1
|
Xie Z, Dai Z, Liu Z, Chen Y, Huang S, Liu S, Li J, Shen J. The impact of an RNA-binding protein group on regulating the RSPO-LGR4/5-ZNRF3/RNF43 module and the immune microenvironment in hepatocellular carcinoma. BMC Cancer 2025; 25:751. [PMID: 40264052 PMCID: PMC12012940 DOI: 10.1186/s12885-025-13874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. RNA-binding proteins (RBPs) are potential therapeutic targets because of their role in tumor progression. This study investigated the interactions between specific HCC progression-associated RBPs (HPARBPs), namely, ILF3, PTBP1, U2AF2, NCBP2, RPS3, and SSB, in HCC and their downstream targets, as well as their impact on the immune microenvironment and their clinical value. METHODS Tissue samples from human HCC, collected from 28 patients who experienced recurrence following postoperative adjuvant therapy were examined. The mRNA levels of RBPs and their prospective targets were quantified through RNA isolation and quantitative real-time PCR. Data from two public datasets were scrutinized for both expression and clinical relevance. Through Student's t test and logistic regression, HPARBPs were identified. Enhanced cross-linking immunoprecipitation (eCLIP) experiments revealed RBP-RNA interactions in HepG2 cells. For functional enrichment, Metascape was used, whereas CIBERSORT was used to characterize the immune microenvironment. RESULTS Public database analysis confirmed widespread RBP expression abnormalities in HCC (false discovery rate < 0.00001 and fold change ≥ 1.15 or ≤ 0.85), leading to the identification of 42 HPARBPs and core modules. eCLIP data analysis revealed the specificity of downstream target genes and binding site features for core HPARBPs (signal value > 3, P value < 0.01). Four core HPARBPs may bind to RNAs of genes in the RSPO-LGR4/5-ZNRF3/RNF43 module, affecting the Wnt pathway and HCC progression. Immunoinfiltration analysis revealed changes in the HCC immune microenvironment due to altered expression of relevant genes. CONCLUSION In our study, we identified core HPARBPs that might contribute to HCC progression by binding to RNAs in the RSPO-LGR4/5-ZNRF3/RNF43 module. Changes in the expression of HPARBPs affect the HCC immune microenvironment. Our findings offer novel insights into the regulatory network of Wnt pathway-related RBPs and their potential clinical value in HCC.
Collapse
Affiliation(s)
- Zhengyao Xie
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Zhiyan Dai
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziyao Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yiqiang Chen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Shuting Huang
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Siyuan Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jingjing Li
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jie Shen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Comprehensive Cancer Centre, Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wang SR, Mallard CG, Cairns CA, Chung HK, Yoo D, Jaladanki SK, Xiao L, Wang JY. Stabilization of Cx43 mRNA via RNA-binding protein HuR regulated by polyamines enhances intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2023; 325:G518-G527. [PMID: 37788332 PMCID: PMC10894663 DOI: 10.1152/ajpgi.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra A Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dongyoon Yoo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
4
|
Tian Y, Ai M, Liu C, Wu Y, Khan M, Wang B, Long H, Huang C, Lin J, Xu A, Li R, Cen B, Qiu W, Xie G, Yuan Y. Upregulated Long Non-coding RNA Lnc-MRPL39-2:1 Induces the Growth and Invasion of Nasopharyngeal Carcinoma by Binding to HuR and Stabilizing β-Catenin mRNA. Int J Biol Sci 2023; 19:2349-2365. [PMID: 37215987 PMCID: PMC10197890 DOI: 10.7150/ijbs.79115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/05/2023] [Indexed: 05/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been to regulate tumor progression and therapy resistance through various molecular mechanisms. In this study, we investigated the role of lncRNAs in nasopharyngeal carcinoma (NPC) and the underlying mechanism. Using lncRNA arrays to analyze the lncRNA profiles of the NPC and para-tumor tissues, we detected the novel lnc-MRPL39-2:1, which was validated by in situ hybridization and by the 5' and 3' rapid amplification of the cDNA ends. Further, its role in NPC cell growth and metastasis was verified in vitro and in vivo. The researchers conducted the RNA pull-down assays, mass spectrometry (MS), dual-luciferase reporter assays, RNA immunoprecipitation (RIP) assays, and the MS2-RIP assays were then used to identify the lnc-MRPL39-2:1-interacting proteins and miRNAs. We found that lnc-MRPL39-2:1, which was highly expressed in in NPC tissues, was related to a poor prognosis in NPC patients. Furthermore, lnc-MRPL39-2:1 was shown to induce the growth and invasion of NPC by interacting directly with the Hu-antigen R (HuR) to upregulate β-catenin expression both in vivo and in vitro. Lnc-MRPL39-2:1 expression was also suppressed by microRNA (miR)-329. Thus, these findings indicate that lnc-MRPL39-2:1 is essential in NPC tumorigenesis and metastasis and highlight its potential as a prognostic marker and therapeutic target for NPC.
Collapse
Affiliation(s)
- Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Meiling Ai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Yuchao Wu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Huidong Long
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Chunyue Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Bohong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Wenze Qiu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Guofeng Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province People's Republic of China
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou China
| |
Collapse
|
5
|
Won DH, Hwang DB, Kim C, Kang M, Jeon Y, Park YI, Che JH, Yun JW. Genotoxic carcinogen 7,12-dimethylbenz[a]anthracene inhibits gap junction intercellular communication through post-transcriptional and post-translational processing involved in connexin 43 stability. Food Chem Toxicol 2023; 174:113695. [PMID: 36863560 DOI: 10.1016/j.fct.2023.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Gap junctional intercellular communication (GJIC) is composed of connexin (Cx) and plays an important role in maintaining intracellular homeostasis. Loss of GJIC is involved in the early stages of cancer pathways of non-genotoxic carcinogens; however, the effect of genotoxic carcinogens, including polycyclic aromatic hydrocarbons (PAHs), on GJIC function remains unclear. Therefore, we determined whether and how a representative PAH 7,12-dimethylbenz[a]anthracene (DMBA) suppresses GJIC in WB-F344 cells. First, DMBA significantly inhibited GJIC and dose-dependently reduced Cx43 protein and mRNA expression. In contrast, Cx43 promoter activity was upregulated after DMBA treatment via the induction of specificity protein 1 and hepatocyte nuclear factor 3β, indicating that the promoter-independent loss of Cx43 mRNA can be associated with the inhibition of mRNA stability, which was verified by actinomycin D assay. In addition to a decrease in mRNA stability involved in human antigen R, we also observed DMBA-induced acceleration of Cx43 protein degradation, which was closely related to the loss of GJIC through Cx43 phosphorylation via MAPK activation. In conclusion, the genotoxic carcinogen DMBA suppresses GJIC by inhibiting post-transcriptional and post-translational processing of Cx43. Our findings suggest that the GJIC assay is an efficient short-term screening test for predicting the carcinogenic potential of genotoxic carcinogens.
