1
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan; (S.-Y.L.); (M.-J.L.); (C.-H.Y.)
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan; (S.-Y.L.); (M.-J.L.); (C.-H.Y.)
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan; (S.-Y.L.); (M.-J.L.); (C.-H.Y.)
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
2
|
Sinha P, Thio CL, Balagopal A. Intracellular Host Restriction of Hepatitis B Virus Replication. Viruses 2024; 16:764. [PMID: 38793645 PMCID: PMC11125714 DOI: 10.3390/v16050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell's defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.
Collapse
Affiliation(s)
| | | | - Ashwin Balagopal
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.S.); (C.L.T.)
| |
Collapse
|
3
|
Jin X, Yu W, Wang A, Qiu Y. Serum Ribonucleotide Reductase Subunit M2 in Patients with Chronic Liver Diseases and Hepatocellular Carcinoma. Lab Med 2023; 54:626-632. [PMID: 36944169 DOI: 10.1093/labmed/lmad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase subunit M2 (RRM2) plays a key role in cell and hepatitis B virus (HBV) replication. Nevertheless, its clinical implications for managing liver diseases have been inadequately studied. METHODS A total of 412 participants were enrolled, including 60 healthy control individuals, 55 patients with chronic hepatitis B (CHB), 173 patients with cirrhosis, and 124 patients with hepatocellular carcinoma (HCC). Serum RRM2 was measured via ELISA. RESULTS The level of serum RRM2 in patients with CHB, cirrhosis, and HCC was higher than that in healthy controls (P < .05). A large difference in serum RRM2 was found between HBV-related and non-HBV-related patients in the cirrhosis group (P < .001), compared with the difference between HBV-related HCC and non-HBV-related HCC (P = .86). In the HBV-related cirrhosis group, the serum RRM2 level showed significant positive correlations with HBV DNA, hepatitis B surface antigen, hepatitis B e antigen, Child-Pugh scores, and MELD scores and played a strong role in diagnosing HBV-related cirrhosis in CHB, compared with fibrosis-4 score and aspartate aminotransferase-to-platelet ratio index. CONCLUSIONS Serum RRM2 is a reliable biomarker for accurate HBV-related cirrhosis diagnosis and evaluation. Also, serum RRM2 could reflect the expression state of HBV replication in patients with HBV-related cirrhosis.
Collapse
Affiliation(s)
- Xuehang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital
| | - Ange Wang
- Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital
| |
Collapse
|
4
|
Zhan Y, Tao Q, Lang Z, Lin L, Li X, Yu S, Yu Z, Zhou G, Wu K, Zhou Z, Yu Z, Zheng J. Serum ribonucleotide reductase M2 is a potential biomarker for diagnosing and monitoring liver fibrosis in chronic hepatitis B patients. J Med Virol 2023; 95:e29157. [PMID: 37814947 DOI: 10.1002/jmv.29157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
It is known that ribonucleotide reductase M2 (RRM2) could be induced by hepatitis B virus (HBV) via DNA damage response. However, whether RRM2 is a potential biomarker for diagnosing and monitoring liver fibrosis in chronic hepatitis B (CHB) patients is still unclear. In this study, CHB patients from GSE84044 (a transcriptome data from GEO data set) were downloaded and RRM2 was selected as a hub gene. Interestingly, a positive correlation was found between serum RRM2 and liver fibrosis stage. The similar results were found in CHB patients with normal alanine aminotransferase (ALT). Notably, RRM2 could effectively differentiate preliminary fibrosis from advanced fibrosis in CHB patients with/without normal ALT. In addition, RRM2 had a better performance in diagnosing liver fibrosis than two commonly used noninvasive methods (aspartate aminotransferase-to-platelet ratio index and fibrosis index based on the four factors), two classic fibrotic biomarkers (hyaluronic acid and type IV collagen) as well as Mac-2 binding protein glycosylation isomer, a known serum fibrosis marker. Moreover, CHB patients with high RRM2, who were associated with advanced fibrosis, had higher expressions of immune checkpoints. Overall, serum RRM2 may be a promising biomarker for diagnosing and monitoring liver fibrosis in CHB patients.
