1
|
Lin J, Li J. Transfection of unmodified oligodeoxynucleotide with polyethylenimine reduces the level of hepatitis B surface antigen. Front Microbiol 2025; 16:1600679. [PMID: 40376456 PMCID: PMC12078216 DOI: 10.3389/fmicb.2025.1600679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction The delivery of nucleic acid into cells using polyethylenimine (PEI) as non-viral carrier is a potential candidate technique for the treatment of hepatitis B virus (HBV) infection. Methods In the present study, PEI was used as cationic polymers and transfected with unmodified oligodeoxynucleotides in cell cultures and the BALB/c mouse model to investigate its efficiency in blocking HBV surface antigen (HBsAg) secretion. Results and discussion PEI/oligonucleotide complexes selectively inhibited HBsAg secretion in the culture supernatant, while there were no evident alterations in HBeAg and HBV DNA levels, thereby suggesting its potential inhibitory activity against the production of HBsAg. The complexes formed by PEI with double-stranded decoy oligonucleotides also suppressed HBsAg secretion but showed no expected interference with the intermediate levels of HBV transcription or replication. Furthermore, PEI/plasmid-DNA complexes demonstrated no influence on the expression levels of HBsAg, thus highlighting the specific effects of PEI/oligonucleotides exerted on HBsAg release. PEI-oligonucleotides transfection prior to the viral inoculation impaired HBV infection in HepG2-NCTP cells. Importantly, the PEI/oligonucleotide complex also induced the decline of HBsAg in hydrodynamically injected BALB/c mice. These findings demonstrate that transfection of PEI/oligonucleotide complexes can help effectively reduce HBsAg level and may offer a new potential avenue for the development of anti-HBV treatment.
Collapse
Affiliation(s)
- Junyu Lin
- Research Center for Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Fernandez CJ, Alkhalifah M, Afsar H, Pappachan JM. Metabolic Dysfunction-Associated Fatty Liver Disease and Chronic Viral Hepatitis: The Interlink. Pathogens 2024; 13:68. [PMID: 38251375 PMCID: PMC10821334 DOI: 10.3390/pathogens13010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has now affected nearly one-third of the global population and has become the number one cause of chronic liver disease in the world because of the obesity pandemic. Chronic hepatitis resulting from hepatitis B virus (HBV) and hepatitis C virus (HCV) remain significant challenges to liver health even in the 21st century. The co-existence of MAFLD and chronic viral hepatitis can markedly alter the disease course of individual diseases and can complicate the management of each of these disorders. A thorough understanding of the pathobiological interactions between MAFLD and these two chronic viral infections is crucial for appropriately managing these patients. In this comprehensive clinical review, we discuss the various mechanisms of chronic viral hepatitis-mediated metabolic dysfunction and the impact of MAFLD on the progression of liver disease.
Collapse
Affiliation(s)
- Cornelius J. Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, UK;
| | - Mohammed Alkhalifah
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Hafsa Afsar
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Zhan S, Qiu M, Wei X, Wei J, Qin L, Jiang B, Wen Q, Chen P, Lin Q, Wei X, Zhou Z, Jiang Y, Liang X, Li R, Liu Y, Yu H. Potentially functional genetic variants in ferroptosis-related CREB3 and GALNT14 genes predict survival of hepatitis B virus-related hepatocellular carcinoma. Cancer Med 2024; 13:e6848. [PMID: 38151984 PMCID: PMC10807646 DOI: 10.1002/cam4.6848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a known crucial player in the development of cancers. However, the effect of single nucleotide polymorphisms (SNPs) in ferroptosis-related genes on survival in hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) patients remains unknown. METHODS We used two-stage multivariable Cox proportional hazards regression analyses to estimate the associations between 48,774 SNPs in 480 ferroptosis-related genes and overall survival (OS) of 866 HBV-HCC patients. RESULTS We identified that two potentially functional SNPs (CREB3 rs10814274 C > T and GALNT14 rs17010547 T > C) were significantly independently associated with the OS of HBV-HCC patients (CT + TT verse CC, hazards ratio (HR) = 0.77, 95% confidence interval (CI) = 0.67-0.89, p < 0.001 for rs10814274 and TC + CC verse TT, HR = 0.66, 95% CI = 0.53-0.82, p < 0.001 for rs17010547, respectively). Additional joint assessment of protective genotypes of these two SNPs showed that patients with 1-2 protective genotypes had a significantly better OS compared with those carrying 0 protective genotypes (HR = 0.56, 95% CI = 0.45-0.70, p < 0.001). Moreover, the expression quantitative trait loci (eQTL) analysis revealed that the survival-associated SNP rs10814274 T allele was significantly correlated with reduced CREB3 transcript levels in both normal liver tissues and whole blood cells, while the GALNT14 rs17010547 C allele had a significant correlation with increased GALNT14 transcript levels in whole blood cells. CONCLUSION These results suggest that genetic variants of CREB3 and GALNT14 may affect the survival of HBV-HCC patients, likely via transcriptional regulation of respective genes. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Shicheng Zhan
