novel CSC-based therapeutic targets to be used alone, or in combination with current anticancer agents, for the treatment of HCC. Here, we review the driving forces behind the regulation of liver CSCs and their therapeutic implications. Additionally, we provide data on their possible exploitation as prognostic and predictive biomarkers in patients with HCC.
Collapse
|
32
|
Ge Y, Gu P, Wang W, Cao L, Zhang L, Li J, Mu W, Wang H. Benzo[a]pyrene stimulates miR-650 expression to promote the pathogenesis of fatty liver disease and hepatocellular carcinoma via SOCS3/JAK/STAT3 cascades. J Mol Cell Biol 2021; 13:mjab052. [PMID: 34450627 PMCID: PMC8697348 DOI: 10.1093/jmcb/mjab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Modern diets, which often feature high levels of fat and charcoal-grilled meat, contribute to the pathogenesis of obesity and nonalcoholic fatty liver disease (NAFLD), resulting in liver cancer progression. Benzo(a)pyrene (B[a]P) is a common environmental and foodborne pollutant found in smoke and fire-grilled foods, which can have an adverse effect on human health. Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer and the second leading cause of cancer-related deaths worldwide. The epidemiological studies suggest that both environmental risk factors and chronic liver injury including NAFL are important for HCC development, but the precise mechanisms linking eating habits to hepato-carcinogenesis remain unclear. In the present study, we demonstrated that various miRNAs in B[a]P-exposed tumor cells contribute to tumor metastasis, among which miR-650 could be the most potent inducer. Furthermore, we found that suppressor of cytokine signaling 3 (SOCS3) is directly regulated by miR-650 and its suppression regulates the activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) cascade. Our findings reveal a possible adverse outcome pathway of SOCS3/JAK/STAT3 regulation in B[a]P-induced HCC progress. These results provide a better understanding of the adverse effects of chronic exposure to B[a]P on human health.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People's Hospital, School of Medicine,
Tongji University, Shanghai 200072, China
| | - Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Lulu Zhang
- Institute of Military Health Management, Second Military Medical
University, Shanghai 200433, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| |
Collapse
|
33
|
Cancer-Associated Fibroblasts in Conversation with Tumor Cells in Endometrial Cancers: A Partner in Crime. Int J Mol Sci 2021; 22:ijms22179121. [PMID: 34502029 PMCID: PMC8430936 DOI: 10.3390/ijms22179121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022] Open
Abstract
A tumor cell carrying characteristic genomic alteration(s) exists within its host’s microenvironment. The tumor microenvironment (TME) renders holistic support to the tumor via cross-talk between tumor cells and three components of TME, immune components, vascular components, and fibroblast components. The tempero-spatial interaction of tumor cells with its microenvironment is the deterministic factor for tumor growth, progression, resistance to therapy, and its outcome in clinics. TME (1) facilitates proliferation, and the ensuing metastasis-associated phenotypes, (2) perturbs immune surveillance and supports tumor cells in their effort to evade immune recognition, and (3) actively participates in developing drug-induced resistance in cancer cells. Cancer-Associated Fibroblast (CAF) is a unique component of TME. CAF is the host mesenchyme immediately surrounding the tumor cells in solid tumors. It facilitates tumor growth and progression and participates in developing drug resistance in tumor cells by playing a critical role in all the ways mentioned above. The clinical outcome of a disease is thus critically contributed to by the CAF component of TME. Although CAFs have been identified historically, the functional relevance of CAF-tumor cell cross-talk and their influence on angiogenic and immune-components of TME are yet to be characterized in solid tumors, especially in endometrial cancers. Currently, the standard of care for the treatment of endometrial cancers is primarily guided by therapies directed towards the disease’s tumor compartment and immune compartments. Unfortunately, in the current state of therapies, a complete response (CR) to the therapy is still limited despite a more commonly achieved partial response (PR) and stable disease (SD) in patients. Acknowledging the limitations of the current sets of therapies based on only the tumor and immune compartments of the disease, we sought to put forward this review based on the importance of the cross-talk between CAF of the tumor microenvironment and tumor cells. The premise of the review is to recognize the critical role of CAF in disease progression. This manuscript presents a systemic review of the role of CAF in endometrial cancers. We critically interrogated the active involvement of CAF in the tumor compartment of endometrial cancers. Here we present the functional characteristics of CAF in the context of endometrial cancers. We review (1) the characteristics of CAF, (2) their evolution from being anti-tumor to pro-tumor, (3) their involvement in regulating growth and several metastasis-associated phenotypes of tumor cells, (4) their participation in perturbing immune defense and evading immune surveillance, and (5) their role in mediating drug resistance via tumor-CAF cross-talk with particular reference to endometrial cancers. We interrogate the functional characteristics of CAF in the light of its dialogue with tumor cells and other components of TME towards developing a CAF-based strategy for precision therapy to supplement tumor-based therapy. The purpose of the review is to present a new vision and initiate a thought process which recognizes the importance of CAF in a tumor, thereby resulting in a novel approach to the design and management of the disease in endometrial cancers.
