1
|
Thomas H, Carlisle RC. Progress in Gene Therapy for Hereditary Tyrosinemia Type 1. Pharmaceutics 2025; 17:387. [PMID: 40143050 PMCID: PMC11945121 DOI: 10.3390/pharmaceutics17030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Hereditary Tyrosinemia Type-1 (HT1), an inherited error of metabolism caused by a mutation in the fumarylacetoacetate hydrolase gene, is associated with liver disease, severe morbidity, and early mortality. The use of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) has almost eradicated the acute HT1 symptoms and childhood mortality. However, patient outcomes remain unsatisfactory due to the neurocognitive effects of NTBC and the requirement for a strict low-protein diet. Gene therapy (GT) offers a potential single-dose cure for HT1, and there is now abundant preclinical data showing how a range of vector-nucleotide payload combinations could be used with curative intent, rather than continued reliance on amelioration. Unfortunately, there have been no HT1-directed clinical trials reported, and so it is unclear which promising pre-clinical approach has the greatest chance of successful translation. Here, to fill this knowledge gap, available HT1 preclinical data and available clinical trial data pertaining to liver-directed GT for other diseases are reviewed. The aim is to establish which vector-payload combination has the most potential as a one-dose HT1 cure. Analysis provides a strong case for progressing lentiviral-based approaches into clinical trials. However, other vector-payload combinations may be more scientifically and commercially viable, but these options require additional investigation.
Collapse
Affiliation(s)
- Helen Thomas
- Department for Continuing Education, University of Oxford, Headington, Oxford OX1 3PJ, UK;
| | - Robert C. Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, Oxford OX3 7DL, UK
| |
Collapse
|
2
|
Rivest JF, Carter S, Goupil C, Antérieux P, Cyr D, Ung RV, Dal Soglio D, Mac-Way F, Waters PJ, Paganelli M, Doyon Y. In vivo dissection of the mouse tyrosine catabolic pathway with CRISPR-Cas9 identifies modifier genes affecting hereditary tyrosinemia type 1. Genetics 2024; 228:iyae139. [PMID: 39178380 PMCID: PMC11457941 DOI: 10.1093/genetics/iyae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Hereditary tyrosinemia type 1 is an autosomal recessive disorder caused by mutations (pathogenic variants) in fumarylacetoacetate hydrolase, an enzyme involved in tyrosine degradation. Its loss results in the accumulation of toxic metabolites that mainly affect the liver and kidneys and can lead to severe liver disease and liver cancer. Tyrosinemia type 1 has a global prevalence of approximately 1 in 100,000 births but can reach up to 1 in 1,500 births in some regions of Québec, Canada. Mutating functionally related "modifier' genes (i.e. genes that, when mutated, affect the phenotypic impacts of mutations in other genes) is an emerging strategy for treating human genetic diseases. In vivo somatic genome editing in animal models of these diseases is a powerful means to identify modifier genes and fuel treatment development. In this study, we demonstrate that mutating additional enzymes in the tyrosine catabolic pathway through liver-specific genome editing can relieve or worsen the phenotypic severity of a murine model of tyrosinemia type 1. Neonatal gene delivery using recombinant adeno-associated viral vectors expressing Staphylococcus aureus Cas9 under the control of a liver-specific promoter led to efficient gene disruption and metabolic rewiring of the pathway, with systemic effects that were distinct from the phenotypes observed in whole-body knockout models. Our work illustrates the value of using in vivo genome editing in model organisms to study the direct effects of combining pathological mutations with modifier gene mutations in isogenic settings.
Collapse
Affiliation(s)
- Jean-François Rivest
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Sophie Carter
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Claudia Goupil
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Pénélope Antérieux
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Denis Cyr
- Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Roth-Visal Ung
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
| | - Dorothée Dal Soglio
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Fabrice Mac-Way
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
| | - Paula J Waters
- Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Massimiliano Paganelli
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Greig JA, Martins KM, Breton C, Lamontagne RJ, Zhu Y, He Z, White J, Zhu JX, Chichester JA, Zheng Q, Zhang Z, Bell P, Wang L, Wilson JM. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat Biotechnol 2024; 42:1232-1242. [PMID: 37932420 PMCID: PMC11324525 DOI: 10.1038/s41587-023-01974-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/29/2023] [Indexed: 11/08/2023]
Abstract
The development of liver-based adeno-associated virus (AAV) gene therapies is facing concerns about limited efficiency and durability of transgene expression. We evaluated nonhuman primates following intravenous dosing of AAV8 and AAVrh10 vectors for over 2 years to better define the mechanism(s) of transduction that affect performance. High transduction of non-immunogenic transgenes was achieved, although expression declined over the first 90 days to reach a lower but stable steady state. More than 10% of hepatocytes contained single nuclear domains of vector DNA that persisted despite the loss of transgene expression. Greater reductions in vector DNA and RNA were observed with immunogenic transgenes. Genomic integration of vector sequences, including complex concatemeric structures, were detected in 1 out of 100 cells at broadly distributed loci that were not in proximity to genes associated with hepatocellular carcinoma. Our studies suggest that AAV-mediated transgene expression in primate hepatocytes occurs in two phases: high but short-lived expression from episomal genomes, followed by much lower but stable expression, likely from integrated vectors.
Collapse
Affiliation(s)
- Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly M Martins
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camilo Breton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jason Lamontagne
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John White
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing-Xu Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Zheng
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Redhead C, Taye N, Hubmacher D. En route towards a personalized medicine approach: Innovative therapeutic modalities for connective tissue disorders. Matrix Biol 2023; 122:46-54. [PMID: 37657665 PMCID: PMC10529529 DOI: 10.1016/j.matbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Connective tissue disorders can be caused by pathogenic variants (mutations) in genes encoding extracellular matrix (ECM) proteins. Such disorders typically manifest during development or postnatal growth and result in significant morbidity and mortality. The development of curative treatments for connective tissue disorders is hampered in part by the inability of many mature connective tissues to efficiently regenerate. To be most effective, therapeutic strategies designed to preserve or restore tissue function will likely need to be initiated during phases of significant endogenous connective tissue remodeling and organ sculpting postnatally and directly target the underlying ECM protein mutations. With recent advances in whole exome sequencing, in-vitro and in-vivo disease modeling, and the development of mutation-specific molecular therapeutic modalities, it is now feasible to directly correct disease-causing mutations underlying connective tissue disorders and ameliorate their pathogenic consequences. These technological advances may lead to potentially curative personalized medicine approaches for connective tissue disorders that have previously been considered incurable. In this review, we highlight innovative therapeutic modalities including gene replacement, exon skipping, DNA/mRNA editing, and pharmacological approaches that were used to preserve or restore tissue function in the context of connective tissue disorders. Inherent to a successful application of these approaches is the need to deepen the understanding of mechanisms that regulate ECM formation and homeostasis, and to decipher how individual mutations in ECM proteins compromise ECM and connective tissue development and function.