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Moqin Qiu
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningChina
| | - Xueyan Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Junjie Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Liming Qin
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Binbin Jiang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuping Wen
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Peiqin Chen
- Editorial Department of Chinese Journal of Oncology Prevention and TreatmentGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuling Lin
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Xiaoxia Wei
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Zihan Zhou
- Department of Cancer Prevention and ControlGuangxi Medical University Cancer HospitalNanningChina
| | - Yanji Jiang
- Scientific Research DepartmentGuangxi Medical University Cancer HospitalNanningChina
| | - Xiumei Liang
- Department of Disease Process ManagementGuangxi Medical University Cancer HospitalNanningChina
| | - Runwei Li
- Department of Civil Engineering, College of EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Yingchun Liu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
| | - Hongping Yu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
4
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
6
|
Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27:3182-3207. [PMID: 34163105 PMCID: PMC8218364 DOI: 10.3748/wjg.v27.i23.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Global prophylactic vaccination programmes have helped to curb new hepatitis B virus (HBV) infections. However, it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma. As such, HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed. Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA (cccDNA) which establishes itself as a minichromosome in the nucleus of hepatocytes. As the viral transcription intermediate, the cccDNA is responsible for producing new virions and perpetuating infection. HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications. Two HBV proteins, X (HBx) and core (HBc) promote viral replication by modulating the cccDNA epigenome and regulating host cell responses. This includes viral and host gene expression, chromatin remodeling, DNA methylation, the antiviral immune response, apoptosis, and ubiquitination. Elimination of the cccDNA minichromosome would result in a sterilizing cure; however, this may be difficult to achieve. Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure. This review explores the cccDNA epigenome, how host and viral factors influence transcription, and the recent epigenetic therapies and epigenome engineering approaches that have been described.
Collapse
Affiliation(s)
- Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Dylan Kairuz
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| |
Collapse
|
7
|
Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res 2020; 182:104925. [PMID: 32866519 DOI: 10.1016/j.antiviral.2020.104925] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes and causes severe liver diseases. The HBV life cycle is unique in that the genomic DNA (relaxed-circular partially double-stranded DNA: rcDNA) is converted to a molecular template DNA (covalently closed circular DNA: cccDNA) to amplify a viral RNA intermediate, which is then reverse-transcribed back to viral DNA. The highly stable characteristics of cccDNA result in chronic infection and a poor rate of cure. This complex life cycle of HBV offers a variety of targets to develop antiviral agents. We provide here an update on the current knowledge of HBV biology and its life cycle, which may help to identify new antiviral targets.
Collapse
Affiliation(s)
- Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Science, Tokyo University of Science, Noda, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; MIRAI, JST, Saitama, Japan.
| |
Collapse
|
8
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
9
|
Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the Interactions of HBV cccDNA with Host Factors. Int J Mol Sci 2019; 20:ijms20174276. [PMID: 31480501 PMCID: PMC6747236 DOI: 10.3390/ijms20174276] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.
Collapse
Affiliation(s)
- Nur K Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore
| | - Zijie Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 119228, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore.