Collapse
|
34
|
MiR-1299 functions as a tumor suppressor to inhibit the proliferation and metastasis of gastric cancer by targeting ARF6. Genes Genomics 2021; 44:237-245. [PMID: 34313969 DOI: 10.1007/s13258-021-01124-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND MiRNAs belong to non-coding RNAs that are involved in cancer development. Acting as a mediator, they could regulate the expression level of numerous gens. However, the expression and function of miR-1299 in gastric cancer (GC) are not clear. OBJECTIVE To explore the role of miR-1299 in the process of GC. METHODS We detected the levels of miR-1299 in clinical samples of GC and investigated the role of miR-1299 in the regulation of the GC cells proliferation, apoptosis and metastasis. Luciferase reporter assay was employed to verify the target of miR-1299. Additionally, the proliferation, apoptosis and metastasis of AGS and SGC7901 cells were analyzed after the overexpression of miR-1299. RESULTS Our study showed the expression of miR-1299 was decreased in GC tissues and cell lines. It indicated that the cell proliferation, migration and invasion was inhibited, while the cell apoptosis was promoted by the over-expressed miR-1299. Also, we found that miR-1299 could directly target the 3'-untranslated region (3'UTR) of ARF6 genes. In addition, rescue assay demonstrated that miR-1299 overexpression promoted the cell apoptosis and inhibited cell growth, which could be attenuated by the overexpression of ARF6. CONCLUSIONS These findings indicate that miR-1299 regulates cell progression in GC by targeting ARF6 genes, and suggest that miR-1299 may be a tumor suppressor in the GC progression.
Collapse
|
35
|
Mao HX, Chen BW, Wang J, Ma CY, Gan YC, Qiu KJ. miR-3677-5p promotes the proliferation, migration and invasion of hepatocellular carcinoma cells and is associated with prognosis. Exp Ther Med 2021; 22:780. [PMID: 34055079 PMCID: PMC8145920 DOI: 10.3892/etm.2021.10212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNA (miRNA/miR)-3677 has been indicated to be negatively associated with the survival of patients with hepatocellular carcinoma (HCC) based on The Cancer Genome Atlas database. However, as a novel miRNA, the role of miR-3677-5p in HCC has remained to be elucidated. In the present study, the expression of miR-3677-5p was assessed in HCC tissues and cell lines using reverse transcription-quantitative PCR. Survival analysis was performed using Kaplan-Meier curves. Furthermore, the prognostic significance of miR-3677-5p was evaluated using Cox regression analysis. The effects of miR-3677-5p on cell proliferation, as well as migration and invasion capacities, were analyzed using Cell Counting Kit-8, crystal violet and Transwell assays. The results demonstrated that the level of miR-3677-5p expression was upregulated in human HCC tissues and cell lines and that miR-3677-5p expression was closely associated with tumor size, TNM stage and vascular invasion. Furthermore, high miR-3677-5p expression was significantly associated with unfavorable clinical prognosis for patients with HCC. Overexpression of miR-3677-5p was indicated to significantly promote the proliferation, migration and invasion of HCC cells, whereas knockdown of miR-3677-5p was observed to have an inhibitory effect. In conclusion, the present study demonstrated that miR-3677-5p acts as an oncogene that has a critical role in the regulation of HCC proliferation and progression. Hence, miR-3677-5p may serve as a valuable prognostic biomarker and may be developed as a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Hai-Xiang Mao
- Department of Pancreatic and Hepatobiliary Surgery, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Bai-Wen Chen
- Department of Pancreatic and Hepatobiliary Surgery, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jie Wang
- Department of Pancreatic and Hepatobiliary Surgery, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Chen-Yang Ma
- Department of Pancreatic and Hepatobiliary Surgery, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yi-Chao Gan
- Department of Pancreatic and Hepatobiliary Surgery, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Kai-Jie Qiu
- Department of Pancreatic and Hepatobiliary Surgery, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