Collapse
Affiliation(s)
- Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Gao K, Li J, Song H, Han H, Wang Y, Yin B, Farmer DL, Murthy N, Wang A. In utero delivery of mRNA to the heart, diaphragm and muscle with lipid nanoparticles. Bioact Mater 2023; 25:387-398. [PMID: 36844366 PMCID: PMC9950423 DOI: 10.1016/j.bioactmat.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Nanoparticle-based drug delivery systems have the potential to revolutionize medicine, but their low vascular permeability and rapid clearance by phagocytic cells have limited their medical impact. Nanoparticles delivered at the in utero stage can overcome these key limitations due to the high rate of angiogenesis and cell division in fetal tissue and the under-developed immune system. However, very little is known about nanoparticle drug delivery at the fetal stage of development. In this report, using Ai9 CRE reporter mice, we demonstrate that lipid nanoparticle (LNP) mRNA complexes can deliver mRNA in utero, and can access and transfect major organs, such as the heart, the liver, kidneys, lungs and the gastrointestinal tract with remarkable efficiency and low toxicity. In addition, at 4 weeks after birth, we demonstrate that 50.99 ± 5.05%, 36.62 ± 3.42% and 23.7 ± 3.21% of myofiber in the diaphragm, heart and skeletal muscle, respectively, were transfected. Finally, we show here that Cas9 mRNA and sgRNA complexed to LNPs were able to edit the fetal organs in utero. These experiments demonstrate the possibility of non-viral delivery of mRNA to organs outside of the liver in utero, which provides a promising strategy for treating a wide variety of devastating diseases before birth.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, CA, 94704, United States
| | - Hengyue Song
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Hunan, 410013, China
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, CA, 94704, United States
| | - Yongheng Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| | - Boyan Yin
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA, 94704, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| |
Collapse
|
6
|
Testa LC, Musunuru K. Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common Diseases. BioDrugs 2023:10.1007/s40259-023-00610-9. [PMID: 37314680 DOI: 10.1007/s40259-023-00610-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Collectively, genetic disorders affect approximately 350 million individuals worldwide and are a major global health burden. Despite substantial progress in identification of new disease-causing genes, variants, and molecular etiologies, nearly all rare diseases have no targeted therapeutics that can address their underlying molecular causes. Base editing (BE) and prime editing (PE), two newly described iterations of CRISPR-Cas9 genome editing, represent potential therapeutic strategies that could be used to precisely, efficiently, permanently, and safely correct patients' pathogenic variants and ameliorate disease sequelae. Unlike "standard" CRISPR-Cas9 genome editing, these technologies do not rely on double-strand break (DSB) formation, thus improving safety by decreasing the likelihood of undesired insertions and deletions (indels) at the target site. Here, we provide an overview of BE and PE, including their structures, mechanisms, and differences from standard CRISPR-Cas9 genome editing. We describe several examples of the use of BE and PE to improve rare and common disease phenotypes in preclinical models and human patients, with an emphasis on in vivo editing efficacy, safety, and delivery method. We also discuss recently developed delivery methods for these technologies that may be used in future clinical settings.
Collapse
Affiliation(s)
- Lauren C Testa
- Division of Cardiovascular Medicine, Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Division of Cardiovascular Medicine, Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zheng C, Liu B, Dong X, Gaston N, Sontheimer EJ, Xue W. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat Commun 2023; 14:3369. [PMID: 37291100 PMCID: PMC10250319 DOI: 10.1038/s41467-023-39137-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Targeted insertion of large DNA fragments holds promise for genome engineering and gene therapy. Prime editing (PE) effectively inserts short (<50 bp) sequences. Employing paired prime editing guide RNAs (pegRNAs) has enabled PE to better mediate relatively large insertions in vitro, but the efficiency of larger insertions (>400 bp) remains low and in vivo application has not been demonstrated. Inspired by the efficient genomic insertion mechanism of retrotransposons, we develop a template-jumping (TJ) PE approach for the insertion of large DNA fragments using a single pegRNA. TJ-pegRNA harbors the insertion sequence as well as two primer binding sites (PBSs), with one PBS matching a nicking sgRNA site. TJ-PE precisely inserts 200 bp and 500 bp fragments with up to 50.5 and 11.4% efficiency, respectively, and enables GFP (~800 bp) insertion and expression in cells. We transcribe split circular TJ-petRNA in vitro via a permuted group I catalytic intron for non-viral delivery in cells. Finally, we demonstrate that TJ-PE can rewrite an exon in the liver of tyrosinemia I mice to reverse the disease phenotype. TJ-PE has the potential to insert large DNA fragments without double-stranded DNA breaks and facilitate mutation hotspot exon rewriting in vivo.
Collapse
Affiliation(s)
- Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Bin Liu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Calabria A, Cipriani C, Spinozzi G, Rudilosso L, Esposito S, Benedicenti F, Albertini A, Pouzolles M, Luoni M, Giannelli S, Broccoli V, Guilbaud M, Adjali O, Taylor N, Zimmermann VS, Montini E, Cesana D. Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice. Blood 2023; 141:2316-2329. [PMID: 36790505 PMCID: PMC10356579 DOI: 10.1182/blood.2022017378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Cipriani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Rudilosso
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Esposito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Albertini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroscience Institute, National Research Council of Italy, Milan, Italy
| | - Mickael Guilbaud
- Translational Gene Therapy Laboratory, INSERM and Nantes University, Nantes, France
| | - Oumeya Adjali
- Translational Gene Therapy Laboratory, INSERM and Nantes University, Nantes, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Hereditary Tyrosinemia Type 1 Mice under Continuous Nitisinone Treatment Display Remnants of an Uncorrected Liver Disease Phenotype. Genes (Basel) 2023; 14:genes14030693. [PMID: 36980965 PMCID: PMC10047938 DOI: 10.3390/genes14030693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.
Collapse
|
10
|
Applying the CRISPR/Cas9 for treating human and animal diseases: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Recently, genome editing tools have been extensively used in many biomedical sciences. The gene editing system is applied to modify the DNA sequences in the cellular system to comprehend their physiological response. A developing genome editing technology like clustered regularly short palindromic repeats (CRISPR) is widely expended in medical sciences. CRISPR and CRISPR-associated protein 9 (CRISPR/Cas9) system is being exploited to edit any DNA mutations related to inherited ailments to investigate in animals (in vivo) and cell lines (in vitro). Remarkably, CRISPR/Cas9 could be employed to examine treatments of many human genetic diseases such as Cystic fibrosis, Tyrosinemia, Phenylketonuria, Muscular dystrophy, Parkinson’s disease, Retinoschisis, Hemophilia, β-Thalassemia and Atherosclerosis. Moreover, CRISPR/Cas9 was used for disease resistance such as Tuberculosis, Johne’s diseases, chronic enteritis, and Brucellosis in animals. Finally, this review discusses existing progress in treating hereditary diseases using CRISPR/Cas9 technology and the high points accompanying obstacles.
Collapse
|
11
|
Abstract
A genetic disorder is a disease caused by an abnormal DNA sequence, and almost half of the known pathogenic monogenetic mutations are caused by G-to-A mutation (Landrum et al., Nucleic Acids Res 44:D862-868, 2016). Adenine base editors (ABE), developed from the CRISPR, hold the great promise to mediate the A-to-G transition in genomic DNA while not inducing DNA cleavage (Gaudelli et al., Nature 551:464-471, 2017). Additionally, lipid nanoparticles (LNPs), as a non-viral delivery, are able to deliver the ABE mRNAs and gRNA to the target tissues (Newby and Liu, Mol Ther 29:3107-3124, 2021). This chapter mainly introduces the production and LNP delivery of ABE mRNA and gRNA.