Collapse
Affiliation(s)
- Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - MinHwa Kang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Cai H, Zheng D, Yao Y, Yang L, Huang X, Wang L. Roles of Embryonic Lethal Abnormal Vision-Like RNA Binding Proteins in Cancer and Beyond. Front Cell Dev Biol 2022; 10:847761. [PMID: 35465324 PMCID: PMC9019298 DOI: 10.3389/fcell.2022.847761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
Abstract
Embryonic lethal abnormal vision-like (ELAVL) proteins are RNA binding proteins that were originally discovered as indispensable regulators of the development and functioning of the nervous system. Subsequent studies have shown that ELAVL proteins not only exist in the nervous system, but also have regulatory effects in other tissues. ELAVL proteins have attracted attention as potential therapeutic targets because they stabilize multiple mRNAs by binding within the 3′-untranslated region and thus promote the development of tumors, including hepatocellular carcinoma, pancreatic cancer, ovarian cancer, breast cancer, colorectal carcinoma and lung cancer. Previous studies have focused on these important relationships with downstream mRNAs, but emerging studies suggest that ELAVL proteins also interact with non-coding RNAs. In this review, we will summarize the relationship of the ELAVL protein family with mRNA and non-coding RNA and the roles of ELAVL protein family members in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
| | | | | | - Lehe Yang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Xiaoying Huang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Liangxing Wang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| |
Collapse
|
7
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
8
|
Filippova N, Nabors LB. ELAVL1 Role in Cell Fusion and Tunneling Membrane Nanotube Formations with Implication to Treat Glioma Heterogeneity. Cancers (Basel) 2020; 12:E3069. [PMID: 33096700 PMCID: PMC7590168 DOI: 10.3390/cancers12103069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Homotypic and heterotypic cell fusions via permanent membrane fusions and temporal tunneling nanotube formations in the glioma microenvironment were recently documented in vitro and in vivo and mediate glioma survival, plasticity, and recurrence. Chronic inflammation, a hypoxic environment, aberrant mitochondrial function, and ER stress due to unfolded protein accumulation upregulate cell fusion events, which leads to tumor heterogeneity and represents an adaptive mechanism to promote tumor cell survival and plasticity in cytotoxic, nutrient-deprived, mechanically stressed, and inflammatory microenvironments. Cell fusion is a multistep process, which consists of the activation of the cellular stress response, autophagy formation, rearrangement of cytoskeletal architecture in the areas of cell-to-cell contacts, and the expression of proinflammatory cytokines and fusogenic proteins. The mRNA-binding protein of ELAV-family HuR is a critical node, which orchestrates the stress response, autophagy formation, cytoskeletal architecture, and the expression of proinflammatory cytokines and fusogenic proteins. HuR is overexpressed in gliomas and is associated with poor prognosis and treatment resistance. Our review provides a link between the HuR role in the regulation of cell fusion and tunneling nanotube formations in the glioma microenvironment and the potential suppression of these processes by different classes of HuR inhibitors.
Collapse
Affiliation(s)
- Natalia Filippova
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis B. Nabors
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Long noncoding RNA TSLNC8 enhances pancreatic cancer aggressiveness by regulating CTNNB1 expression via association with HuR. Hum Cell 2020; 34:165-176. [PMID: 32951177 DOI: 10.1007/s13577-020-00429-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies worldwide. Tumor suppressor long noncoding RNA on chromosome 8p12 (TSLNC8) is a newly identified long noncoding RNA (lncRNA) and play an important role in human cancers. However, the function and molecular mechanism of TSLNC8 in PC progression remain to be elucidated. Our results showed a significant increase of TSLNC8 expression in PC tissues and cell lines. Upregulation of TSLNC8 expression in PC tissues was closely correlated with TNM stage, distant and lymph node metastasis, and poor prognosis of PC patients. Functional experiments demonstrated that TSLNC8 promoted PC cells proliferation and invasion in vitro, and enhanced PC growth and metastasis in vivo. Mechanistically, TSLNC8 associated with HuR, promoted the binding of HuR with CTNNB1 mRNA and increased the stability of CTNNB1 mRNA, thus activating WNT/β-catenin signaling pathway. Taken together, our present study revealed that oncogenic lncRNA TSLNC8 positively regulate PC growth and metastasis via HuR-mediated mRNA stability of CTNNB1, extending the understanding of PC pathogenesis regulated by lncRNAs.
Collapse
|
10
|
Kim KH, Lee SJ, Kim J, Moon Y. Dynamic Malignant Wave of Ribosome-Insulted Gut Niche via the Wnt-CTGF/CCN2 Circuit. iScience 2020; 23:101076. [PMID: 32361596 PMCID: PMC7200318 DOI: 10.1016/j.isci.2020.101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stress-driven ribosome dysfunction triggers an eIF2α-mediated integrated stress response to maintain cellular homeostasis. Among four key eIF2α kinases, protein kinase R (PKR) expression positively associates with poor prognoses for colorectal cancer (CRC) patients. We identified PKR-linked Wnt signaling networks that facilitate early inflammatory niche and epithelial-mesenchymal transitions of tumor tissues in response to ribosomal insults. However, the downstream Wnt signaling target fibrogenic connective tissue growth factor (CTGF/CCN2) regulates the nuclear translocation of β-catenin in a negative feedback manner. Moreover, dwindling expression of the Wnt/β-catenin pathway-regulator CTGF triggers noncanonical Wnt pathway-mediated exacerbation of intestinal cancer progression such as an increase in cancer stemness and acquisition of chemoresistance in the presence of ribosomal insults. The Wnt-CTGF-circuit-associated landscape of oncogenic signaling events was verified with clinical genomic profiling. This ribosome-associated wave of crosstalk between stress and oncogenes provides valuable insight into potential molecular interventions against intestinal malignancies. PKR expression positively associates with poor prognoses for CRC patients CTGF/CCN2 mediates tumor niche remodeling under PKR-activating ribosomal stress CTGF/CCN2 antagonism of Wnt regulates cancer stemness and chemoresistance
Collapse
Affiliation(s)
- Ki Hyung Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea; Department of Obstetrics and Gynecology, Pusan National University College of Medicine, Busan 49241, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea
| | - Seung Joon Lee
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea.