36
|
Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SLD, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, Lopitz-Otsoa F, Juan VGD, McCain MV, Perugorria MJ, Mabe J, Navasa N, Rodrigues CMP, Fabregat I, Boix L, Sapena V, Anguita J, Lu SC, Mato JM, Banales JM, Villa E, Reeves HL, Bruix J, Reig M, Marin JJG, Delgado TC, Martínez-Chantar ML. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis 2021; 12:555. [PMID: 34050139 PMCID: PMC8163806 DOI: 10.1038/s41419-021-03827-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Barbier-Torres
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio López de Davalillo
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Elisa Herraez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Virginia Gutiérrez-de Juan
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Misti V McCain
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Maria J Perugorria
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jon Mabe
- Electronics and Communications Unit, IK4-Tekniker, Eibar, Spain
| | - Nicolás Navasa
- Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona, Barcelona, Spain
| | - Loreto Boix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Victor Sapena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Juan Anguita
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria and University of Modena and Reggio Emilia, Modena, Italy
| | - Helen L Reeves
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Freeman Road, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Jordi Bruix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Reig
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María L Martínez-Chantar
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Gramantieri L, Giovannini C, Piscaglia F, Fornari F. MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:369-385. [PMID: 34012928 PMCID: PMC8126872 DOI: 10.2147/jhc.s268292] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers helping patient allocation to the best therapeutic option contribute to poor prognosis in advanced stages. MicroRNAs’ (miRNAs) deregulated expression contributes to tumor development and progression and influences drug resistance in HCC. Accordingly, miRNAs have been extensively investigated as both biomarkers and therapeutic targets. The diagnostic and prognostic roles of circulating miRNAs have been ascertained, though with some inconsistencies across studies. From a therapeutic perspective, miRNA-based approaches demonstrated safety profiles and antitumor efficacy in HCC animal models. Nevertheless, caution should be used when transferring preclinical findings to the clinic, due to possible molecular inconsistency between animal models and the heterogeneous patterns of human diseases. A wealth of information is offered by preclinical studies exploring the mechanisms driving miRNAs’ aberrant expression, the molecular cascades triggered by miRNAs and the corresponding phenotypic changes. Ex-vivo analyses confirmed these results, further shedding light on the intricacy of the human disease often overcoming pre-clinical models. This complexity seems to be ascribed to the intrinsic heterogeneity of HCC, to different risk factors driving its development, as well as to changes across stages and previous treatments. Preliminary findings suggest that miRNAs associated with specific risk factors might be more informative in defined patients’ subgroups. The first issue to be considered when trying to envisage a possible translational perspective is the molecular context that often drives different miRNA functions, as clearly evidenced by “dual” miRNAs. Concerning the possible roles of miRNAs as biomarkers and therapeutic targets, we will focus on miRNAs’ involvement in metabolic pathways and in the modulation of tumor microenvironment, to support their exploitation in defined contexts.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Fornari
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy.,Department for Life Quality Studies (QuVi), University of Bologna, Rimini, Italy
| |
Collapse
|
38
|