Collapse
|
12
|
Wang D, Fan X, Li M, Liu T, Lu P, Wang G, Li Y, Han J, Zhao J. Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR J 2022; 5:746-768. [PMID: 36512351 DOI: 10.1089/crispr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently established prime editor (PE) system is regarded as next-generation gene-editing technology. This methodology can install any base-to-base change as well as insertions and deletions without the requirement for double-stranded break formation or donor DNA templates; thus, it offers more targeting flexibility and greater editing precision than conventional CRISPR-Cas systems or base editors. In this study, we introduce the basic principles of PE and then review its most recent progress in terms of editing versatility, specificity, and efficiency in mammals. Next, we summarize key considerations regarding the selection of PE variants, prime editing guide RNA (pegRNA) design rules, and the efficiency and accuracy evaluation of PE. Finally, we highlight and discuss how PE can assist in a wide range of biological studies and how it can be applied to make precise genomic corrections in animal models, which paves the way for curing human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianbo Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JunMing Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Cacicedo ML, Weinl-Tenbruck C, Frank D, Wirsching S, Straub BK, Hauke J, Okun JG, Horscroft N, Hennermann JB, Zepp F, Chevessier-Tünnesen F, Gehring S. mRNA-based therapy proves superior to the standard of care for treating hereditary tyrosinemia 1 in a mouse model. Mol Ther Methods Clin Dev 2022; 26:294-308. [PMID: 35949297 PMCID: PMC9357842 DOI: 10.1016/j.omtm.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
Hereditary tyrosinemia type 1 is an inborn error of amino acid metabolism characterized by deficiency of fumarylacetoacetate hydrolase (FAH). Only limited treatment options (e.g., oral nitisinone) are available. Patients must adhere to a strict diet and face a life-long risk of complications, including liver cancer and progressive neurocognitive decline. There is a tremendous need for innovative therapies that standardize metabolite levels and promise normal development. Here, we describe an mRNA-based therapeutic approach that rescues Fah-deficient mice, a well-established tyrosinemia model. Repeated intravenous or intramuscular administration of lipid nanoparticle-formulated human FAH mRNA resulted in FAH protein synthesis in deficient mouse livers, stabilized body weight, normalized pathologic increases in metabolites after nitisinone withdrawal, and prevented early death. Dose reduction and extended injection intervals proved therapeutically effective. These results provide proof of concept for an mRNA-based therapeutic approach to treating hereditary tyrosinemia type 1 that is superior to the standard of care.
Collapse
Affiliation(s)
- Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Corresponding author Maximiliano L. Cacicedo, Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | | | - Daniel Frank
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sebastian Wirsching
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Beate K. Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jana Hauke
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Julia B. Hennermann
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Fred Zepp
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
14
|
Liu B, Dong X, Cheng H, Zheng C, Chen Z, Rodríguez TC, Liang SQ, Xue W, Sontheimer EJ. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat Biotechnol 2022; 40:1388-1393. [PMID: 35379962 DOI: 10.1038/s41587-022-01255-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion-deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify β-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein-protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs.
Collapse
Affiliation(s)
- Bin Liu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tomás C Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Nicolas CT, VanLith CJ, Hickey RD, Du Z, Hillin LG, Guthman RM, Cao WJ, Haugo B, Lillegard A, Roy D, Bhagwate A, O'Brien D, Kocher JP, Kaiser RA, Russell SJ, Lillegard JB. In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development of precancerous and cancerous lesions. Nat Commun 2022; 13:5012. [PMID: 36008405 PMCID: PMC9411607 DOI: 10.1038/s41467-022-32576-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)−1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach. Hereditary tyrosinemia type 1 (HT1) is an inborn error of metabolism caused by a deficiency in fumarylacetoacetate hydrolase (FAH). Here, the authors show in an animal model that HT1 can be treated via in vivo portal vein administration of a lentiviral vector carrying the human FAH transgene.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lori G Hillin
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rebekah M Guthman
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Medical College of Wisconsin, Wausau, WI, USA
| | - William J Cao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Diya Roy
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA. .,Pediatric Surgical Associates, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Shin JH, Lee J, Jung YK, Kim KS, Jeong J, Choi D. Therapeutic applications of gene editing in chronic liver diseases: an update. BMB Rep 2022. [PMID: 35651324 PMCID: PMC9252892 DOI: 10.5483/bmbrep.2022.55.6.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Jinho Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
17
|
Zhang H, Bamidele N, Liu P, Ojelabi O, Gao XD, Rodriguez T, Cheng H, Kelly K, Watts JK, Xie J, Gao G, Wolfe SA, Xue W, Sontheimer EJ. Adenine Base Editing In Vivo with a Single Adeno-Associated Virus Vector. GEN BIOTECHNOLOGY 2022; 1:285-299. [PMID: 35811581 PMCID: PMC9258002 DOI: 10.1089/genbio.2022.0015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 04/14/2023]
Abstract
Base editors (BEs) have opened new avenues for the treatment of genetic diseases. However, advances in delivery approaches are needed to enable disease targeting of a broad range of tissues and cell types. Adeno-associated virus (AAV) vectors remain one of the most promising delivery vehicles for gene therapies. Currently, most BE/guide combinations and their promoters exceed the packaging limit (∼5 kb) of AAVs. Dual-AAV delivery strategies often require high viral doses that impose safety concerns. In this study, we engineered an adenine base editor (ABE) using a compact Cas9 from Neisseria meningitidis (Nme2Cas9). Compared with the well-characterized Streptococcus pyogenes Cas9-containing ABEs, ABEs using Nme2Cas9 (Nme2-ABE) possess a distinct protospacer adjacent motif (N4CC) and editing window, exhibit fewer off-target effects, and can efficiently install therapeutically relevant mutations in both human and mouse genomes. Importantly, we show that in vivo delivery of Nme2-ABE and its guide RNA by a single AAV vector can efficiently edit mouse genomic loci and revert the disease mutation and phenotype in an adult mouse model of tyrosinemia. We anticipate that Nme2-ABE, by virtue of its compact size and broad targeting range, will enable a range of therapeutic applications with improved safety and efficacy due in part to packaging in a single-vector system.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nathan Bamidele
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Pengpeng Liu
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ogooluwa Ojelabi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Xin D. Gao
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Tomás Rodriguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Departments of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Departments of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Departments of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Scot A. Wolfe
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Address correspondence to: Erik J. Sontheimer, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, AS5-2051, Worcester, MA 01605, USA,
| |
Collapse
|
18
|
Shin JH, Lee J, Jung YK, Kim KS, Jeong J, Choi D. Therapeutic applications of gene editing in chronic liver diseases: an update. BMB Rep 2022; 55:251-258. [PMID: 35651324 PMCID: PMC9252892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 02/21/2025] Open
Abstract
Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans. [BMB Reports 2022; 55(6): 251-258].