| |
Collapse
|
11
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
12
|
Hu YP, Jin YP, Wu XS, Yang Y, Li YS, Li HF, Xiang SS, Song XL, Jiang L, Zhang YJ, Huang W, Chen SL, Liu FT, Chen C, Zhu Q, Chen HZ, Shao R, Liu YB. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer 2019; 18:167. [PMID: 31752906 PMCID: PMC6868746 DOI: 10.1186/s12943-019-1097-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDS Long non-coding RNAs (lncRNAs) are essential factors that regulate tumor development and metastasis via diverse molecular mechanisms in a broad type of cancers. However, the pathological roles of lncRNAs in gallbladder carcinoma (GBC) remain largely unknown. Here we discovered a novel lncRNA termed lncRNA Highly expressed in GBC (lncRNA-HGBC) which was upregulated in GBC tissue and aimed to investigate its role and regulatory mechanism in the development and progression of GBC. METHODS The expression level of lncRNA-HGBC in GBC tissue and different cell lines was determined by quantitative real-time PCR. The full length of lncRNA-HGBC was obtained by 5' and 3' rapid amplification of the cDNA ends (RACE). Cellular localization of lncRNA-HGBC was detected by fluorescence in situ hybridization (FISH) assays and subcellular fractionation assay. In vitro and in vivo assays were preformed to explore the biological effects of lncRNA-HGBC in GBC cells. RNA pull-down assay, mass spectrometry, and RNA immunoprecipitation (RIP) assay were used to identify lncRNA-HGBC-interacting proteins. Dual luciferase reporter assays, AGO2-RIP, and MS2-RIP assays were performed to verify the interaction between lncRNA-HGBC and miR-502-3p. RESULTS We found that lncRNA-HGBC was upregulated in GBC and its upregulation could predict poor survival. Overexpression or knockdown of lncRNA-HGBC in GBC cell lines resulted in increased or decreased, respectively, cell proliferation and invasion in vitro and in xenografted tumors. LncRNA-HGBC specifically bound to RNA binding protein Hu Antigen R (HuR) that in turn stabilized lncRNA-HGBC. LncRNA-HGBC functioned as a competitive endogenous RNA to bind to miR-502-3p that inhibits target gene SET. Overexpression, knockdown or mutation of lncRNA-HGBC altered the inhibitory effects of miR-502-3p on SET expression and downstream activation of AKT. Clinically, lncRNA-HGBC expression was negatively correlated with miR-502-3p, but positively correlated with SET and HuR in GBC tissue. CONCLUSIONS Our study demonstrates that lncRNA-HGBC promotes GBC metastasis via activation of the miR-502-3p-SET-AKT cascade, pointing to lncRNA-HGBC as a new prognostic predictor and a therapeutic target.
Collapse
Affiliation(s)
- Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, W. Building 3, Room 407, 280 Chongqi Road, Shanghai, 200025, China
| | - Yun-Peng Jin
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiang-Song Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Yang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong-Sheng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huai-Feng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shan-Shan Xiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Ling Song
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Jian Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wen Huang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shi-Li Chen
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fa-Tao Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chen Chen
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qin Zhu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, W. Building 3, Room 407, 280 Chongqi Road, Shanghai, 200025, China.
| | - Rong Shao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, W. Building 3, Room 407, 280 Chongqi Road, Shanghai, 200025, China.
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
13
|
Hou X, Khan MRA, Turmaine M, Thrasivoulou C, Becker DL, Ahmed A. Wnt signaling regulates cytosolic translocation of connexin 43. Am J Physiol Regul Integr Comp Physiol 2019; 317:R248-R261. [DOI: 10.1152/ajpregu.00268.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The availability of intracellular, stabilized β-catenin, a transcription factor coactivator, is tightly regulated; β-catenin is translocated into the nucleus in response to Wnt ligand binding to its cell membrane receptors. Here we show that Wnt signal activation in mammalian cells activates intracellular mobilization of connexin 43 (Cx43), which belongs to a gap junction protein family, a new target protein in response to extracellular Wnt signal activation. Transmission electron microscopy showed that the nuclear localization of Cx43 was increased by 8- to 10-fold in Wnt5A- and 9B-treated cells compared with controls; this Wnt-induced increase was negated in the cells where Cx43 and β-catenin were knocked down using shRNA. There was a significant ( P < 0.001) and concomitant depletion of the cell membrane and cytosolic signal of Cx43 in Wnt-treated cells with an increase in the nuclear signal for Cx43; this was more obvious in cells where β-catenin was knocked down using shRNA. Conversely, Cx43 knockdown resulted in increased β-catenin in the nucleus in the absence of Wnt activation. Coimmunoprecipitation of Cx43 and β-catenin proteins with a casein kinase (CKIδ) antibody showed that Cx43 interacts with β-catenin and may form part of the so-called destruction complex. Functionally, Wnt activation increased the rate of wound reepithelization in rat skin in vivo.
Collapse
Affiliation(s)
- Xiaoming Hou
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London, United Kingdom
| | - Mohammad R. A. Khan
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Mark Turmaine
- Division of Biosciences, University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London, United Kingdom
| | - David L Becker
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Medical Biology, A*STAR, Singapore
| | - Aamir Ahmed
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
14
|
Spannbrucker T, Ale-Agha N, Goy C, Dyballa-Rukes N, Jakobs P, Jander K, Altschmied J, Unfried K, Haendeler J. Induction of a senescent like phenotype and loss of gap junctional intercellular communication by carbon nanoparticle exposure of lung epithelial cells. Exp Gerontol 2019; 117:106-112. [DOI: 10.1016/j.exger.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 11/28/2022]
|
15
|
Liu R, Li Y, Tian L, Shi H, Wang J, Liang Y, Sun B, Wang S, Zhou M, Wu L, Nie J, Lin B, Tang S, Zhang Y, Wang G, Zhang C, Han J, Xu B, Liu L, Gong K, Zheng T. Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating β-catenin/c-Myc signaling in human hepatocellular carcinoma. Cancer Lett 2018; 443:34-46. [PMID: 30503555 DOI: 10.1016/j.canlet.2018.11.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
Gankyrin plays important roles in tumorigenicity and metastasis of hepatocellular carcinoma (HCC). We have for the first time investigated the effects of Gankyrin on glycolysis and glutaminolysis both in vitro and in vivo, including in patient-derived xenografts. We reported Gankyrin increases glucose consumption, lactate production, glutamine consumption and glutamate production in HCC through upregulating the expression of the transporters and enzymes involved in glycolysis and glutaminolysis, including HK2, GLUT1, LDHA, PKM2, ASCT2 and GLS1. We further demonstrated that Gankyrin drives glycolysis and glutaminolysis through upregulating c-Myc via activating β-catenin signaling. Importantly, we found c-Myc mediated metabolic reprogramming might contribute to the tumorigenicity, metastasis and drug resistance induced by Gankyrin. c-Myc inhibitor synergizes with Sorafenib or Regorafenib to suppress HCC PDX tumors with high Gankyrin levels. We detected a significant correlation between Gankyrin and β-catenin expression levels in a cohort of HCC biopsies, and combination of these two parameters is a more powerful predictor of poor prognosis. Collectively, our results uncovered that Gankyrin functions as an essential regulator in glycolysis and glutaminolysis via activation of β-catenin/c-Myc to promotes tumorigenesis, metastasis and drug resistance in human HCC.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.