Jiang R, Xie J, Hong X, Man T, Yang M, Qin Y, Tang C, Lan Q, Rong Z, Mo C. The Novel Target of Liver Cancer: MicroRNA-4324 Regulates Cell Proliferation and Migration via Targeting Neuraminidase 3. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: MicroRNA-4324 has been reported to regulate various biological malignant cancer. Nonetheless, the expression and molecular mechanism of miR-4324 in liver cancer remain rarely known. This study aimed to investigate the effect miR-4324 on the proliferation, invasion
and migration of hepatoma cells. Methods: The mRNA level of miR-4324 was assessed in four hepatoma cell lines (HepG2, Huh7, MHCC97, HB611) and human embryonic liver cell, HHL5. MiR-4324 was over-expressed in hepatoma cells. Subsequently, the effects of miR-4324 on cell proliferation,
migration and invasion and the underlying molecular mechanisms were detected. Results: Our data indicated that miR-4324 was down-regulation in hepatoma cell lines compared with HHL5. Overexpression of miR-4324 inhibits cellular proliferation, colony-formation, migration and invasion
abilities of hepatoma cells. However, the biological effects of miR-4324 overexpression on hepatoma cells were reversed after overexpressing NEU3. Conclusions: Our findings concluded that miR-4324 inhibits biological functions of hepatoma cells by targeting NEU3 and it might be a potential
target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ruiyuan Jiang
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Jiacheng Xie
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Xiaohua Hong
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Tingting Man
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Mengna Yang
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Yanchun Qin
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Cuijuan Tang
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Qiaoyu Lan
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Zhen Rong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Chunmei Mo
- Department of Hepatology The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| |
Collapse
|
39
|
Fu K, Li Y, Song J, Cai W, Wu W, Ye X, Xu J. Identification of a MicroRNA Signature Associated With Lymph Node Metastasis in Endometrial Endometrioid Cancer. Front Genet 2021; 12:650102. [PMID: 33936173 PMCID: PMC8082502 DOI: 10.3389/fgene.2021.650102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor in endometrial cancer. Anomalous microRNAs (miRNAs) are associated with cell functions and are becoming a powerful tool to characterize malignant transformation and metastasis. The aim of this study was to construct a miRNA signature to predict LNM in endometrial endometrioid carcinoma (EEC). Method Candidate target miRNAs related to LNM in EEC were screened by three methods including differentially expressed miRNAs (DEmiRs), weighted gene co-expression network analysis (WGCNA), and decision tree algorithms. Samples were randomly divided into the training and validation cohorts. A miRNA signature was built using a logistic regression model and was evaluated by the area under the curve (AUC) of receiver operating characteristic curve (ROC) and decision curve analysis (DCA). We also conducted pathway enrichment analysis and miRNA-gene regulatory network to look for potential genes and pathways engaged in LNM progression. Survival analysis was performed, and the miRNAs were tested whether they expressed differently in another independent GEO database. Result Thirty-one candidate miRNAs were screened and a final 15-miRNA signature was constructed by logistic regression. The model showed good calibration in the training and validation cohorts, with AUC of 0.824 (95% CI, 0.739-0.912) and 0.821 (95% CI, 0.691-0.925), respectively. The DCA demonstrated the miRNA signature was clinically useful. Hub miRNAs in signature seemed to contribute to EEC progression via mitotic cell cycle, cellular protein modification process, and molecular function. MiR-34c was statistically significant in survival that a higher expression of miR-34c indicated a higher survival time. MiR-34c-3p, miR-34c-5p, and miR-34b-5p were expressed differentially in GSE75968. Conclusion The miRNA signature could work as a noninvasive method to detect LNM in EEC with a high prediction accuracy. In addition, miR-34c cluster may be a key biomarker referring LNM in endometrial cancer.