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Jinho Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
- HY Indang Institute of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
19
|
Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng 2022; 6:181-194. [PMID: 34446856 DOI: 10.1038/s41551-021-00788-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
The use of prime editing-a gene-editing technique that induces small genetic changes without the need for donor DNA and without causing double strand breaks-to correct pathogenic mutations and phenotypes needs to be tested in animal models of human genetic diseases. Here we report the use of prime editors 2 and 3, delivered by hydrodynamic injection, in mice with the genetic liver disease hereditary tyrosinemia, and of prime editor 2, delivered by an adeno-associated virus vector, in mice with the genetic eye disease Leber congenital amaurosis. For each pathogenic mutation, we identified an optimal prime-editing guide RNA by using cells transduced with lentiviral libraries of guide-RNA-encoding sequences paired with the corresponding target sequences. The prime editors precisely corrected the disease-causing mutations and led to the amelioration of the disease phenotypes in the mice, without detectable off-target edits. Prime editing should be tested further in more animal models of genetic diseases.
Collapse
|
20
|
Jiang T, Zhang XO, Weng Z, Xue W. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 2022; 40:227-234. [PMID: 34650270 PMCID: PMC8847310 DOI: 10.1038/s41587-021-01026-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Genomic insertions, duplications and insertion/deletions (indels), which account for ~14% of human pathogenic mutations, cannot be accurately or efficiently corrected by current gene-editing methods, especially those that involve larger alterations (>100 base pairs (bp)). Here, we optimize prime editing (PE) tools for creating precise genomic deletions and direct the replacement of a genomic fragment ranging from ~1 kilobases (kb) to ~10 kb with a desired sequence (up to 60 bp) in the absence of an exogenous DNA template. By conjugating Cas9 nuclease to reverse transcriptase (PE-Cas9) and combining it with two PE guide RNAs (pegRNAs) targeting complementary DNA strands, we achieve precise and specific deletion and repair of target sequences via using this PE-Cas9-based deletion and repair (PEDAR) method. PEDAR outperformed other genome-editing methods in a reporter system and at endogenous loci, efficiently creating large and precise genomic alterations. In a mouse model of tyrosinemia, PEDAR removed a 1.38-kb pathogenic insertion within the Fah gene and precisely repaired the deletion junction to restore FAH expression in liver.
Collapse
Affiliation(s)
- Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
21
|
Gao M, Zhu X, Yang G, Bao J, Bu H. CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA Cell Biol 2021; 40:1462-1475. [PMID: 34847741 DOI: 10.1089/dna.2020.6474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pigs have been extensively used as the research models for human disease pathogenesis and gene therapy. They are also the optimal source of cells, tissues, and organs for xenotransplantation due to anatomical and physiological similarities to humans. Several breakthroughs in gene-editing technologies, including the advent of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), have greatly improved the efficiency of genetic manipulation and significantly broadened the application of gene-edited large animal models. In this review, we have not only outlined the important applications of the CRISPR/Cas9 system in pigs as a means to study human diseases but also discussed the potential challenges of the use of CRISPR/Cas9 in large animals.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
22
|
Zhao Z, Li C, Tong F, Deng J, Huang G, Sang Y. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biol Proced Online 2021; 23:14. [PMID: 34261433 PMCID: PMC8281662 DOI: 10.1186/s12575-021-00151-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Characterized by multiple complex mutations, including activation by oncogenes and inhibition by tumor suppressors, cancer is one of the leading causes of death. Application of CRISPR-Cas9 gene-editing technology in cancer research has aroused great interest, promoting the exploration of the molecular mechanism of cancer progression and development of precise therapy. CRISPR-Cas9 gene-editing technology provides a solid basis for identifying driver and passenger mutations in cancer genomes, which is of great value in genetic screening and for developing cancer models and treatments. This article reviews the current applications of CRISPR-Cas9 gene-editing technology in various cancer studies, the challenges faced, and the existing solutions, highlighting the potential of this technology for cancer treatment.
Collapse
Affiliation(s)
- Ziyi Zhao
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Chenxi Li
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Fei Tong
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330008, China
| | - Jingkuang Deng
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Guofu Huang
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| | - Yi Sang
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| |
Collapse
|
23
|
Genome editing in the human liver: Progress and translational considerations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:257-288. [PMID: 34175044 DOI: 10.1016/bs.pmbts.2021.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver-targeted genome editing offers the prospect of life-long therapeutic benefit following a single treatment and is set to rapidly supplant conventional gene addition approaches. Combining progress in liver-targeted gene delivery with genome editing technology, makes this not only feasible but realistically achievable in the near term. However, important challenges remain to be addressed. These include achieving therapeutic levels of editing, particularly in vivo, avoidance of off-target effects on the genome and the potential impact of pre-existing immunity to bacteria-derived nucleases, when used to improve editing rates. In this chapter, we outline the unique features of the liver that make it an attractive target for genome editing, the impact of liver biology on therapeutic efficacy, and disease specific challenges, including whether the approach targets a cell autonomous or non-cell autonomous disease. We also discuss strategies that have been used successfully to achieve genome editing outcomes in the liver and address translational considerations as genome editing technology moves into the clinic.
Collapse
|
24
|
Spector LP, Tiffany M, Ferraro NM, Abell NS, Montgomery SB, Kay MA. Evaluating the Genomic Parameters Governing rAAV-Mediated Homologous Recombination. Mol Ther 2021; 29:1028-1046. [PMID: 33248247 PMCID: PMC7934627 DOI: 10.1016/j.ymthe.2020.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have the unique ability to promote targeted integration of transgenes via homologous recombination at specified genomic sites, reaching frequencies of 0.1%-1%. We studied genomic parameters that influence targeting efficiencies on a large scale. To do this, we generated more than 1,000 engineered, doxycycline-inducible target sites in the human HAP1 cell line and infected this polyclonal population with a library of AAV-DJ targeting vectors, with each carrying a unique barcode. The heterogeneity of barcode integration at each target site provided an assessment of targeting efficiency at that locus. We compared targeting efficiency with and without target site transcription for identical chromosomal positions. Targeting efficiency was enhanced by target site transcription, while chromatin accessibility was associated with an increased likelihood of targeting. ChromHMM chromatin states characterizing transcription and enhancers in wild-type K562 cells were also associated with increased AAV-HR efficiency with and without target site transcription, respectively. Furthermore, the amenability of a site to targeting was influenced by the endogenous transcriptional level of intersecting genes. These results define important parameters that may not only assist in designing optimal targeting vectors for genome editing, but also provide new insights into the mechanism of AAV-mediated homologous recombination.