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| |
Collapse
|
10
|
Wang Z, Kawaguchi K, Honda M, Hashimoto S, Shirasaki T, Okada H, Orita N, Shimakami T, Yamashita T, Sakai Y, Mizukoshi E, Murakami S, Kaneko S. Notch signaling facilitates hepatitis B virus covalently closed circular DNA transcription via cAMP response element-binding protein with E3 ubiquitin ligase-modulation. Sci Rep 2019; 9:1621. [PMID: 30733490 PMCID: PMC6367350 DOI: 10.1038/s41598-018-38139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Notch1 is regulated by E3 ubiquitin ligases, with proteasomal degradation of the Notch intracellular domain affecting the transcription of target genes. cAMP response element-binding protein (CREB) mediates the transcription of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA). We assessed the relationship between HBV cccDNA and Notch signaling activities. HBV cccDNA levels and relative gene expression were evaluated in HBV-replicating cells treated with Jagged1 shRNA and a γ-secretase inhibitor. The effects of these factors in surgically resected clinical samples were also assessed. Notch inhibition suppressed HBV cccDNA and CREB-related expression but increased ITCH and NUMB levels. Proteasome inhibitor augmented HBV cccDNA, restored Notch and CREB expression, and inhibited ITCH and NUMB function. Increased HBV cccDNA was observed after ITCH and NUMB blockage, even after treatment with the adenylate cyclase activator forskolin; protein kinase A (PKA) inhibitor had the opposite effect. Notch activation and E3 ligase inactivation were observed in HBV-positive cells in clinical liver tissue. Collectively, these findings reveal that Notch signaling activity facilitates HBV cccDNA transcription via CREB to trigger the downstream PKA-phospho-CREB cascade and is regulated by E3 ubiquitin ligase-modulation of the Notch intracellular domain.
Collapse
Affiliation(s)
- Zijing Wang
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Seishi Murakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
11
|
Yan L, Yu Y, Zhang Q, Tang X, Bai L, Huang F, Tang H. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics. Proteomics Clin Appl 2018; 12:e1700090. [PMID: 29350888 PMCID: PMC5947307 DOI: 10.1002/prca.201700090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/28/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. EXPERIMENTAL DESIGN Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. RESULTS In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. CONCLUSION AND CLINICAL RELEVANCE Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication.
Collapse
Affiliation(s)
- Li‐Bo Yan
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - You‐Jia Yu
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Qing‐Bo Zhang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Xiao‐Qiong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - Lang Bai
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - FeiJun Huang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Hong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| |
Collapse
|
12
|
He DD, Lu Y, Gittelman R, Jin Y, Ling F, Joshua A. Positive selection of the TRIM family regulatory region in primate genomes. Proc Biol Sci 2017; 283:rspb.2016.1602. [PMID: 27733547 DOI: 10.1098/rspb.2016.1602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Viral selection pressure has acted on restriction factors that play an important role in the innate immune system by inhibiting the replication of viruses during primate evolution. Tripartite motif-containing (TRIM) family members are some of these restriction factors. It is becoming increasingly clear that gene expression differences, rather than protein-coding regions changes, could play a vital role in the anti-retroviral immune mechanism. Increasingly, recent studies have created genome-scale catalogues of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To improve our understanding of the molecular evolution mechanism of antiviral differences between species, we leveraged 14 130 DHSs derived from 145 cell types to characterize the regulatory landscape of the TRIM region. Subsequently, we compared the alignments of the DHSs across six primates and found 375 DHSs that are conserved in non-human primates but exhibit significantly accelerated rates of evolution in the human lineage (haDHSs). Furthermore, we discovered 31 human-specific potential transcription factor motifs within haDHSs, including the KROX and SP1, that both interact with HIV-1 Importantly, the corresponding haDHS was correlated with antiviral factor TRIM23 Thus, our results suggested that some viruses may contribute, through regulatory DNA differences, to organismal evolution by mediating TRIM gene expression to escape immune surveillance.
Collapse
Affiliation(s)
- Dan-Dan He
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yueer Lu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Rachel Gittelman
- Department of Genome Sciences, University of Washington, Seattle, WA 98125, USA
| | - Yabin Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Akey Joshua
- Department of Genome Sciences, University of Washington, Seattle, WA 98125, USA
| |
Collapse
|
13
|
Hensel KO, Rendon JC, Navas MC, Rots MG, Postberg J. Virus-host interplay in hepatitis B virus infection and epigenetic treatment strategies. FEBS J 2017; 284:3550-3572. [PMID: 28457020 DOI: 10.1111/febs.14094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Worldwide, chronic hepatitis B virus (HBV) infection is a major health problem and no cure exists. Importantly, hepatocyte intrusion by HBV particles results in a complex deregulation of both viral and host cellular genetic and epigenetic processes. Among the attempts to develop novel therapeutic approaches against HBV infection, several options targeting the epigenomic regulation of HBV replication are gaining attention. These include the experimental treatment with 'epidrugs'. Moreover, as a targeted approach, the principle of 'epigenetic editing' recently is being exploited to control viral replication. Silencing of HBV by specific rewriting of epigenetic marks might diminish viral replication, viremia, and infectivity, eventually controlling the disease and its complications. Additionally, epigenetic editing can be used as an experimental tool to increase our limited understanding regarding the role of epigenetic modifications in viral infections. Aiming for permanent epigenetic reprogramming of the viral genome without unspecific side effects, this breakthrough may pave the roads for an ambitious technological pursuit: to start designing a curative approach utilizing manipulative molecular therapies for viral infections in vivo.