Collapse
Affiliation(s)
- Yating Zhan
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifan Lin
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyao Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi, Zunyi, China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Yang CH, Wu CH, Lo SY, Lua AC, Chan YR, Li HC. Hepatitis C Virus Down-Regulates the Expression of Ribonucleotide Reductases to Promote Its Replication. Pathogens 2023; 12:892. [PMID: 37513740 PMCID: PMC10383090 DOI: 10.3390/pathogens12070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Ribonucleotide reductases (RRs or RNRs) catalyze the reduction of the OH group on the 2nd carbon of ribose, reducing four ribonucleotides (NTPs) to the corresponding deoxyribonucleotides (dNTPs) to promote DNA synthesis. Large DNA viruses, such as herpesviruses and poxviruses, could benefit their replication through increasing dNTPs via expression of viral RRs. Little is known regarding the relationship between cellular RRs and RNA viruses. Mammalian RRs contain two subunits of ribonucleotide reductase M1 polypeptide (RRM1) and two subunits of ribonucleotide reductase M2 polypeptide (RRM2). In this study, expression of cellular RRMs, including RRM1 and RRM2, is found to be down-regulated in hepatitis C virus (HCV)-infected Huh7.5 cells and Huh7 cells with HCV subgenomic RNAs (HCVr). As expected, the NTP/dNTP ratio is elevated in HCVr cells. Compared with that of the control Huh7 cells with sh-scramble, the NTP/dNTP ratio of the RRM-knockdown cells is elevated. Knockdown of RRM1 or RRM2 increases HCV replication in HCV replicon cells. Moreover, inhibitors to RRMs, including Didox, Trimidox and hydroxyurea, enhance HCV replication. Among various HCV viral proteins, the NS5A and/or NS3/4A proteins suppress the expression of RRMs. When these are taken together, the results suggest that HCV down-regulates the expression of RRMs in cultured cells to promote its replication.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Hao Wu
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ahai-Chang Lua
- Department of Laboratory Medicine and Biotechnology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Ru Chan
- Department of Laboratory Medicine and Biotechnology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
6
|
Steinberger S, Adler J, Shaul Y. Method of Monitoring 26S Proteasome in Cells Revealed the Crucial Role of PSMA3 C-Terminus in 26S Integrity. Biomolecules 2023; 13:992. [PMID: 37371572 DOI: 10.3390/biom13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Proteasomes critically regulate proteostasis via protein degradation. Proteasomes are multi-subunit complexes composed of the 20S proteolytic core particle (20S CP) that, in association with one or two 19S regulatory particles (19S RPs), generates the 26S proteasome, which is the major proteasomal complex in cells. Native gel protocols are used to investigate the 26S/20S ratio. However, a simple method for detecting these proteasome complexes in cells is missing. To this end, using CRISPR technology, we YFP-tagged the endogenous PSMB6 (β1) gene, a 20S CP subunit, and co-tagged endogenous PSMD6 (Rpn7), a 19S RP subunit, with the mScarlet fluorescent protein. We observed the colocalization of the YFP and mScarlet fluorescent proteins in the cells, with higher nuclear accumulation. Nuclear proteasomal granules are formed under osmotic stress, and all were positive for YFP and mScarlet. Previously, we have reported that PSMD1 knockdown, one of the 19 RP subunits, gives rise to a high level of "free" 20S CPs. Intriguingly, under this condition, the 20S-YFP remained nuclear, whereas the PSMD6-mScarlet was mostly in cytoplasm, demonstrating the distinct subcellular distribution of uncapped 20S CPs. Lately, we have shown that the PSMA3 (α7) C-terminus, a 20S CP subunit, binds multiple intrinsically disordered proteins (IDPs). Remarkably, the truncation of the PSMA3 C-terminus is phenotypically reminiscent of PSMD1 knockdown. These data suggest that the PSMA3 C-terminal region is critical for 26S proteasome integrity.