Collapse
Affiliation(s)
- Laura P Spector
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Tiffany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Ferraro
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark A Kay
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Mani I. CRISPR-Cas9 for treating hereditary diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:165-183. [PMID: 34127193 DOI: 10.1016/bs.pmbts.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This chapter analyzes to use of the genome editing tool to the treatment of various genetic diseases. The genome editing method could be used to change the DNA in cells or organisms to understand their physiological response. Therefore, a key objective is to present general information about the use of the genome editing tool in a pertinent way. An emerging genome editing technology like a clustered regularly short palindromic repeats (CRISPR) is an extensively expended in biological sciences. CRISPR and CRISPR-associated protein 9 (CRISPR-Cas9) technique is being utilized to edit any DNA mutations associated with hereditary diseases to study in cells (in vitro) and animals (in vivo). Interestingly, CRISPR-Cas9 could be used to the investigation of treatments of various human hereditary diseases such as hemophila, β-thalassemia, cystic fibrosis, Alzheimer's, Huntington's, Parkinson's, tyrosinemia, Duchnene muscular dystrophy, Tay-Sachs, and fragile X syndrome disorders. Furthermore, CRISPR-Cas9 could also be used in other diseases to the improvement of human health. Finally, this chapter discuss current progress to treatment for hereditary diseases using CRISPR-Cas9 technology and highlights associated challenges and future prospects.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
26
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
27
|
Konishi CT, Long C. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. J Biomed Res 2020; 35:148-162. [PMID: 33402545 PMCID: PMC8038532 DOI: 10.7555/jbr.34.20200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There are an estimated 10 000 monogenic diseases affecting tens of millions of individuals worldwide. The application of CRISPR/Cas genome editing tools to treat monogenic diseases is an emerging strategy with the potential to generate personalized treatment approaches for these patients. CRISPR/Cas-based systems are programmable and sequence-specific genome editing tools with the capacity to generate base pair resolution manipulations to DNA or RNA. The complexity of genomic insults resulting in heritable disease requires patient-specific genome editing strategies with consideration of DNA repair pathways, and CRISPR/Cas systems of different types, species, and those with additional enzymatic capacity and/or delivery methods. In this review we aim to discuss broad and multifaceted therapeutic applications of CRISPR/Cas gene editing systems including in harnessing of homology directed repair, non-homologous end joining, microhomology-mediated end joining, and base editing to permanently correct diverse monogenic diseases.
Collapse
Affiliation(s)
- Colin T Konishi
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chengzu Long
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Helen and Martin Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
28
|
Li N, Gou S, Wang J, Zhang Q, Huang X, Xie J, Li L, Jin Q, Ouyang Z, Chen F, Ge W, Shi H, Liang Y, Zhuang Z, Zhao X, Lian M, Ye Y, Quan L, Wu H, Lai L, Wang K. CRISPR/Cas9-Mediated Gene Correction in Newborn Rabbits with Hereditary Tyrosinemia Type I. Mol Ther 2020; 29:1001-1015. [PMID: 33221434 DOI: 10.1016/j.ymthe.2020.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
Patients with hereditary tyrosinemia type I (HT1) present acute and irreversible liver and kidney damage during infancy. CRISPR-Cas9-mediated gene correction during infancy may provide a promising approach to treat patients with HT1. However, all previous studies were performed on adult HT1 rodent models, which cannot authentically recapitulate some symptoms of human patients. The efficacy and safety should be verified in large animals to translate precise gene therapy to clinical practice. Here, we delivered CRISPR-Cas9 and donor templates via adeno-associated virus to newborn HT1 rabbits. The lethal phenotypes could be rescued, and notably, these HT1 rabbits reached adulthood normally without 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione administration and even gave birth to offspring. Adeno-associated virus (AAV)-treated HT1 rabbits displayed normal liver and kidney structures and functions. Homology-directed repair-mediated precise gene corrections and non-homologous end joining-mediated out-of-frame to in-frame corrections in the livers were observed with efficiencies of 0.90%-3.71% and 2.39%-6.35%, respectively, which appeared to be sufficient to recover liver function and decrease liver and kidney damage. This study provides useful large-animal preclinical data for rescuing hepatocyte-related monogenetic metabolic disorders with precise gene therapy.
Collapse
Affiliation(s)
- Nan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Xingyun Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingke Xie
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Fangbing Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhu Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Lian
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yinghua Ye
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Longquan Quan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
29
|
Zhang QS, Tiyaboonchai A, Nygaard S, Baradar K, Major A, Balaji N, Grompe M. Induced Liver Regeneration Enhances CRISPR/Cas9-Mediated Gene Repair in Tyrosinemia Type 1. Hum Gene Ther 2020; 32:294-301. [PMID: 32729326 DOI: 10.1089/hum.2020.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The efficiency of gene repair by homologous recombination in the liver is enhanced by CRISP/Cas9 incision near the mutation. In this study, we explored interventions designed to further enhance in vivo hepatocyte gene repair in a model of hereditary tyrosinemia. A two-AAV system was employed: one virus carried a Staphylococcus pyogenes Cas9 (SpCas9) expression cassette and the other harbored a U6 promoter-driven sgRNA and a fragment of fumarylacetoacetate hydrolase (Fah) genomic DNA as the homologous recombination donor. In neonatal mice, a gene correction frequency of ∼10.8% of hepatocytes was achieved. The efficiency in adult mice was significantly lower at ∼1.6%. To determine whether hepatocyte replication could enhance the targeting frequency, cell division was induced with thyroid hormone T3. This more than doubled the gene correction efficiency to 3.5% (p < 0.005). To determine whether SpCas9 delivery was rate limiting, the gene repair AAV was administered to SpCas9 transgenic mice. However, this did not significantly enhance gene repair. Finally, we tested whether the Fanconi anemia (FA) DNA repair pathway was important in hepatocyte gene repair. Gene correction frequencies were significantly lower in neonatal mice lacking the FA complementation group A (Fanca) gene. Taken together, we conclude that pharmacological induction of hepatocyte replication along with manipulation of DNA repair pathways could be a useful strategy for enhancing in vivo gene correction.
Collapse
Affiliation(s)
- Qing-Shuo Zhang
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Amita Tiyaboonchai
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Sean Nygaard
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Kevin Baradar
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Angela Major
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Niveditha Balaji
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Markus Grompe
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
30
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|
31
|
Studying ALS: Current Approaches, Effect on Potential Treatment Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:195-217. [PMID: 32383122 DOI: 10.1007/978-3-030-41283-8_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, characterized by inevitable progressive paralysis. To date, only two disease modifying therapeutic options are available for the patients with ALS, although they show very modest effect on disease course. The main reason of failure in the field of pharmacological correction of ALS is inability to untangle complex relationships taking place during ALS initiation and progression. Traditional methods of research, based on morphology or transgenic animal models studying provided lots of information about ALS throughout the years. However, translation of these results to humans was unsuccessful due to incomplete recapitulation of molecular pathology and overall inadequacy of the models used in the research.In this review we summarize current knowledge regarding ALS molecular pathology with depiction of novel methods applied recently for the studies. Furthermore we describe present and potential treatment strategies that are based on the recent findings in ALS disease mechanisms.
Collapse
|
32
|
Xu T, Li L, Liu YC, Cao W, Chen JS, Hu S, Liu Y, Li LY, Zhou H, Meng XM, Huang C, Zhang L, Li J, Zhou H. CRISPR/Cas9-related technologies in liver diseases: from feasibility to future diversity. Int J Biol Sci 2020; 16:2283-2295. [PMID: 32760197 PMCID: PMC7378651 DOI: 10.7150/ijbs.33481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Liver diseases are one of the leading causes of mortality in the world, mainly caused by different etiological agents, alcohol consumption, viruses, drug intoxication, and malnutrition. The maturation of gene therapy has heralded new avenues for developing effective interventions for these diseases. Derived from a remarkable microbial defense system, clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 9 system (CRISPR/Cas9 system) is driving innovative applications from basic biology to biotechnology and medicine. Recently, the mutagenic function of CRISPR/Cas9 system has been widely adopted for genome and disease research. In this review, we describe the development and applications of CRISPR/Cas9 system on liver diseases for research or translational applications, while highlighting challenges as well as future avenues for innovation.