Collapse
Affiliation(s)
- Kai O Hensel
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| | - Julio C Rendon
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands.,Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Maria-Cristina Navas
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands
| | - Jan Postberg
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| |
Collapse
|
14
|
Kim DH, Kang HS, Kim KH. Roles of hepatocyte nuclear factors in hepatitis B virus infection. World J Gastroenterol 2016; 22:7017-7029. [PMID: 27610013 PMCID: PMC4988315 DOI: 10.3748/wjg.v22.i31.7017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
Approximately 350 million people are estimated to be persistently infected with hepatitis B virus (HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA (cccDNA), a template for all HBV RNAs. Chronic hepatitis B (CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit cccDNA transcription and inhibit only a late stage in the HBV life cycle (the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating cccDNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors (HNFs) play the most important roles in cccDNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.
Collapse
|
15
|
Zhang X, Liu H, Xie Z, Deng W, Wu C, Qin B, Hou J, Lu M. Epigenetically regulated miR-449a enhances hepatitis B virus replication by targeting cAMP-responsive element binding protein 5 and modulating hepatocytes phenotype. Sci Rep 2016; 6:25389. [PMID: 27138288 PMCID: PMC4853741 DOI: 10.1038/srep25389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
Cellular microRNAs (miRNAs) are able to influence hepatitis B virus (HBV) replication directly by binding to HBV transcripts or indirectly by targeting cellular factors. Here, we investigate the effect of epigenetically regulated miR-449a on HBV replication and the underlying mechanisms. miR-449a expression was lower in human hepatocellular carcinoma (HCC) cells than in primary hepatocytes and could be induced by trichostatin A. Ectopic miR-449a expression in HCC cells strongly enhanced HBV replication, transcription, progeny virions secretion, and antigen expression in a dose-dependent manner. miR-449a directly targeted cAMP-responsive element binding protein 5 (CREB5), which in turn induced the expression of farnesoid X receptor α (FXRα), a transcription factor that facilitates HBV replication. CREB5 knockdown and overexpression demonstrated that it is a negative regulator of HBV replication. Additionally, miR-449a overexpression inhibited proliferation, caused cell cycle arrest, and promoted HCC cell differentiation. The results indicated that epigenetically regulated miR-449a targets CREB5 to increase FXRα expression, thereby promoting HBV replication and gene expression. Our findings provide a new understanding of the role of miRNAs in HBV replication.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanglian Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangyu Deng
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Chunchen Wu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Bo Qin
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Interactions of Hepatitis B Virus Infection with Nonalcoholic Fatty Liver Disease: Possible Mechanisms and Clinical Impact. Dig Dis Sci 2015; 60:3513-24. [PMID: 26112990 DOI: 10.1007/s10620-015-3772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) infection is a major etiology of chronic liver disease worldwide. In the past decade, nonalcoholic fatty liver disease (NAFLD) has emerged as a common liver disorder in general population. Accordingly, the patient number of chronic hepatitis B (CHB) concomitant with NAFLD grows rapidly. The present article reviewed the recent studies aiming to explore the relationship between CHB and NAFLD from different aspects, including the relevant pathogenesis of CHB and NAFLD, the intracellular molecular mechanisms overlaying HBV infection and hepatic steatosis, and the observational studies with animal models and clinical cohorts for analyzing the coincidence of the two diseases. It is concluded that although numerous cross-links have been suggested between the molecular pathways in HBV infection and NAFLD pathogenesis, regarding whether HBV infection can substantially interfere with the occurrence of NAFLD or vice versa in the patients, there is still far from a conclusive agreement.
Collapse
|
17
|
Wu Q, Liu Q. HBx truncation mutants differentially modulate SREBP-1a and -1c transcription and HBV replication. Virus Res 2015; 210:46-53. [DOI: 10.1016/j.virusres.2015.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
|
18
|
Pondé RAA. Molecular mechanisms underlying HBsAg negativity in occult HBV infection. Eur J Clin Microbiol Infect Dis 2015; 34:1709-31. [PMID: 26105620 DOI: 10.1007/s10096-015-2422-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
Although genomic detection is considered the gold standard test on HBV infection identification, the HBsAg investigation is still the most frequent clinical laboratory request to diagnose HBV infection in activity. However, the non-detection of HBsAg in the bloodstream of chronic or acutely infected individuals has been a phenomenon often observed in clinical practice, despite the high sensitivity and specificity of screening assays standardized commercially and adopted in routine. The expansion of knowledge about the hepatitis B virus biology (replication/life cycle, genetic variability/mutability/heterogeneity), their biochemical and immunological properties (antigenicity and immunogenicity), in turn, has allowed to elucidate some mechanisms that may explain the occurrence of this phenomenon. Therefore, the negativity for HBsAg during the acute or chronic infection course may become a fragile or at least questionable result. This manuscript discusses some mechanisms that could explain the negativity for HBsAg in a serological profile of individuals with HBV infection in activity, or factors that could compromise its detection in the bloodstream during HBV infection.