| | - Yuejin Li
- The First Department of General Surgery, First People's Hospital of Yunnan, Kunming, Yunnan Province, China.
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Huawen Shi
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Shuangjia Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China.
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Li Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Binlin Lin
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Shuli Tang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Chunhui Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Jiguang Han
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Heilongjiang Province, China.
| | - Benjie Xu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Heilongjiang Province, Harbin, China.
| | - Kunmei Gong
- The First Department of General Surgery, First People's Hospital of Yunnan, Kunming, Yunnan Province, China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Heilongjiang Province, Harbin, China; Department of Phase I Clinical Trials, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| |
Collapse
|
16
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Mathur A, Kumar A, Babu B, Chandna S. In vitro mesenchymal-epithelial transition in NIH3T3 fibroblasts results in onset of low-dose radiation hypersensitivity coupled with attenuated connexin-43 response. Biochim Biophys Acta Gen Subj 2017; 1862:414-426. [PMID: 29154903 DOI: 10.1016/j.bbagen.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/21/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal-to-epithelial transition (MET) is associated with altered cell adhesion patterns. Independent studies showed that cellular adhesion regulates low-dose hyper-radiosensitivity (HRS), a phenomenon reported widely in tumour cells. Therefore, present study aimed to investigate whether MET and associated cellular adhesion alterations affect cellular radiosensitivity. METHODS We established multiple stages of MET by in vitro transformation of NIH3T3 mouse embryonic fibroblasts. Nutritional deprivation followed by repetitive treatment cycles of 3-methylcholanthrene and phorbol-12-myristate-13-acetate with frequent isolation of foci established three progressive strains (NIH3T3.1, NIH3T3x3, NIH3T3x8x3) depicting MET, and one strain (NIH3T3x12) with partial reversion. Alterations in morphology, cell adhesion properties, expression/intracellular localization of cell adhesion proteins, microRNA expression and cellular radiosensitivity were studied in these stably transformed cell strains. RESULTS All four transformants had increased proliferation rate, saturation density, bipolarity, E-cadherin expression; coupled with reduced cell size/spreading, pseudopodia/migration, and fibroblast marker protein and vimentin. The most aggressive trans-differentiated (phenotypically epithelial) cell strain, NIH3T3x8x3 acquired ~30% higher growth potential associated with more than two-fold reduction in cell size and migration. These phenotypic changes accompanied ~40% reduction in endogenous or radiation-induced connexin-43 expression/mitochondrial translocation. Incidentally, all three progressive strains displayed prominent HRS (αs/αr: 7.95-37.29) whereas parental (NIH3T3) and reverting (NIH3T3x12) strains lacked HRS and had distinct radiation-induced Cx43 translocation into mitochondria. CONCLUSION Our study shows that trans-differentiating fibroblasts progressively acquiring epithelial features during MET process, display low-dose hyper-radiosensitivity associated with altered Cx43 behaviour. GENERAL SIGNIFICANCE This study demonstrates that MET progression triggers low-dose hyper-radiosensitivity in trans-differentiating cells, which has significant therapeutic implications.
Collapse
Affiliation(s)
- Ankit Mathur
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road,Timarpur, Delhi 110054, India
| | - Ashish Kumar
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road,Timarpur, Delhi 110054, India
| | - Bincy Babu
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road,Timarpur, Delhi 110054, India
| | - Sudhir Chandna
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road,Timarpur, Delhi 110054, India.
| |
Collapse
|
18
|
Cho HJ, Kuo AMS, Bertrand L, Toborek M. HIV Alters Gap Junction-Mediated Intercellular Communication in Human Brain Pericytes. Front Mol Neurosci 2017; 10:410. [PMID: 29311803 PMCID: PMC5732912 DOI: 10.3389/fnmol.2017.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Despite successful control of viremia by combined antiretroviral therapy, brain infection and its resulting neurocognitive impairment remain a prevalent comorbidity in HIV infected individuals. HIV invades the brain early in the course of infection via penetration through the blood-brain barrier (BBB). While the impact of HIV on BBB astrocytes and endothelial cells is relatively well studied, the role of pericytes in BBB regulation during HIV infection remains unclear; however, it is known that a selective population of pericytes is prone to infection. In the present study, we hypothesize that injury signals are propagated from infected pericytes to neighboring cells via gap junction (GJ)-mediated intercellular communication. Among a variety of studied GJ proteins, HIV infection of human brain pericytes specifically increased expression of connexin 43 as determined by immunoblotting and immunostaining. This effect was confirmed in the brains of mice infected with EcoHIV, a mouse-specific HIV strain. In addition, HIV infection enhanced functional GJ-mediated intercellular communication in pericytes. The importance of this process was confirmed in experiments in which inhibition of GJs by carbenoxolone attenuated HIV infection. In addition to GJs, an extracellular ATP release assay revealed that HIV may also play a role in opening of connexin (Cx)-containing hemichannels (HCs). Overall, these findings indicate an important role of GJs in the propagation of HIV infection in human brain pericytes that may contribute to BBB dysfunction in brain infection and the pathogenesis of NeuroAIDS.