Collapse
Affiliation(s)
- Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Li Li
- Department of Pathology and Pathophysiology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yu-chen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Wei Cao
- Shenzhen Qianhai Icecold IT Co., Ltd. China
| | - Jia-si Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Ying Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Liang-yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Hong Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, P.R. China
| | - Xiao-ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Huan Zhou
- National Drug Clinical Trial Institution, the First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
33
|
Yang L, Wang L, Huo Y, Chen X, Yin S, Hu Y, Zhang X, Zheng R, Geng H, Han H, Ma X, Liu M, Li H, Yu W, Liu M, Wang J, Li D. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol Ther 2020; 28:1673-1683. [PMID: 32413280 DOI: 10.1016/j.ymthe.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/03/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Base editing technology efficiently generates nucleotide conversions without inducing excessive double-strand breaks (DSBs), which makes it a promising approach for genetic disease therapy. In this study, we generated a novel hereditary tyrosinemia type 1 (HT1) mouse model, which contains a start codon mutation in the fumarylacetoacetate hydrolase (Fah) gene by using an adenine base editor (ABE7.10). To investigate the feasibility of base editing for recombinant adeno-associated virus (rAAV)-mediated gene therapy, an intein-split cytosine base editor (BE4max) was developed. BE4max efficiently induced C-to-T conversion and restored the start codon to ameliorate HT1 in mice, but an undesired bystander mutation abolished the effect of on-target editing. To solve this problem, an upstream sequence was targeted to generate a de novo in-frame start codon to initiate the translation of FAH. After treatment, almost all C-to-T conversions created a start codon and restored Fah expression, which efficiently ameliorated the disease without inducing off-target mutations. Our study demonstrated that base editing-mediated creation of de novo functional elements would be an applicable new strategy for genetic disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yanan Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuming Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiang Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohui Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Zheng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongquan Geng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Li
- Cipher Gene, Beijing 100089, China
| | - Weishi Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Cipher Gene, Beijing 100089, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
34
|
Jiang T, Henderson JM, Coote K, Cheng Y, Valley HC, Zhang XO, Wang Q, Rhym LH, Cao Y, Newby GA, Bihler H, Mense M, Weng Z, Anderson DG, McCaffrey AP, Liu DR, Xue W. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun 2020; 11:1979. [PMID: 32332735 PMCID: PMC7181807 DOI: 10.1038/s41467-020-15892-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas9-associated base editing is a promising tool to correct pathogenic single nucleotide mutations in research or therapeutic settings. Efficient base editing requires cellular exposure to levels of base editors that can be difficult to attain in hard-to-transfect cells or in vivo. Here we engineer a chemically modified mRNA-encoded adenine base editor that mediates robust editing at various cellular genomic sites together with moderately modified guide RNA, and show its therapeutic potential in correcting pathogenic single nucleotide mutations in cell and animal models of diseases. The optimized chemical modifications of adenine base editor mRNA and guide RNA expand the applicability of CRISPR-associated gene editing tools in vitro and in vivo.
Collapse
Affiliation(s)
- Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Kevin Coote
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | - Yi Cheng
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | | | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Wang
- School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Hermann Bihler
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | - Martin Mense
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
35
|
Trevisan M, Masi G, Palù G. Genome editing technologies to treat rare liver diseases. Transl Gastroenterol Hepatol 2020; 5:23. [PMID: 32258527 DOI: 10.21037/tgh.2019.10.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Liver has a central role in protein and lipid metabolism, and diseases involving hepatocytes have often repercussions on multiple organs and systems. Hepatic disorders are frequently characterized by production of defective or non-functional proteins, and traditional gene therapy approaches have been attempted for years to restore adequate protein levels through delivery of transgenes. Recently, many different genome editing platforms have been developed aimed at correcting at DNA level the defects underlying the diseases. In this Review we discuss the latest applications of these tools applied to develop therapeutic strategies for rare liver disorders, in particular updating the literature with the most recent strategies relying on base editors technology.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Lee H, Yoon DE, Kim K. Genome editing methods in animal models. Anim Cells Syst (Seoul) 2020; 24:8-16. [PMID: 32158611 PMCID: PMC7048190 DOI: 10.1080/19768354.2020.1726462] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genetically engineered animal models that reproduce human diseases are very important for the pathological study of various conditions. The development of the clustered regularly interspaced short palindromic repeats (CRISPR) system has enabled a faster and cheaper production of animal models compared with traditional gene-targeting methods using embryonic stem cells. Genome editing tools based on the CRISPR-Cas9 system are a breakthrough technology that allows the precise introduction of mutations at the target DNA sequences. In particular, this accelerated the creation of animal models, and greatly contributed to the research that utilized them. In this review, we introduce various strategies based on the CRISPR-Cas9 system for building animal models of human diseases and describe various in vivo delivery methods of CRISPR-Cas9 that are applied to disease models for therapeutic purposes. In addition, we summarize the currently available animal models of human diseases that were generated using the CRISPR-Cas9 system and discuss future directions.
Collapse
Affiliation(s)
- Hyunji Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1062] [Impact Index Per Article: 212.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
38
|
Song CQ, Jiang T, Richter M, Rhym LH, Koblan LW, Zafra MP, Schatoff EM, Doman JL, Cao Y, Dow LE, Zhu LJ, Anderson DG, Liu DR, Yin H, Xue W. Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng 2020; 4:125-130. [PMID: 31740768 PMCID: PMC6986236 DOI: 10.1038/s41551-019-0357-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
In contrast to traditional CRISPR-Cas9 homology-directed repair, base editing can correct point mutations without supplying a DNA-repair template. Here we show in a mouse model of tyrosinaemia that hydrodynamic tail-vein injection of plasmid DNA encoding the adenine base editor (ABE) and a single-guide RNA (sgRNA) can correct an A>G splice-site mutation. ABE treatment partially restored splicing, generated fumarylacetoacetate hydrolase (FAH)-positive hepatocytes in the liver, and rescued weight loss in mice. We also generated FAH+ hepatocytes in the liver via lipid-nanoparticle-mediated delivery of a chemically modified sgRNA and an mRNA of a codon-optimized base editor that displayed higher base-editing efficiency than the standard ABEs. Our findings suggest that adenine base editing can be used for the correction of genetic diseases in adult animals.