Collapse
Affiliation(s)
- R A A Pondé
- Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil,
| |
Collapse
|
19
|
SIRT1 Suppresses Human T-Cell Leukemia Virus Type 1 Transcription. J Virol 2015; 89:8623-31. [PMID: 26063426 DOI: 10.1128/jvi.01229-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1)-associated diseases are poorly treatable, and HTLV-1 vaccines are not available. High proviral load is one major risk factor for disease development. HTLV-1 encodes Tax oncoprotein, which activates transcription from viral long terminal repeats (LTR) and various types of cellular promoters. Counteracting Tax function might have prophylactic and therapeutic benefits. In this work, we report on the suppression of Tax activation of HTLV-1 LTR by SIRT1 deacetylase. The transcriptional activity of Tax on the LTR was largely ablated when SIRT1 was overexpressed, but Tax activation of NF-κB was unaffected. On the contrary, the activation of the LTR by Tax was boosted when SIRT1 was depleted. Treatment of cells with resveratrol shunted Tax activity in a SIRT1-dependent manner. The activation of SIRT1 in HTLV-1-transformed T cells by resveratrol potently inhibited HTLV-1 proviral transcription and Tax expression, whereas compromising SIRT1 by specific inhibitors augmented HTLV-1 mRNA expression. The administration of resveratrol also decreased the production of cell-free HTLV-1 virions from MT2 cells and the transmission of HTLV-1 from MT2 cells to uninfected Jurkat cells in coculture. SIRT1 associated with Tax in HTLV-1-transformed T cells. Treatment with resveratrol prevented the interaction of Tax with CREB and the recruitment of CREB, CRTC1, and p300 to Tax-responsive elements in the LTR. Our work demonstrates the negative regulatory function of SIRT1 in Tax activation of HTLV-1 transcription. Small-molecule activators of SIRT1 such as resveratrol might be considered new prophylactic and therapeutic agents in HTLV-1-associated diseases. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) causes a highly lethal blood cancer or a chronic debilitating disease of the spinal cord. Treatments are unsatisfactory, and vaccines are not available. Disease progression is associated with robust expression of HTLV-1 genes. Suppressing HTLV-1 gene expression might have preventive and therapeutic benefits. It is therefore critical that host factors controlling HTLV-1 gene expression be identified and characterized. This work reveals a new host factor that suppresses HTLV-1 gene expression and a natural compound that activates this suppression. Our findings not only provide new knowledge of the host control of HTLV-1 gene expression but also suggest a new strategy of using natural compounds for prevention and treatment of HTLV-1-associated diseases.
Collapse
|
20
|
Xiang A, Ren F, Lei X, Zhang J, Guo R, Lu Z, Guo Y. The hepatitis B virus (HBV) core protein enhances the transcription activation of CRE via the CRE/CREB/CBP pathway. Antiviral Res 2015; 120:7-15. [PMID: 25936964 DOI: 10.1016/j.antiviral.2015.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
We previously reported that hepatitis B virus core protein (HBc) can bind to the Enhancer I (Enh I) domain and can accumulate with transcription coactivator cAMP response element (CRE). This raises the possibility that HBc may interact with CRE/CREB and regulate CRE transcription activation. In this study, we investigated the function and mechanisms of HBc in regulating CRE transcriptional activation using the HepG2 cell line. Our results showed the following: (1) HBc expression significantly increases HBV CRE transcriptional activation; (2) phosphorylation of the serine residues in the arginine-rich domain (ARD) of HBc protein impacts the function of transcriptional activation by the CRE; (3) HBc protein significantly increases HBV CRE transcriptional activation following forskolin treatment; (4) HBc nonspecifically binds to CRE and enhances the binding of the cAMP response element-binding protein (CREB) to CRE; and (5) HBc increases the concurrent accumulation of CREB and CBP at the CRE region. HBc activates Enh I through its binding to CRE, increasing the concurrent accumulation of CREB/CBP on CRE, and thus increases CRE transcriptional activation.