Collapse
Affiliation(s)
- Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alyce Mei-Shiuan Kuo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
19
|
The Lnc RNA SPRY4-IT1 Modulates Trophoblast Cell Invasion and Migration by Affecting the Epithelial-Mesenchymal Transition. Sci Rep 2016; 6:37183. [PMID: 27853262 PMCID: PMC5112580 DOI: 10.1038/srep37183] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is a common, pregnancy-specific disease and a major contributor to maternal and foetal morbidity and mortality. Some placental abnormalities, including deficient implantation, abnormal trophoblast cell function, and improper placental vascular development, are believed to lead to preeclampsia. The long noncoding RNA SPRY4-IT1 is more highly expressed in preeclamptic human placentas than in normal placentas. We assessed the role of epithelial-mesenchymal transition (EMT)-associated invasion and migration in HTR-8/SVneo trophoblast cells. Overexpression of SPRY4-IT1 suppressed trophoblast cell migration and invasion, whereas reduced expression of SPRY4-IT1 prevented the EMT process. Mechanistically, an RNA immunoprecipitation experiment showed that SPRY4-IT1 bound directly to HuR and mediated the β-catenin expression associated with EMT in HTR-8/SVneo cells. Moreover, the expression levels of genes in the WNT family, such as WNT3 and WNT5B, were changed after transfection of HTR-8/SVneo with SPRY4-IT1. Together, our results highlight the roles of SPRY4-IT1 in causing trophoblast cell dysfunction by acting through the Wnt/β-catenin pathway, and consequently in impairing spiral artery remodelling. These results suggest a new potential therapeutic target for intervention against preeclampsia.
Collapse
|
20
|
Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol 2016; 416:52-68. [PMID: 27291930 DOI: 10.1016/j.ydbio.2016.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/15/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.
Collapse
|
21
|
Yu T, Shan TD, Li JY, Huang CZ, Wang SY, Ouyang H, Lu XJ, Xu JH, Zhong W, Chen QK. Knockdown of linc-UFC1 suppresses proliferation and induces apoptosis of colorectal cancer. Cell Death Dis 2016; 7:e2228. [PMID: 27195675 PMCID: PMC4917661 DOI: 10.1038/cddis.2016.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have important roles in biological functions, molecular mechanisms and prognostic values in colorectal cancer (CRC). In this context, the roles of linc-UFC1 remain to be elucidated. In this study, linc-UFC1 was overexpressed in CRC patient tissues and positively correlated with tumor grade, N stage and M stage. Inhibition of linc-UFC1 resulted in cell proliferation inhibition and G1 cell cycle arrest, which was mediated by cyclin D1, CDK4, Rb and phosphorylated Rb. In addition, inhibition of linc-UFC1 induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-9 and caspase-3. An investigation of the signaling pathway revealed that the effects on proliferation and apoptosis following linc-UFC1 knockdown were mediated by suppression of β-catenin and activation of phosphorylated P38. Furthermore, the P38 inhibitor SB203580 could attenuate the apoptotic effect achieved by linc-UFC1 knockdown, confirming the involvement of P38 signaling in the induced apoptosis. Taken together, linc-UFC1 might have a critical role in pro-proliferation and anti-apoptosis in CRC by regulating the cell cycle, intrinsic apoptosis, and β-catenin and P38 signaling. Thus, linc-UFC1 could be a potential therapeutic target and novel molecular biomarker for CRC.
Collapse
Affiliation(s)
- T Yu
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - T-D Shan
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J-Y Li
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - C-Z Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - S-Y Wang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - H Ouyang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - X-J Lu
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J-H Xu
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - W Zhong
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Q-K Chen
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
M Kidder G, Winterhager E. Physiological roles of connexins in labour and lactation. Reproduction 2015; 150:R129-36. [PMID: 26150552 DOI: 10.1530/rep-15-0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023]
Abstract
The connexin family of proteins are best known as oligomerizing to form intercellular membrane channels (gap junctions) that metabolically and ionically couple cells to allow for coordinated cellular function. Nowhere in the body is this role better illustrated than in the uterine smooth muscle during parturition, where gap junctions conduct the contraction wave throughout the tissue to deliver the baby. Parturition is followed by the onset of lactation with connexins contributing to both the dramatic reorganization of mammary gland tissue leading up to lactation and the smooth muscle contraction of the myoepithelial cells which extrudes the milk. This review summarizes what is known about the expression and roles of individual connexin family members in the uterus during labour and in the mammary glands during development and lactation. Connexin loss or malfunction in mammary glands and the uterus can have serious implications for the health of both the mother and the newborn baby.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| | - Elke Winterhager
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| |
Collapse
|
23
|
Abstract
Gap junctions allow intercellular communication. Their structural subunits are four-transmembrane proteins named connexins (Cxs), which can be post-transcriptionally regulated by developmental and cellular signalling cues. Cx translation and mRNA stability is regulated by miRNAs and RNA-binding proteins (RBPs) such as human antigen R (HuR). In addition, several Cxs have also been suggested to contain 5′ internal ribosome entry site (IRES) elements that are thought to allow cap-independent translation in situations such as mitosis, stress and senescence. Furthermore, several recent reports have documented internal translation of Cx mRNAs that result in N-terminally truncated protein isoforms that may have unique gap junction-independent functions [Ul-Hussain et al. (2008) BMC Mol. Biol. 9, 52; Smyth and Shaw (2013) Cell Rep. 5, 611–618; Salat-Canela et al. (2014) Cell Commun. Signal. 12, 31; Ul-Hussain et al. (2014) J. Biol. Chem. 289, 20979–20990]. This review covers the emerging field of the post-transcriptional regulation of Cxs, with particular focus on the translational control of Cx 43 and its possible functional consequences.