Collapse
Affiliation(s)
- Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michelle Richter
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke W Koblan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - Jordan L Doman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Hao Yin
- Medical Research Institute, Wuhan University, Wuhan, China.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
39
|
Krooss SA, Dai Z, Schmidt F, Rovai A, Fakhiri J, Dhingra A, Yuan Q, Yang T, Balakrishnan A, Steinbrück L, Srivaratharajan S, Manns MP, Schambach A, Grimm D, Bohne J, Sharma AD, Büning H, Ott M. Ex Vivo/In vivo Gene Editing in Hepatocytes Using "All-in-One" CRISPR-Adeno-Associated Virus Vectors with a Self-Linearizing Repair Template. iScience 2019; 23:100764. [PMID: 31887661 PMCID: PMC6941859 DOI: 10.1016/j.isci.2019.100764] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/02/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023] Open
Abstract
Adeno-associated virus (AAV)-based vectors are considered efficient and safe gene delivery systems in gene therapy. We combined two guide RNA genes, Cas9, and a self-linearizing repair template in one vector (AIO-SL) to correct fumarylacetoacetate hydrolase (FAH) deficiency in mice. The vector genome of 5.73 kb was packaged into VP2-depleted AAV particles (AAV2/8ΔVP2), which, however, did not improve cargo capacity. Reprogrammed hepatocytes were treated with AIO-SL.AAV2ΔVP2 and subsequently transplanted, resulting in large clusters of FAH-positive hepatocytes. Direct injection of AIO-SL.AAV8ΔVP2 likewise led to FAH expression and long-term survival. The AIO-SL vector achieved an ∼6-fold higher degree of template integration than vectors without template self-linearization. Subsequent analysis revealed that AAV8 particles, in contrast to AAV2, incorporate oversized genomes distinctly greater than 5.2 kb. Finally, our AAV8-based vector represents a promising tool for gene editing strategies to correct monogenic liver diseases requiring (large) fragment removal and/or simultaneous sequence replacement. Single AAV vector mediates efficient large fragment replacement in vivo and ex vivo Fah-corrected iHeps repopulate the liver of recipient mice Self-linearizing donor template enhances integration rate AAV2 and AAV8 reveal differences in packaging the oversized AIO-SL vector genome
Collapse
Affiliation(s)
- Simon Alexander Krooss
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Florian Schmidt
- Bioquant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Hannover, Germany
| | - Alice Rovai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Julia Fakhiri
- Bioquant, University of Heidelberg, Heidelberg, Germany; Center for Infectious Diseases/Virology, Cluster of Excellence Cell Networks, Heidelberg University Hospital, Heidelberg, Germany
| | - Akshay Dhingra
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Taihua Yang
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lars Steinbrück
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute for Experimental Hematology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Dirk Grimm
- Bioquant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Hannover, Germany; Center for Infectious Diseases/Virology, Cluster of Excellence Cell Networks, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens Bohne
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute for Experimental Hematology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| |
Collapse
|
40
|
Zabaleta N, Hommel M, Salas D, Gonzalez-Aseguinolaza G. Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Hum Gene Ther 2019; 30:1190-1203. [PMID: 31347416 DOI: 10.1089/hum.2019.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nerea Zabaleta
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Mirja Hommel
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - David Salas
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
41
|
Ginocchio VM, Ferla R, Auricchio A, Brunetti-Pierri N. Current Status on Clinical Development of Adeno-Associated Virus-Mediated Liver-Directed Gene Therapy for Inborn Errors of Metabolism. Hum Gene Ther 2019; 30:1204-1210. [PMID: 31517544 DOI: 10.1089/hum.2019.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inborn errors of metabolism (IEM) are disorders affecting human biochemical pathways and represent attractive targets for gene therapy because of their severity, high overall prevalence, lack of effective treatments, and possibility of early diagnosis through newborn screening. The liver is a central organ involved in several metabolic reactions and is a favorite target for gene therapy in many IEM. Adeno-associated virus (AAV) vectors have emerged in the last years as the preferred vectors for in vivo gene delivery. Gene replacement strategies are aimed either at correcting liver disease or providing a source for production and secretion of the lacking enzyme for cross-correction of other tissues. A number of preclinical studies have been conducted in the last years and, for several diseases, gene therapy has reached the clinical stage, with a growing number of ongoing clinical trials. Moreover, recent applications of genome editing to the field of inherited metabolic diseases have further expanded potential therapeutic possibilities. This review describes relevant clinical gene therapy studies for IEM with particular attention to current obstacles and drawbacks.
Collapse
Affiliation(s)
- Virginia Maria Ginocchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, "Federico II" University, Naples, Italy
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, "Federico II" University, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Advanced Biomedicine, "Federico II" University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, "Federico II" University, Naples, Italy
| |
Collapse
|
42
|
Mention K, Santos L, Harrison PT. Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis-Learning from Other Diseases. Genes (Basel) 2019; 10:E387. [PMID: 31117296 PMCID: PMC6562706 DOI: 10.3390/genes10050387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder caused by mutations in the CFTR gene. There are at least 346 disease-causing variants in the CFTR gene, but effective small-molecule therapies exist for only ~10% of them. One option to treat all mutations is CFTR cDNA-based therapy, but clinical trials to date have only been able to stabilise rather than improve lung function disease in patients. While cDNA-based therapy is already a clinical reality for a number of diseases, some animal studies have clearly established that precision genome editing can be significantly more effective than cDNA addition. These observations have led to a number of gene-editing clinical trials for a small number of such genetic disorders. To date, gene-editing strategies to correct CFTR mutations have been conducted exclusively in cell models, with no in vivo gene-editing studies yet described. Here, we highlight some of the key breakthroughs in in vivo and ex vivo gene and base editing in animal models for other diseases and discuss what might be learned from these studies in the development of editing strategies that may be applied to cystic fibrosis as a potential therapeutic approach. There are many hurdles that need to be overcome, including the in vivo delivery of editing machinery or successful engraftment of ex vivo-edited cells, as well as minimising potential off-target effects. However, a successful proof-of-concept study for gene or base editing in one or more of the available CF animal models could pave the way towards a long-term therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Karen Mention
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| | - Lúcia Santos
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
- University of Lisboa Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|
43
|
VanLith CJ, Guthman RM, Nicolas CT, Allen KL, Liu Y, Chilton JA, Tritz ZP, Nyberg SL, Kaiser RA, Lillegard JB, Hickey RD. Ex Vivo Hepatocyte Reprograming Promotes Homology-Directed DNA Repair to Correct Metabolic Disease in Mice After Transplantation. Hepatol Commun 2019; 3:558-573. [PMID: 30976745 PMCID: PMC6442694 DOI: 10.1002/hep4.1315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/22/2018] [Indexed: 02/02/2023] Open
Abstract
Ex vivo CRISPR/Cas9-mediated gene editing in hepatocytes using homology-directed repair (HDR) is a potential alternative curative therapy to organ transplantation for metabolic liver disease. However, a major limitation of this approach in quiescent adult primary hepatocytes is that nonhomologous end-joining is the predominant DNA repair pathway for double-strand breaks (DSBs). This study explored the hypothesis that ex vivo hepatocyte culture could reprogram hepatocytes to favor HDR after CRISPR/Cas9-mediated DNA DSBs. Quantitative PCR (qPCR), RNA sequencing, and flow cytometry demonstrated that within 24 hours, primary mouse hepatocytes in ex vivo monolayer culture decreased metabolic functions and increased expression of genes related to mitosis progression and HDR. Despite the down-regulation of hepatocyte function genes, hepatocytes cultured for up to 72 hours could robustly engraft in vivo. To assess functionality long-term, primary hepatocytes from a mouse model of hereditary tyrosinemia type 1 bearing a single-point mutation were transduced ex vivo with two adeno-associated viral vectors to deliver the Cas9 nuclease, target guide RNAs, and a 1.2-kb homology template. Adeno-associated viral Cas9 induced robust cutting at the target locus, and, after delivery of the repair template, precise correction of the point mutation occurred by HDR. Edited hepatocytes were transplanted into recipient fumarylacetoacetate hydrolase knockout mice, resulting in engraftment, robust proliferation, and prevention of liver failure. Weight gain and biochemical assessment revealed normalization of metabolic function. Conclusion: The results of this study demonstrate the potential therapeutic effect of ex vivo hepatocyte-directed gene editing after reprogramming to cure metabolic disease in a preclinical model of hereditary tyrosinemia type 1.