Collapse
Affiliation(s)
- An Xiang
- School of Pharmacology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fengling Ren
- School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoying Lei
- School of Pharmacology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ju Zhang
- School of Pharmacology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ruijuan Guo
- School of Pharmacology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zifan Lu
- School of Pharmacology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanhai Guo
- School of Pharmacology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
Mizuguchi Y, Takizawa T, Uchida E. Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication. World J Hepatol 2015; 7:696-702. [PMID: 25866606 PMCID: PMC4388997 DOI: 10.4254/wjh.v7.i4.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
A large number of studies have demonstrated that the synergistic collaboration of a number of microRNAs (miRNAs), their growth factors and their downstream agents is required for the initiation and completion of pathogenesis in the liver. miRNAs are thought to exert a profound effect on almost every aspect of liver biology and pathology. Accumulating evidence indicates that several miRNAs are involved in the hepatitis B virus (HBV) life cycle and infectivity, in addition to HBV-associated liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma (HCC). In turn, HBV can modulate the expression of several cellular miRNAs, thus promoting a favorable environment for its replication and survival. In this review, we focused on the involvement of host cellular miRNAs that are directly and indirectly associated with HBV RNA or HBV associated transcription factors. Exploring different facets of the interactions among miRNA, HBV and HCV infections, and the carcinogenesis and progress of HCC, could facilitate the development of novel and effective treatment approaches for liver disease.
Collapse
|
22
|
Tang HMV, Gao WW, Chan CP, Cheng Y, Chaudhary V, Deng JJ, Yuen KS, Wong CM, Ng IOL, Kok KH, Zhou J, Jin DY. Requirement of CRTC1 coactivator for hepatitis B virus transcription. Nucleic Acids Res 2014; 42:12455-68. [PMID: 25300488 PMCID: PMC4227773 DOI: 10.1093/nar/gku925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcription of hepatitis B virus (HBV) from the covalently closed circular DNA (cccDNA) template is essential for its replication. Suppressing the level and transcriptional activity of cccDNA might have anti-HBV effect. Although cellular transcription factors, such as CREB, which mediate HBV transcription, have been well described, transcriptional coactivators that facilitate this process are incompletely understood. In this study we showed that CREB-regulated transcriptional coactivator 1 (CRTC1) is required for HBV transcription and replication. The steady-state levels of CRTC1 protein were elevated in HBV-positive hepatoma cells and liver tissues. Ectopic expression of CRTC1 or its homolog CRTC2 or CRTC3 in hepatoma cells stimulated the activity of the preS2/S promoter of HBV, whereas overexpression of a dominant inactive form of CRTC1 inhibited HBV transcription. CRTC1 interacts with CREB and they are mutually required for the recruitment to the preS2/S promoter on cccDNA and for the activation of HBV transcription. Accumulation of pregenomic RNA (pgRNA) and cccDNA was observed when CRTC1 or its homologs were overexpressed, whereas the levels of pgRNA, cccDNA and secreted HBsAg were diminished when CRTC1 was compromised. In addition, HBV transactivator protein HBx stabilized CRTC1 and promoted its activity on HBV transcription. Our work reveals an essential role of CRTC1 coactivator in facilitating and supporting HBV transcription and replication.
Collapse
Affiliation(s)
- Hei-Man Vincent Tang
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vidyanath Chaudhary
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Jun Deng
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chun-Ming Wong
- State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jie Zhou
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
23
|
Xie KL, Zhang YG, Liu J, Zeng Y, Wu H. MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics 2014; 4:1176-92. [PMID: 25285167 PMCID: PMC4183996 DOI: 10.7150/thno.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global problem and a major risk factor for hepatocellular carcinoma (HCC). microRNAs (miRNAs) comprise a group of small noncoding RNAs regulating gene expression at the posttranslational level, thereby participating in fundamental biological processes, including cell proliferation, differentiation, and apoptosis. In this review, we summarize the roles of miRNAs in HBV infection, the recently identified mechanism underlying dysregulation of miRNAs in HBV-associated HCC, and their association with hepatocarcinogenesis. Moreover, we discuss the recent advances in the use of circulating miRNAs in the early diagnosis of HCC as well as therapies based on these aberrantly expressed miRNAs.