Collapse
Affiliation(s)
- Kaiyou Fu
- School of Medicine, Zhejiang University, Hangzhou, China.,Women's hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanrui Li
- School of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jianyuan Song
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangyu Cai
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohang Ye
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Wei X, Zhao L, Ren R, Ji F, Xue S, Zhang J, Liu Z, Ma Z, Wang XW, Wong L, Liu N, Shi J, Guo X, Roessler S, Zheng X, Ji J. MiR-125b Loss Activated HIF1α/pAKT Loop, Leading to Transarterial Chemoembolization Resistance in Hepatocellular Carcinoma. Hepatology 2021; 73:1381-1398. [PMID: 32609900 PMCID: PMC9258000 DOI: 10.1002/hep.31448] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Transarterial chemoembolization (TACE) is a standard locoregional therapy for patients with hepatocellular carcinoma (HCC) patients with a variable overall response in efficacy. We aimed to identify key molecular signatures and related pathways leading to HCC resistance to TACE, with the hope of developing effective approaches in preselecting patients with survival benefit from TACE. APPROACH AND RESULTS Four independent HCC cohorts with 680 patients were used. MicroRNA (miRNA) transcriptome analysis in patients with HCC revealed a 41-miRNA signature related to HCC recurrence after adjuvant TACE, and miR-125b was the top reduced miRNA in patients with HCC recurrence. Consistently, patients with HCC with low miR-125b expression in tumor had significantly shorter time to recurrence following adjuvant TACE in two independent cohorts. Loss of miR-125b in HCC noticeably activated the hypoxia inducible factor 1 alpha subunit (HIF1α)/pAKT loop in vitro and in vivo. miR-125b directly attenuated HIF1α translation through binding to HIF1A internal ribosome entry site region and targeting YB-1, and blocked an autocrine HIF1α/platelet-derived growth factor β (PDGFβ)/pAKT/HIF1α loop of HIF1α translation by targeting the PDGFβ receptor. The miR-125b-loss/HIF1α axis induced the expression of CD24 and erythropoietin (EPO) and enriched a TACE-resistant CD24-positive cancer stem cell population. Consistently, patients with high CD24 or EPO in HCC had poor prognosis following adjuvant TACE therapy. Additionally, in patients with HCC having TACE as their first-line therapy, high EPO in blood before TACE was also noticeably related to poor response to TACE. CONCLUSIONS MiR-125b loss activated the HIF1α/pAKT loop, contributing to HCC resistance to TACE and the key nodes in this axis hold the potential in assisting patients with HCC to choose TACE therapy.
Collapse
Affiliation(s)
- Xiyang Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Zhao
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Ruizhe Ren
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fubo Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuting Xue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jianjuan Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhaogang Liu
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Zhao Ma
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Xin W. Wang
- Liver Cancer Program and Laboratory of Human Carcinogenesis, Cancer for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Linda Wong
- University of Hawaii Cancer Center, Honolulu, HI
| | - Niya Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiong Shi
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
He W, Liu X, Luo Z, Li L, Fang X. FGF16 regulated by miR-520b enhances the cell proliferation of lung cancer. Open Med (Wars) 2021; 16:419-427. [PMID: 33758783 PMCID: PMC7961213 DOI: 10.1515/med-2021-0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
FGF16 is implicated in the progression of some specific types of cancers, such as embryonic carcinoma, ovarian cancer, and liver cancer. Yet, the function of FGF16 in the development of lung cancer remains largely unexplored. In this study, we present the novel function of FGF16 and the regulation of miR-520b on FGF16 in lung cancer progression. In clinical lung cancer tissues, FGF16 is overexpressed and its high level is negatively associated with the low level of miR-520b. Furthermore, both the transcription and translation levels of FGF16 are restrained by miR-520b in lung cancer cells. For the regulatory mechanism investigation, miR-520b is able to directly bind to the 3′-untranslated region (3′UTR) of FGF16 mRNA, leading to its mRNA cleavage in the cells. Functionally, miR-520b reduces the growth of lung cancer and its inhibitor anti-miR520b is able to promote the growth through competing endogenous miR-520b. Moreover, FGF16 silence using RNA interference is capable of doing great damage to anti-miR-520b-accelerated growth of lung cancer. Thus, our finding indicates that FGF16 is a new target gene of miR-520b in lung cancer. For lung cancer, FGF16 may serve as a novel biomarker and miR-520b/FGF16 may be useful in clinical treatment.