Collapse
Affiliation(s)
- Caitlin J. VanLith
- Department of SurgeryMayo ClinicRochesterMN
- Department of Molecular MedicineMayo ClinicRochesterMN
| | - Rebekah M. Guthman
- Department of SurgeryMayo ClinicRochesterMN
- Department of Molecular MedicineMayo ClinicRochesterMN
| | | | | | - Yuanhang Liu
- Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMN
| | | | - Zachariah P. Tritz
- Department of ImmunologyMayo ClinicRochesterMN
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
| | - Scott L. Nyberg
- Department of SurgeryMayo ClinicRochesterMN
- William J. von Liebig Center for Transplantation and Clinical RegenerationMayo ClinicRochesterMN
| | - Robert A. Kaiser
- Department of SurgeryMayo ClinicRochesterMN
- Midwest Fetal Care CenterChildren’s Hospital and Clinics of MinnesotaMinneapolisMN
| | - Joseph B. Lillegard
- Department of SurgeryMayo ClinicRochesterMN
- Midwest Fetal Care CenterChildren’s Hospital and Clinics of MinnesotaMinneapolisMN
- Pediatric Surgical AssociatesMinneapolisMN
| | - Raymond D. Hickey
- Department of SurgeryMayo ClinicRochesterMN
- Department of Molecular MedicineMayo ClinicRochesterMN
| |
Collapse
|
44
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
45
|
He X, Xie H, Liu X, Gu F. Basic and Clinical Application of Adeno-Associated Virus-Mediated Genome Editing. Hum Gene Ther 2019; 30:673-681. [PMID: 30588843 DOI: 10.1089/hum.2018.190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional gene therapy (gene replacement) has made a breakthrough in treating inherited diseases. Adeno-associated virus (AAV) has emerged as a highly promising vector with innate ability, boosting the development of gene replacement and gene targeting. With the recent advance of engineered nucleases that work efficiently in human cells, AAV mediated-genome editing with nucleases has raised hopes for in situ gene therapy of inherited and non-inherited diseases. Here, the applications of AAV-mediated genome editing are highlighted, and the prospect of AAV and nucleases that will render extension of such success in clinical gene therapy is discussed.
Collapse
Affiliation(s)
- Xiubin He
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| | - Haihua Xie
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| | - Xiexie Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| |
Collapse
|
46
|
In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 2018; 24:1513-1518. [PMID: 30297903 PMCID: PMC6249685 DOI: 10.1038/s41591-018-0184-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
In utero gene editing has the potential to prenatally treat genetic diseases that result in significant morbidity and mortality before or shortly after birth. We assessed the viral vector-mediated delivery of CRISPR-Cas9 or base editor 3 in utero, seeking therapeutic modification of Pcsk9 or Hpd in wild-type mice or the murine model of hereditary tyrosinemia type 1, respectively. We observed long-term postnatal persistence of edited cells in both models, with reduction of plasma PCSK9 and cholesterol levels following in utero Pcsk9 targeting and rescue of the lethal phenotype of hereditary tyrosinemia type 1 following in utero Hpd targeting. The results of this proof-of-concept work demonstrate the possibility of efficiently performing gene editing before birth, pointing to a potential new therapeutic approach for selected congenital genetic disorders.
Collapse
|
47
|
Ibraheim R, Song CQ, Mir A, Amrani N, Xue W, Sontheimer EJ. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol 2018; 19:137. [PMID: 30231914 PMCID: PMC6146650 DOI: 10.1186/s13059-018-1515-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) have recently opened a new avenue for gene therapy. Cas9 nuclease guided by a single-guide RNA (sgRNA) has been extensively used for genome editing. Currently, three Cas9 orthologs have been adapted for in vivo genome engineering applications: Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and Campylobacter jejuni (CjeCas9). However, additional in vivo editing platforms are needed, in part to enable a greater range of sequences to be accessed via viral vectors, especially those in which Cas9 and sgRNA are combined into a single vector genome. RESULTS Here, we present in vivo editing using Neisseria meningitidis Cas9 (NmeCas9). NmeCas9 is compact, edits with high accuracy, and possesses a distinct protospacer adjacent motif (PAM), making it an excellent candidate for safe gene therapy applications. We find that NmeCas9 can be used to target the Pcsk9 and Hpd genes in mice. Using tail-vein hydrodynamic-based delivery of NmeCas9 plasmid to target the Hpd gene, we successfully reprogram the tyrosine degradation pathway in Hereditary Tyrosinemia Type I mice. More importantly, we deliver NmeCas9 with its sgRNA in a single recombinant adeno-associated vector (rAAV) to target Pcsk9, resulting in lower cholesterol levels in mice. This all-in-one vector yielded > 35% gene modification after two weeks of vector administration, with minimal off-target cleavage in vivo. CONCLUSIONS Our findings indicate that NmeCas9 can enable the editing of disease-causing loci in vivo, expanding the targeting scope of RNA-guided nucleases.
Collapse
Affiliation(s)
- Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
48
|
Ho BX, Loh SJH, Chan WK, Soh BS. In Vivo Genome Editing as a Therapeutic Approach. Int J Mol Sci 2018; 19:2721. [PMID: 30213032 PMCID: PMC6163904 DOI: 10.3390/ijms19092721] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Genome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy. In this review, in addition to providing an overview of the various genome editing techniques available, we have also summarized several in vivo genome engineering strategies that have successfully demonstrated disease correction via in vivo genome editing. The various benefits and challenges faced in applying in vivo genome editing in humans will also be discussed.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Sharon Jia Hui Loh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
| | - Woon Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Boon Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
49
|
Smith LJ, Wright J, Clark G, Ul-Hasan T, Jin X, Fong A, Chandra M, St Martin T, Rubin H, Knowlton D, Ellsworth JL, Fong Y, Wong KK, Chatterjee S. Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proc Natl Acad Sci U S A 2018; 115:E7379-E7388. [PMID: 30018062 PMCID: PMC6077703 DOI: 10.1073/pnas.1802343115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | - Gabriella Clark
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Taihra Ul-Hasan
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Xiangyang Jin
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Abigail Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Manasa Chandra
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | | | | | | | - Yuman Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Kamehameha K Wong
- Department of Hematology and Stem Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010
| | - Saswati Chatterjee
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010;
| |
Collapse
|
50
|
Shin JH, Jung S, Ramakrishna S, Kim HH, Lee J. In vivo gene correction with targeted sequence substitution through microhomology-mediated end joining. Biochem Biophys Res Commun 2018; 502:116-122. [PMID: 29787760 DOI: 10.1016/j.bbrc.2018.05.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 11/21/2022]
Abstract
Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence.
Collapse
Affiliation(s)
- Jeong Hong Shin
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Soobin Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, South Korea; Yonsei-IBS Institute, Yonsei University, Seoul, South Korea.
| | - Junwon Lee
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea; Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|