Collapse
|
24
|
Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, Wu D, Liu L. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of β-catenin in HCC cells. Gastroenterology 2015; 148:415-26.e18. [PMID: 25449213 DOI: 10.1053/j.gastro.2014.10.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Altered activities of long noncoding RNAs (lncRNAs) have been associated with cancer development. We investigated the mechanisms by which the long intergenic noncoding RNA UFC1 (lincRNA-UFC1) promotes progression of hepatocellular carcinoma (HCC), using human tissues and cell lines. METHODS We used microarrays to compare expression profiles of lncRNAs in HCC samples and adjacent nontumor tissues (controls) from 7 patients. HCC and nontumor tissues were collected from 2006 through 2012 from patients in Guangzhou, China. We used quantitative real-time polymerase chain reaction to measure levels of lincRNA-UFC1 in tissues from 49 patients, and in situ hybridization to measure levels in samples from 131 patients; clinical data were collected from patients for up to 5 years. The lincRNA-UFC1 was expressed transgenically, or knocked down with short hairpin RNAs, in BEL-7402, SK-Hep1, Huh7, and MHCC-97H HCC cell lines; luciferase reporter and RNA immunoprecipitation and pull-down assays were performed. We also analyzed growth of xenograft tumors from these cells in BALB/c nude mice. RESULTS Levels of the lincRNA-UFC1 were increased in HCC tissues compared with controls, and associated with tumor size, Barcelona Clinic Liver Cancer stage, and patient outcomes. Transgenic expression of the lincRNA-UFC1 in HCC cells promoted their proliferation and cell-cycle progression and inhibited apoptosis, whereas short hairpin RNA knockdown of lincRNA-UFC1 had opposite effects. Xenograft tumors grown from cells overexpressing lincRNA-UFC1 had larger mean volumes and weights, and formed more rapidly, than tumors grown from control cells. Tumors grown from lincRNA-UFC1 knockdown were smaller than controls. The lincRNA-UFC1 interacted directly with the messenger RNA (mRNA) stabilizing protein HuR (encoded by ELAVL1) to increase levels of β-catenin mRNA (encoded by CTNNB1) and protein. Levels of lincRNA-UFC1 correlated with those of β-catenin in HCC tissues. In contrast, there was a negative correlation between levels of microRNA 34a and lincRNA-UFC1 in HCC tissues; microRNA 34a reduced the stability of lincRNA-UFC1. CONCLUSIONS The lincRNA-UFC1, a target of microRNA 34a, promotes proliferation and reduces apoptosis in HCC cells to promote growth of xenograft tumors in mice. It interacts directly with the mRNA stabilizing protein HuR to regulate levels of β-catenin in HCC cells.
Collapse
Affiliation(s)
- Chuanhui Cao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyuan Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejun Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liwei Xie
- Center of Molecular Medicine, University of Georgia, Athens, Georgia; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Xin Li
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin. Biochem Biophys Res Commun 2014; 457:65-70. [PMID: 25534855 DOI: 10.1016/j.bbrc.2014.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022]
Abstract
β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.
Collapse
|
26
|
1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling. Molecules 2014; 19:14902-18. [PMID: 25232709 PMCID: PMC6270801 DOI: 10.3390/molecules190914902] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others) to cellular and inter-cellular signaling processes are discussed: (i) naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii) the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.
Collapse
|
27
|
Different modes of endothelial-smooth muscle cell interaction elicit differential β-catenin phosphorylations and endothelial functions. Proc Natl Acad Sci U S A 2014; 111:1855-60. [PMID: 24449884 DOI: 10.1073/pnas.1323761111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β-Catenin phosphorylation plays important roles in modulating its functions, but the effects of different phosphorylated forms of β-catenin in response to heterocellular interaction are unclear. Here we investigated whether distinct modes of phosphorylation on β-catenin could be triggered through heterocellular interactions between endothelial cells (ECs) and smooth muscle cells (SMCs), and the consequent modulation of EC functions. ECs were cocultured with SMCs to initiate direct contact and paracrine interaction. EC-SMC coculture induced EC β-catenin phosphorylations simultaneously at tyrosine 142 (Tyr142) and serine 45/threonine 41 (Ser45/Thr41) at the cytoplasm/nuclei and the membrane, respectively. Treating ECs with SMC-conditional medium induced β-catenin phosphorylation only at Ser45/Thr41. These findings indicate that different phosphorylation effects of EC-SMC coculture were induced through heterocellular direct contact and paracrine effects, respectively. Using specific blocking peptides, antagonists, and siRNAs, we found that the β-catenin Tyr142-phosphorylation was mediated by connexin 43/Fer and that the β-catenin Ser45/Thr41-phosphorylation was mediated by SMC-released bone morphogenetic proteins through VE-cadherin and bone morphogenetic protein receptor-II/Smad5. Transfecting ECs with β-catenin-Tyr142 or -Ser45 mutants showed that these two phosphorylated forms of β-catenin modulate differential EC function: The Tyr142-phosphorylated β-catenin stimulates vascular cell-adhesion molecule-1 expression to increase EC-monocytic adhesion, but the Ser45/Thr41-phosphorylated β-catenin attenuates VE-cadherin-dependent junction structures to increase EC permeability. Our findings provide new insights into the understanding of regulatory complexities of distinct modes of β-catenin phosphorylations under EC-SMC interactions and suggest that different phosphorylated forms of β-catenin play important roles in modulating vascular pathophysiology through different heterocellular interactions.
Collapse
|
28
|
Wang HX, Gillio-Meina C, Chen S, Gong XQ, Li TY, Bai D, Kidder GM. The canonical WNT2 pathway and FSH interact to regulate gap junction assembly in mouse granulosa cells. Biol Reprod 2013; 89:39. [PMID: 23843235 DOI: 10.1095/biolreprod.113.109801] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
WNTs are extracellular signaling molecules that exert their actions through receptors of the frizzled (FZD) family. Previous work indicated that WNT2 regulates cell proliferation in mouse granulosa cells acting through CTNNB1 (beta-catenin), a key component in canonical WNT signaling. In other cells, WNT signaling has been shown to regulate expression of connexin43 (CX43), a gap junction protein, as well as gap junction assembly. Since previous work demonstrated that CX43 is also essential in ovarian follicle development, the objective of this study was to determine if WNT2 regulates CX43 expression and/or gap-junctional intercellular communication (GJIC) in granulosa cells. WNT2 knockdown via siRNA markedly reduced CX43 expression and GJIC. CX43 expression, the extent of CX43-containing gap junction membrane, and GJIC were also reduced by CTNNB1 transient knockdown. CTNNB1 is mainly localized to the membranes between granulosa cells but disappeared from this location after WNT2 knockdown. Furthermore, CTNNB1 knockdown interfered with the ability of follicle-stimulating hormone (FSH) to promote the mobilization of CX43 into gap junctions. We propose that the WNT2/CTNNB1 pathway regulates CX43 expression and GJIC in granulosa cells by modulating CTNNB1 stability and localization in adherens junctions, and that this is essential for FSH stimulation of GJIC.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 2013; 14:10015-41. [PMID: 23665903 PMCID: PMC3676826 DOI: 10.3390/ijms140510015] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