Collapse
Affiliation(s)
- Wenfeng He
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510145, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Zhijie Luo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Longmei Li
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510145, China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| |
Collapse
|
42
|
Li J, Ren H, Wang J, Zhang P, Shi X. Extracellular HMGB1 promotes CD44 expression in hepatocellular carcinoma via regulating miR-21. Aging (Albany NY) 2021; 13:8380-8395. [PMID: 33661757 PMCID: PMC8034936 DOI: 10.18632/aging.202649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/12/2020] [Indexed: 04/11/2023]
Abstract
As a member of damage-associated molecular patterns (DAMPs), extracellular high-mobility group box 1 (HMGB1) plays a critical role in hepatocellular carcinoma (HCC) progression. Cluster differentiation 44 (CD44) has been demonstrated to participate in HCC progression. However, the relationship between extracellular HMGB1 and CD44 remains unclear. In this study, our results indicated that extracellular HMGB1 promoted the invasion, sphere formation and EMT process of HCC by increasing CD44 expression, which was dependent on miR-21. Moreover, miR-21 upregulated CD44 expression via activating OCT4/TGF-β1 signaling. Finally, we demonstrated the activation of Rage/JNK signaling caused by extracellular HMGB1 was responsible for miR-21 overexpression. Together, these findings reveal an important role of extracellular HMGB1 in HCC progression through upregulating miR-21/CD44.
Collapse
Affiliation(s)
- Jun Li
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Pengfei Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
43
|
Giovannini C, Fornari F, Piscaglia F, Gramantieri L. Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells 2021; 10:cells10030521. [PMID: 33804511 PMCID: PMC8000248 DOI: 10.3390/cells10030521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.
Collapse
Affiliation(s)
- Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2144903; Fax: +39-051-2143902
| | - Francesca Fornari
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
| |
Collapse
|
44
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Li W, Kong X, Huang T, Shen L, Wu P, Chen QF. Bioinformatic analysis and in vitro validation of a five-microRNA signature as a prognostic biomarker of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1422. [PMID: 33313167 PMCID: PMC7723630 DOI: 10.21037/atm-20-2509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Existing research has identified correlations between numerous microRNAs (miRNAs) and the prognosis of hepatocellular carcinoma (HCC). However, the role of a combination of miRNAs in predicting HCC survival requires further elucidation. Methods miRNA expression profiles and clinical data from HCC patients were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed (DE) miRNAs in tumor versus normal samples were identified. All HCC patients were randomly assigned to a training cohort or a validation cohort at a ratio of 1 to 1. A least absolute shrinkage and selection operator (LASSO) Cox regression model was subsequently employed to establish the miRNA signature. The constructed miRNA signature was then developed and validated. Results In total, 127 DE miRNAs were detected between HCC and paracancerous tissue using HCC RNA sequencing (RNA-Seq) data extracted from TCGA database. LASSO Cox regression generated a five-miRNA signature consisting of has-mir-105-2, has-mir-9-3, has-mir-137, has-mir-548f-1, and has-mir-561 in the training cohort. This risk model was significantly related to survival (P=5.682e-6). Log-rank tests and multivariate Cox regression analyses revealed the five-miRNA signature as an independent prognostic indicator [HR =3.285, 95% confidence interval (CI): 1.737–6.213], with the area under curve (AUC) of the miRNA signature being 0.728. The effects of the miRNA signature were further confirmed in the validation cohort and in the OncomiR Cancer Database and Gene Expression Omnibus (GEO) dataset. Functional enrichment analysis revealed the potential effects of the five-miRNA signature in tumor-related biological pathways and processes. Cell Counting Kit-8, Transwell, and wound healing assays, were used to evaluate the role of has-mir-137 in HCC cell proliferation and migration in vitro. Conclusions We established a novel five-miRNA signature which reliably predicted prognosis in HCC patients and which could be used to assist in both strategic counseling and personalized management in HCC.