Collapse
Affiliation(s)
- Shirel Steinberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Emerging Therapies for Chronic Hepatitis B and the Potential for a Functional Cure. Drugs 2023; 83:367-388. [PMID: 36906663 DOI: 10.1007/s40265-023-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/13/2023]
Abstract
Worldwide, an estimated 296 million people are living with chronic hepatitis B virus (HBV) infection, with a significant risk of morbidity and mortality. Current therapy with pegylated interferon (Peg-IFN) and indefinite or finite therapy with nucleoside/nucleotide analogues (Nucs) are effective in HBV suppression, hepatitis resolution, and prevention of disease progression. However, few achieve hepatitis B surface antigen (HBsAg) loss (functional cure), and relapse often occurs after the end of therapy (EOT) because these agents have no direct effect on durable template: covalently closed circular DNA (cccDNA) and integrated HBV DNA. Hepatitis B surface antigen loss rate increases slightly by adding or switching to Peg-IFN in Nuc-treated patients and this loss rate greatly increases up to 39% in 5 years with finite Nuc therapy with currently available Nuc(s). For this, great effort has been made to develop novel direct-acting antivirals (DAAs) and immunomodulators. Among the DAAs, entry inhibitors and capsid assembly modulators have little effect on reducing HBsAg levels; small interfering RNA, antisense oligonucleotides, and nucleic acid polymers in combination with Peg-IFN and Nuc may reduce HBsAg levels significantly, even a rate of HBsAg loss sustained for > 24 weeks after EOT up to 40%. Novel immunomodulators, including T-cell receptor agonists, check-point inhibitors, therapeutic vaccines, and monoclonal antibodies may restore HBV-specific T-cell response but not sustained HBsAg loss. The safety issues and the durability of HBsAg loss warrant further investigation. Combining agents of different classes has the potential to enhance HBsAg loss. Compounds directly targeting cccDNA would be more effective but are still in the early stage of development. More effort is required to achieve this goal.
Collapse
|
8
|
Cheng W, Chen Q, Ren Y, Zhang Y, Lu L, Gui L, Xu D. The identification of viral ribonucleotide reductase encoded by ORF23 and ORF141 genes and effect on CyHV-2 replication. Front Microbiol 2023; 14:1154840. [PMID: 37143536 PMCID: PMC10151572 DOI: 10.3389/fmicb.2023.1154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Ribonucleotide reductase (RR) is essential for the replication of the double-stranded DNA virus CyHV-2 due to its ability to catalyze the conversion of ribonucleotides to deoxyribonucleotides, and is a potential target for the development of antiviral drugs to control CyHV-2 infection. Methods Bioinformatic analysis was conducted to identify potential homologues of RR in CyHV-2. The transcription and translation levels of ORF23 and ORF141, which showed high homology to RR, were measured during CyHV-2 replication in GICF. Co-localization experiments and immunoprecipitation were performed to investigate the interaction between ORF23 and ORF141. siRNA interference experiments were conducted to evaluate the effect of silencing ORF23 and ORF141 on CyHV-2 replication. The inhibitory effect of hydroxyurea, a nucleotide reductase inhibitor, on CyHV-2 replication in GICF cells and RR enzymatic activity in vitro was also evaluated. Results ORF23 and ORF141 were identified as potential viral ribonucleotide reductase homologues in CyHV-2, and their transcription and translation levels increased with CyHV-2 replication. Co-localization experiments and immunoprecipitation suggested an interaction between the two proteins. Simultaneous silencing of ORF23 and ORF141 effectively inhibited the replication of CyHV-2. Additionally, hydroxyurea inhibited the replication of CyHV-2 in GICF cells and the in vitro enzymatic activity of RR. Conclusion These results suggest that the CyHV-2 proteins ORF23 and ORF141 function as viral ribonucleotide reductase and their function makes an effect to CyHV-2 replication. Targeting ribonucleotide reductase could be a crucial strategy for developing new antiviral drugs against CyHV-2 and other herpesviruses.