The human embryonic lethal abnormal vision-like protein, HuR, is a member of the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed protein has been extensively investigated in cancer research because it is involved in the regulation of mRNA stability and translation in many cell types. HuR activity and function is associated with its subcellular distribution, transcriptional regulation, translational and post-translational modifications. HuR regulation of target mRNAs is based on the interaction between the three specific domains of HuR protein and one or several U- or AU-rich elements (AREs) in the untranslated region of target mRNAs. A number of cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer phenotypes. In this review, we comprehensively survey the existing evidence with regard to the diverse functions of HuR in caner development and progression. The current data also suggest that HuR might be a novel and promising therapeutic target and a marker for treatment response and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-531-5166-5336; Fax: +86-531-5166-6649
| | - Yan Guo
- Department of Outpatient, Military Command of Shandong Province, Jinan 250013, China; E-Mail:
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Yaping Guan
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Jingwang Bi
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Baocheng Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| |
Collapse
|
30
|
Lin PC, Shen CC, Liao CK, Jow GM, Chiu CT, Chung TH, Wu JC. HYS-32, a novel analogue of combretastatin A-4, enhances connexin43 expression and gap junction intercellular communication in rat astrocytes. Neurochem Int 2013; 62:881-92. [PMID: 23500605 DOI: 10.1016/j.neuint.2013.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/10/2013] [Accepted: 02/25/2013] [Indexed: 12/15/2022]
Abstract
HYS-32 [4-(3,4-dimethoxyphenyl)-3-(naphthalen-2-yl)-2(5H)-furanone] is a new analogue of the anti-tumor compound combretastatin A-4 containing a cis-stilbene moiety. In this study, we investigated its effects on Cx43 gap junction intercellular communication (GJIC) and the signaling pathway involved in rat primary astrocytes. Western blot analyses showed that HYS-32 dose- and time-dependently upregulated Cx43 expression. A confocal microscopic study and scrape-loading/dye transfer analyses demonstrated that HYS-32 (5μM) induced microtubule coiling, accumulation of Cx43 in gap junction plaques, and increased GJIC in astrocytes. The HYS-32-induced microtubule coiling and Cx43 accumulation in gap junction plaques was reversed when HYS-32 was removed. Treatment of astrocytes with cycloheximide resulted in time-dependent degradation of by co-treatment with HYS-32 by increasing the half-life of Cx43. Co-treatment with HYS-32 also prevented the LPS-induced downregulation of Cx43 and inhibition of GJIC in astrocytes. HYS-32 induced activation of PKC, ERK, and JNK, and co-treatment with the PKC inhibitor Go6976 or the ERK inhibitor PD98059, but not the JNK inhibitor SP600125, prevented the HYS-32-induced increase in Cx43 expression and GJIC. Go6976 suppressed the HYS-32-induced PKC phosphorylation and increase in phospho-ERK levels, while PD98059 did not prevent the HYS-32-induced increase in phospho-PKC levels, suggesting that PKC is an upstream effector of ERK. In conclusion, our results show that HYS-32 increases the half-life of Cx43 and enhances Cx43 expression and GJIC in astrocytes via a PKC-ERK signaling cascade. These novel biological effects of HYS-32 on astrocyte gap junctions support its potential for therapeutic use as a protective agent for the central nervous system.
Collapse
Affiliation(s)
- Pei-Chun Lin
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Andrysík Z, Procházková J, Kabátková M, Umannová L, Šimečková P, Kohoutek J, Kozubík A, Machala M, Vondráček J. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch Toxicol 2012; 87:491-503. [DOI: 10.1007/s00204-012-0963-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|
32
|
Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 2012; 524:23-9. [DOI: 10.1016/j.abb.2012.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/26/2022]
|
33
|
Filippova N, Yang X, King P, Nabors LB. Phosphoregulation of the RNA-binding protein Hu antigen R (HuR) by Cdk5 affects centrosome function. J Biol Chem 2012; 287:32277-87. [PMID: 22829587 DOI: 10.1074/jbc.m112.353912] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hu antigen R (HuR) is an mRNA-binding protein belonging to the ELAV family. It is highly expressed in cancer and involved in cell survival and proliferation. The impact of post-translational regulation of HuR and resulting cellular effects are poorly understood. In the current report, we describe a direct interaction between HuR and Cdk5 in glioma. We determined that Cdk5 specifically phosphorylates HuR at the serine 202 residue in the unique hinge region. The molecular consequences of this interaction are an altered HuR ability to bind, stabilize, and promote translation of mRNAs. At the cellular level, the anomalous HuR phosphorylation at this site evokes robust defects in centrosome duplication and cohesion as well as arrest of cell cycle progression. Subcellular fractionation and immunofluorescence technique confirm a direct integration of HuR and Cdk5 with centrosomes. We propose that HuR stores mRNA in the centrosome and that HuR phosphorylation by Cdk5 controls de novo protein synthesis in near proximity to centrosomes and, thus, impacts centrosome function.
Collapse
Affiliation(s)
- Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
34
|
Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, Xu SL, Xin YH, Yao XH, Chen JH, Chu WH, Sun W, Wang B, Wang JM, Zhang X, Bian XW. Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 2012; 30:108-20. [PMID: 22131169 DOI: 10.1002/stem.1685] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malfunctioned gap junctional intercellular communication (GJIC) has been thought associated with malignant transformation of normal cells. However, the role of GJIC-related proteins such as connexins in sustaining the malignant behavior of cancer stem cells remains unclear. In this study, we obtained tumorspheres formed by glioma stem cells (GSCs) and adherent GSCs and then examined their GJIC. All GSCs showed reduced GJIC, and differentiated glioma cells had more gap junction-like structures than GSCs. GSCs expressed very low level of connexins, Cx43 in particular, which are key components of gap junction. We observed hypermethylation in the promoter of gap junction protein α1, which encodes Cx43 in GSCs. Reconstitution of Cx43 in GSCs inhibited their capacity of self-renewal, invasiveness, and tumorigenicity via influencing E-cadherin and its coding protein, which leads to changes in the expression of Wnt/β-catenin targeting genes. Our results suggest that GSCs require the low expression of Cx43 for maintaining their malignant phenotype, and upregulation of Cx43 might be a potential strategy for treatment of malignant glioma.
Collapse
Affiliation(s)
- Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim I, Kwak H, Lee HK, Hyun S, Jeong S. β-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3'-UTR and interacts with HuR in colon cancer cells. Nucleic Acids Res 2012; 40:6863-72. [PMID: 22544606 PMCID: PMC3413138 DOI: 10.1093/nar/gks331] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RNA-binding proteins regulate multiple steps of RNA metabolism through both dynamic and combined binding. In addition to its crucial roles in cell adhesion and Wnt-activated transcription in cancer cells, β-catenin regulates RNA alternative splicing and stability possibly by binding to target RNA in cells. An RNA aptamer was selected for specific binding to β-catenin to address RNA recognition by β-catenin more specifically. Here, we characterized the structural properties of the RNA aptamer as a model and identified a β-catenin RNA motif. Similar RNA motif was found in cellular RNA, Cyclooxygenase-2 (COX-2) mRNA 3'-untranslated region (3'-UTR). More significantly, the C-terminal domain of β-catenin interacted with HuR and the Armadillo repeat domain associated with RNA to form the RNA-β-catenin-HuR complex in vitro and in cells. Furthermore, the tertiary RNA-protein complex was predominantly found in the cytoplasm of colon cancer cells; thus, it might be related to COX-2 protein level and cancer progression. Taken together, the β-catenin RNA aptamer was valuable for deducing the cellular RNA aptamer and identifying novel and oncogenic RNA-protein networks in colon cancer cells.