Collapse
Affiliation(s)
- Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangshuo Kong
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, China
| | - Tao Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peihong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Feng Chen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
46
|
Cabral B, Hoffmann L, Bottaro T, Costa P, Ramos A, Coelho H, Villela-Nogueira C, Ürményi T, Faffe D, Silva R. Circulating microRNAs associated with liver fibrosis in chronic hepatitis C patients. Biochem Biophys Rep 2020; 24:100814. [PMID: 33015376 PMCID: PMC7520427 DOI: 10.1016/j.bbrep.2020.100814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
A major challenge in hepatitis C research is the detection of early potential for progressive liver disease. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and can be biomarkers of pathological processes. In this study, we compared circulating miRNAs identified in hepatitis C virus (HCV)-infected patients presenting two extremes of liver disease: mild/moderate fibrosis and cirrhosis. The patients in the cirrhosis group subsequently developed hepatocellular carcinoma (HCC). We identified 163 mature miRNAs in the mild/moderate fibrosis group and 171 in the cirrhosis group, with 144 in common to both groups. Differential expression analysis revealed 5 upregulated miRNAs and 2 downregulated miRNAs in the cirrhosis group relative to the mild/moderate fibrosis group. Functional analyses of regulatory networks (target gene and miRNA) identified gene categories involved in cell cycle biological processes and metabolic pathways related to cell cycle, cancer, and apoptosis. These results suggest that the differentially expressed circulating miRNAs observed in this work (miR-215-5p, miR-483-5p, miR-193b-3p, miR-34a-5p, miR-885-5p, miR-26b-5p and miR -197-3p) may be candidates for biomarkers in the prognosis of liver disease.
Collapse
Affiliation(s)
- B.C.A. Cabral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. Hoffmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T. Bottaro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P.F. Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A.L.A. Ramos
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H.S.M. Coelho
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C.A. Villela-Nogueira
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T.P. Ürményi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D.S. Faffe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Gu Y, Ji F, Liu N, Zhao Y, Wei X, Hu S, Jia W, Wang XW, Budhu A, Ji J, Zhao B, Roessler S, Zheng X, Ji J. Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:268. [PMID: 33256802 PMCID: PMC7708108 DOI: 10.1186/s13046-020-01785-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Emerging studies revealed that cancer stem cells (CSCs) possessed peculiar metabolic properties, which however remained largely unknown in hepatocellular carcinoma (HCC). Genetic silencing of liver-abundant miR-192-5p was a key feature for multiple groups of CSC-positive HCCs. We thus aimed to investigate essential metabolic features of hepatic CSCs via using HCCs with miR-192-5p silencing as a model. METHODS Datasets from two independent HCC cohorts were used. Data integration analyses of miR-192-5p with metabolome and mRNA transcriptome data in HCC Cohort 1 were performed to investigate miR-192-5p related metabolic features, which was further validated in Cohort 2. Cellular and molecular assays were performed to examine whether and how miR-192-5p regulated the identified metabolic features. Co-culture systems consisting of HCC cells and LX2 (human hepatic stellate cell line) or THP1 (human monocyte cell line) were established to explore effects of the identified metabolic properties on stemness features of HCC cells via interacting with co-cultured non-tumor cells. RESULTS High levels of glycolysis-related metabolites and genes were present in HCCs with low miR-192-5p and CSC-positive HCCs in two independent HCC cohorts. miR-192-5p knockout cells displayed CSC features and miR-192-5p loss led to an enhanced glycolytic phenotype via upregulating three bona fide targets, GLUT1 and PFKFB3 (two glycolytic enzymes) and c-Myc (regulating glycolytic genes' expression). Meanwhile, c-Myc suppressed miR-192-5p transcription, ensuring a low-miR-192-5p/high-c-Myc loop to maintain hyperglycolysis. Moreover, over-produced lactic acid from hyperglycolytic HCC cells stimulated the ERK phosphorylation of co-cultured LX2 and THP1 non-tumor cells partially via NDRG3 and MCT1, which in turn promoted cell malignancy and stemness of HCC cells. Consistently, HCC patients with low level of miR-192-5p in their tumor tissues and high level of NDRG3 or MCT1 in their non-tumor tissues had the shortest overall survival. CONCLUSIONS In CSC-positive HCCs, miR-192-5p loss enhanced glycolysis and over produced lactate might further increase HCC malignant features via interacting with environmental non-tumor cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Fubo Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Niya Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yongzhi Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Xiyang Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Shiyuan Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Wei Jia