Collapse
|
24
|
Xun YH, Zhang YJ, Pan QC, Mao RC, Qin YL, Liu HY, Zhang YM, Yu YS, Tang ZH, Lu MJ, Zang GQ, Zhang JM. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat 2014; 21:597-603. [PMID: 24164660 DOI: 10.1111/jvh.12187] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus surface antigen (HBsAg) plays an important role in maintaining the tolerance and may interfere with host innate and adaptive immune responses; therefore, novel therapeutic strategies to reduce HBsAg loads in patients infected with hepatitis B virus (HBV) are emerging as an attractive but challenging issue. Metformin could regulate hepatic metabolism while the latter interacts with HBV infection. We hypothesized that metformin could affect HBsAg expression and HBV replication and may work synergistically when combined with current antivirals. In our study, a notably inhibitory effect on HBsAg production, as well as a moderate inhibition in HBV replication and HBeAg expression was observed following metformin treatment. The 50% effective concentration (EC50) for extracellular HBsAg and intracellular HBsAg in HBV-producing HepG2.2.15 cells was 2.85 mm and 2.75 mm, respectively, with a similarly selective index of about 18. When administered in combination, metformin enhanced the inhibitory effects of interferon-α2b on HBsAg expression and HBV replication and provided a complimentary role in HBsAg expression for lamivudine (LMV). This novel action of metformin derives partially from its inhibition on multiple HBV cis-acting elements. By the virtues of preferably hepatocyte distribution and safety profile, collectively, our results suggest that metformin would be potentially clinically helpful as an HBsAg production inhibitor.
Collapse
Affiliation(s)
- Y-H Xun
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Liver Diseases, The Sixth People's Hospital affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Song CL, Ren JH, Ran LK, Li YG, Li XS, Chen X, Li WY, Huang AL, Chen J. Cyclin D2 plays a regulatory role in HBV replication. Virology 2014; 462-463:149-57. [PMID: 24992041 DOI: 10.1016/j.virol.2014.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/18/2014] [Accepted: 05/25/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of liver diseases. However, the molecular mechanisms of HBV infection and carcinogenesis have not been fully elucidated. In this study, we found that cyclin D2 was upregualted in HBV-expressing cells and liver tissues of HBV-transgenic mice. Gene silencing of cyclin D2 inhibited HBV DNA replicative intermediates, 3.5 kb mRNA, core protein level, as well as the secretions of HBsAg and HBeAg. On the contrary, overexpression of cyclin D2 promoted HBV replication. Furthermore, cyclin D2 regulated HBV replication by enhancing the activity of HBV core and Sp1 promoters by targeting transcription factor CREB2. Silencing of CREB2 abolished enhancement of HBV replication induced by cyclin D2. Together, our study has uncovered a positive role of cyclin D2 in HBV replication. It is conceivable that therapeutic application of cyclin D2 inhibitor in HBV infection therapy.
Collapse
Affiliation(s)
- Chun-li Song
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-hua Ren
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Long-kuan Ran
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yong-guo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao-song Li
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wan-yu Li
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-long Huang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Cougot D, Allemand E, Riviere L, Benhenda S, Duroure K, Levillayer F, Muchardt C, Buendia MA, Neuveut C. Inhibition of PP1 Phosphatase Activity by HBx: A Mechanism for the Activation of Hepatitis B Virus Transcription. Sci Signal 2012; 5:ra1. [DOI: 10.1126/scisignal.2001906] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Liu WH, Yeh SH, Chen PJ. Role of microRNAs in hepatitis B virus replication and pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:678-85. [DOI: 10.1016/j.bbagrm.2011.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/24/2011] [Accepted: 04/25/2011] [Indexed: 02/08/2023]
|
28
|
Bar-Yishay I, Shaul Y, Shlomai A. Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression. Liver Int 2011; 31:282-90. [PMID: 21281428 DOI: 10.1111/j.1478-3231.2010.02423.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) is a small DNA virus responsible for significant morbidity and mortality worldwide. The liver, which is the main target organ for HBV infection, provides the virus with the machinery necessary for persistent infection and propagation, a process that might ultimately lead to severe liver pathologies such as chronic hepatitis, cirrhosis and liver cancer. HBV gene expression is regulated mainly at the transcriptional level by recruitment of a whole set of cellular transcription factors (TFs) and co-activators to support transcription. Over the years, many of these TFs were identified and interestingly enough most are associated with the body's nutritional state. These include the hepatocyte nuclear factors, forkhead Box O1, Farnesoid X receptor, cyclic-AMP response element-binding (CREB), CCAAT/enhancer-binding protein (C/EBP) and glucocorticoid receptor TFs and the transcription coactivator PPARγ coactivator-1α. Consequently, HBV gene expression is linked to hepatic metabolic processes such as glucose and fat production and utilization as well as bile acids' production and secretion. Furthermore, recent evidence indicates that HBV actively interferes with some of these hepatic metabolic processes by manipulating key TFs, such as CREB and C/EBP, to meet its requirements. The discovery of the mechanisms by which HBV is controlled by the hepatic metabolic milieu may broaden our understanding of the unique regulation of HBV expression and may also explain the mechanisms by which HBV induces liver pathologies. The emerging principle of the intimate link between HBV and liver metabolism can be further exploited for host-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Iddo Bar-Yishay
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | | |
Collapse
|
29
|
Abstract
Hepatitis B virus (HBV) is tightly controlled by a number of noncytotoxic mechanisms. This control occurs within the host hepatocyte at different steps of the HBV replication cycle. HBV persists by establishing a nuclear minichromosome, HBV cccDNA, serving as a transcription template for the viral pregenome and viral mRNAs. Nucleoside/nucleotide analogues widely used for antiviral therapy as well as most antiviral cytokines act at steps after transcription of HBV RNAs and thus can control virus replication but do not directly affect its gene expression. Control of HBV at the level of transcription in contrast is able to restrict both, HBV replication and gene expression. In the review, we focus on how HBV is controlled at the level of transcription. We discuss how the composition of transcription factors determines HBV gene expression and replication and how this may be influenced by antivirally active substances, e.g. the cytokine IL-6 or helioxanthin analogues, or by the differentiation state of the hepatocyte.
Collapse
Affiliation(s)
- M Quasdorff
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Germany
| | | |
Collapse
|
30
|
Abstract
Hepatitis B virus (HBV) is tightly controlled by a number of noncytotoxic mechanisms. This control occurs within the host hepatocyte at different steps of the HBV replication cycle. HBV persists by establishing a nuclear minichromosome, HBV cccDNA, serving as a transcription template for the viral pregenome and viral mRNAs. Nucleoside/nucleotide analogues widely used for antiviral therapy as well as most antiviral cytokines act at steps after transcription of HBV RNAs and thus can control virus replication but do not directly affect its gene expression. Control of HBV at the level of transcription in contrast is able to restrict both, HBV replication and gene expression. In the review, we focus on how HBV is controlled at the level of transcription. We discuss how the composition of transcription factors determines HBV gene expression and replication and how this may be influenced by antivirally active substances, e.g. the cytokine IL-6 or helioxanthin analogues, or by the differentiation state of the hepatocyte.
Collapse
Affiliation(s)
- M Quasdorff
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Germany
| | | |
Collapse
|
31
|
Kim HY, Cho HK, Choi YH, Lee KS, Cheong J. Bile acids increase hepatitis B virus gene expression and inhibit interferon-α activity. FEBS J 2010; 277:2791-802. [DOI: 10.1111/j.1742-4658.2010.07695.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Villanueva A, Minguez B, Forner A, Reig M, Llovet JM. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med 2010; 61:317-28. [PMID: 20059340 DOI: 10.1146/annurev.med.080608.100623] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic era is changing the understanding of cancer, although translation of the vast amount of data available into decision-making algorithms is far from reality. Molecular profiling of hepatocellular carcinoma (HCC), the most common cause of death among cirrhotic patients and a fast-growing malignancy in Western countries, is enabling the advancement of novel approaches to disease diagnosis and management. Most HCCs arise on a cirrhotic liver, and predictably, an accurate genomic characterization will allow the identification of procarcinogenic signals amenable to selective targeting by chemopreventive strategies. Molecular diagnosis is currently feasible for small tumors, but it has not yet been formalized by scientific guidelines. Molecular treatment is a reality: Sorafenib confers unprecedented survival benefits in patients at advanced stages. Genomic information from tumor and nontumoral tissue will aid prognosis prediction and facilitate the identification of oncogene addiction loops, providing the opportunity for more personalized medicine.
Collapse
Affiliation(s)
- Augusto Villanueva
- HCC Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomediques Agusto Pi i Sunyer (IDIBAPS), Liver Unit, Hospital Clinic, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
33
|
Park YG. [Inhibition of hepatitis B virus replication by RNA interference]. THE KOREAN JOURNAL OF HEPATOLOGY 2009; 15:1-6. [PMID: 19346780 DOI: 10.3350/kjhep.2009.15.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|