Collapse
Affiliation(s)
- Inae Kim
- Department of Molecular Biology, National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin, Gyeonggi-do 448-701, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Chen F, Shyu AB, Shneider BL. Hu antigen R and tristetraprolin: counter-regulators of rat apical sodium-dependent bile acid transporter by way of effects on messenger RNA stability. Hepatology 2011; 54:1371-8. [PMID: 21688286 PMCID: PMC3205920 DOI: 10.1002/hep.24496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
UNLABELLED The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) mediates intestinal, renal, and cholangiocyte bile acid reclamation. Transcriptional regulation of ASBT is well described, whereas information on posttranscriptional regulation is limited. Prior studies suggested that ontogeny of ASBT is controlled in part by changes in messenger RNA (mRNA) stability. We studied the role that Hu antigen R (HuR) and tristetraprolin (TTP) play in regulating the expression of mRNA that contains the 3' untranslated region (UTR) of rat ASBT. The 3'UTR was incorporated into an SV-40 driven luciferase reporter (rASBT3-luciferase) for rapid screening of regulatory effects. Silencing HuR reduced luciferase reporter activity, whereas silencing TTP enhanced luciferase activity. Conversely, overexpression of HuR enhanced rASBT3-luciferase reporter activity. The same 3'UTR fragments of rat ASBT were incorporated into a beta-globin coding mRNA construct for analysis of mRNA stability (rASBT3-βglobin). mRNA half-life was progressively shortened by the incorporation of increasing sized fragments of the 3'UTR. Silencing HuR shortened the half-life of rASBT3-βglobin containing 0.3 kb of the rat ASBT 3'UTR. Gel shift assays revealed binding of HuR and TTP to rat ASBT 3'UTR. Endogenously expressed human ASBT mRNA half-lives and steady-state protein levels in Caco-2 cells were repressed when HuR was silenced but was enhanced when TTP was silenced. Developmental changes in HuR and TTP protein abundance correlated with previously characterized ontogenic changes in rat ileal and renal ASBT expression. CONCLUSION These studies not only show that ASBT expression is controlled at the level of mRNA stability by way of its 3'UTR, but also identify HuR and TTP as two key transacting factors that are involved in exerting counterregulatory effects on ASBT mRNA stability.
Collapse
Affiliation(s)
- Frank Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX, 77030
| | - Benjamin L. Shneider
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| |
Collapse
|
37
|
Procházková J, Kabátková M, Bryja V, Umannová L, Bernatík O, Kozubík A, Machala M, Vondráček J. The Interplay of the Aryl Hydrocarbon Receptor and β-Catenin Alters Both AhR-Dependent Transcription and Wnt/β-Catenin Signaling in Liver Progenitors. Toxicol Sci 2011; 122:349-60. [DOI: 10.1093/toxsci/kfr129] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
38
|
Ale-Agha N, Albrecht C, Klotz LO. Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to carbon or silica-based nanoparticles. Biol Chem 2010; 391:1333-9. [DOI: 10.1515/bc.2010.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study was to investigate whether fine and ultrafine carbon black (fC and ufC), and fine and ultrafine silica (fS, ufS) particles affect gap junctional intercellular communication (GJIC) in rat lung epithelial cells. Exposure of cells to subcytotoxic doses of ufC, fS and ufS resulted in a 63%, 59% and 77% reduction of GJIC, respectively, as determined in a dye transfer assay. In contrast to ufC, fC did not significantly alter GJIC. Changes in subcellular localization of the major gap junction protein in RLE cells, connexin-43 (Cx43), and of β-catenin were observed in cells exposed to ufC, fS or ufS. The loss of GJIC was counteracted by N-acetyl cysteine and was largely prevented by specific inhibitors of epidermal growth factor receptor-dependent signaling, pointing to the crucial role of two known major mediators of nanoparticle action, namely reactive oxygen species and membrane-receptor signaling, in particle-induced modulation of GJIC.
Collapse
|
39
|
Chen TM, Hsu CH, Tsai SJ, Sun HS. AUF1 p42 isoform selectively controls both steady-state and PGE2-induced FGF9 mRNA decay. Nucleic Acids Res 2010; 38:8061-71. [PMID: 20716519 PMCID: PMC3001084 DOI: 10.1093/nar/gkq717] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factor 9 (FGF9) is an autocrine/paracrine growth factor that plays vital roles in many physiologic processes including embryonic development. Aberrant expression of FGF9 causes human diseases and thus it highlights the importance of controlling FGF9 expression; however, the mechanism responsible for regulation of FGF9 expression is largely unknown. Here, we show the crucial role of an AU-rich element (ARE) in FGF9 3′-untranslated region (UTR) on controlling FGF9 expression. Our data demonstrated that AUF1 binds to this ARE to regulate FGF9 mRNA stability. Overexpression of each isoform of AUF1 (p37, p40, p42 and p45) showed that only the p42 isoform reduced the steady-state FGF9 mRNA. Also, knockdown of p42AUF1 prolonged the half-life of FGF9 mRNA. The induction of FGF9 mRNA in prostaglandin (PG) E2-treated human endometrial stromal cells was accompanied with declined cytoplasmic AUF1. Nevertheless, ablation of AUF1 led to sustained elevation of FGF9 expression in these cells. Our study demonstrated that p42AUF1 regulates both steady-state and PGE2-induced FGF9 mRNA stability through ARE-mediated mRNA degradation. Since almost half of the FGF family members are ARE-containing genes, our findings also suggest that ARE-mediated mRNA decay is a common pathway to control FGFs expression, and it represents a novel RNA regulon to coordinate FGFs homeostasis in various physiological conditions.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
40
|
Ale-Agha N, Albrecht C, Klotz LO. Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to quartz particles. Biochem Biophys Res Commun 2009; 390:44-7. [DOI: 10.1016/j.bbrc.2009.09.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 09/15/2009] [Indexed: 11/17/2022]
|