- Hong Kong Baptist University, HongKong, China
| | - Xin Wei Wang
- Liver Carcinogenesis Section, The Lab of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anuradha Budhu
- Liver Carcinogenesis Section, The Lab of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Xin Zheng
- EZKIT L.L.C, Honolulu, HI, 96825, USA
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
48
|
Kim SY, Song HK, Lee SK, Kim SG, Woo HG, Yang J, Noh HJ, Kim YS, Moon A. Sex-Biased Molecular Signature for Overall Survival of Liver Cancer Patients. Biomol Ther (Seoul) 2020; 28:491-502. [PMID: 33077700 PMCID: PMC7585639 DOI: 10.4062/biomolther.2020.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sex-biased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hye Kyung Song
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06649, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang 10326, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Jieun Yang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jin Noh
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
49
|
Yamazoe T, Mori T, Yoshio S, Kanto T. Hepatocyte ploidy and pathological mutations in hepatocellular carcinoma: impact on oncogenesis and therapeutics. Glob Health Med 2020; 2:273-281. [PMID: 33330821 DOI: 10.35772/ghm.2020.01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) occurs in the chronic liver inflammation such as viral hepatitis, alcoholic and non-alcoholic steatohepatitis. While anti-viral treatment has been significantly improved, the prevalence of HCC remains high and treatment is still challenging. The continuation of hepatocyte death, inflammation, and fibrosis leads to the accumulation of gene alterations, which may trigger carcinogenesis. Hepatocytes are a unique cell type having more than one complete set of 23 chromosomes, termed polyploidy. Due to gene redundancy, hepatocytes may tolerate lethal mutations. Next generation sequencing technology has revealed gene alterations in HCC related to telomere maintenance, Wnt/β-catenin pathway, p53 cell-cycle pathway, epigenetic modifiers, oxidative stress pathway, PI3K/AKT/mTOR, and RAS/RAF/MAPK pathway with or without a chromosomal instability. Some type of driver gene mutations accumulates in hepatocytes and breaks the orchestration of excessive copies of chromosomes, which may lead to unfavorable gene expressions and fuel tumorigenesis. Recently, molecular targeted drugs, developed with the aim of interfering with these signaling pathways, are being used for HCC patients in the clinics. Therefore, a deeper understanding of hepatocyte ploidy and genetic or epigenetic alterations is indispensable for the establishment of novel therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Taiji Yamazoe
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Taizo Mori
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Tatsuya Kanto
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| |
Collapse
|
50
|
Zhong D, Lyu X, Fu X, Xie P, Liu M, He F, Huang G. Upregulation of miR-124-3p by Liver X Receptor Inhibits the Growth of Hepatocellular Carcinoma Cells Via Suppressing Cyclin D1 and CDK6. Technol Cancer Res Treat 2020; 19:1533033820967473. [PMID: 33073697 PMCID: PMC7592319 DOI: 10.1177/1533033820967473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MiR-124-3p has been identified as a novel tumor suppressor and a potential therapeutic target in hepatocellular carcinoma (HCC) through regulating its target genes. However, the upstream regulatory mechanisms of mir-124-3p in HCC has not been fully understood. The transcription factor liver X receptor (LXR) plays a critical role in suppressing the proliferation of HCC cells, but it is unclear whether LXR is involved in the regulation of mir-124-3p. In the present study, we demonstrated that the expression of mir-124-3p was positively correlated with that of LXR in HCC, and the cell growth of HCC was significantly inhibited by LXR agonists. Moreover, activation of LXR with the agonists up-regulated the expression of mir-124-3p, and in turn down-regulated cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression, which are the target genes of mir-124-3p. Mechanistically, miR-124-3p mediates LXR induced inhibition of HCC cell growth and down-regulation of cyclin D1 and CDK6 expression. In vivo experiments also confirmed that LXR induced miR-124-3p expression inhibited the growth of HCC xenograft tumors, as well as cyclin D1 and CDK6 expression. Our findings revealed that miR-124-3p is a novel target gene of LXR, and regulation of the miR-124-3p-cyclin D1/CDK6 pathway by LXR plays a crucial role in the proliferation of HCC cells. LXR-miR-124-3p-cyclin D1/CDK6 pathway may be a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|