Collapse
Affiliation(s)
- Wenjie Cheng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qikang Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yilin Ren
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Dan Xu,
| |
Collapse
|
9
|
Evidence for a Hepatitis B Virus Short RNA Fragment Directly Targeting the Cellular RRM2 Gene. Cells 2022; 11:cells11142248. [PMID: 35883690 PMCID: PMC9318981 DOI: 10.3390/cells11142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The hepatitis B virus (HBV) is one of the smallest but most highly infectious human pathogens. With a DNA genome of only 3.2 kb and only four genes, HBV successfully completes its life cycle by using intricate processes to hijack the host machinery. HBV infects non-dividing liver cells in which dNTPs are limited. As a DNA virus, HBV requires dNTPs for its replication. HBV induces the ATR-mediated cellular DNA damage response pathway to overcome this constraint. This pathway upregulates R2 (RRM2) expression in generating an active RNR holoenzyme catalyzing de novo dNTP synthesis. Previously we reported that ERE, a small RNA fragment within the HBx ORF, is sufficient to induce R2 upregulation. Interestingly, there is high sequence similarity between ERE and a region within the R2 5′UTR that we named R2-box. Here, we established a mutant cell line in the R2-box region of the R2 gene using CRISPR-Cas9 technology to investigate the R2 regulation by ERE. This cell line expresses a much lower R2 level than the parental cell line. Interestingly, the HBV infection and life cycle were severely impaired. These cells became permissive to HBV infection upon ectopically R2 expression. These results validate the requirement of the R2 gene expression for HBV replication. Remarkably, the R2-box mutated cells became ERE refractory, suggesting that the homology region between ERE and R2 gene is critical for ERE-mediated R2 upregulation. Thus, along with the induction of the ATR pathway of the DNA damage response, ERE might also directly target the R2 gene via the R2-box.
Collapse
|
10
|
Broennimann K, Ricardo-Lax I, Adler J, Michailidis E, de Jong YP, Reuven N, Shaul Y. RNR-R2 Upregulation by a Short Non-Coding Viral Transcript. Biomolecules 2021; 11:biom11121822. [PMID: 34944466 PMCID: PMC8698843 DOI: 10.3390/biom11121822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
DNA viruses require dNTPs for replication and have developed different strategies to increase intracellular dNTP pools. Hepatitis B virus (HBV) infects non-dividing cells in which dNTPs are scarce and the question is how viral replication takes place. Previously we reported that the virus induces the DNA damage response (DDR) pathway culminating in RNR-R2 expression and the generation of an active RNR holoenzyme, the key regulator of dNTP levels, leading to an increase in dNTPs. How the virus induces DDR and RNR-R2 upregulation is not completely known. The viral HBx open reading frame (ORF) was believed to trigger this pathway. Unexpectedly, however, we report here that the production of HBx protein is dispensable. We found that a small conserved region of 125 bases within the HBx ORF is sufficient to upregulate RNR-R2 expression in growth-arrested HepG2 cells and primary human hepatocytes. The observed HBV mRNA embedded regulatory element is named ERE. ERE in isolation is sufficient to activate the ATR-Chk1-E2F1-RNR-R2 DDR pathway. These findings demonstrate a non-coding function of HBV transcripts to support its propagation in non-cycling cells.
Collapse
Affiliation(s)
- Karin Broennimann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Inna Ricardo-Lax
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
- Correspondence: ; Tel.: +972-8-934-2320
| |
Collapse
|
11
|
Wang X, Jiang Z, Yue N, Jin X, Zhang X, Li Z, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO J 2021; 40:e107660. [PMID: 34254679 PMCID: PMC8365260 DOI: 10.15252/embj.2021107660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023] Open
Abstract
The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ning Yue
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhaolei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
12
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
13
|
Zhang BY, Chai DP, Wu YH, Qiu LP, Zhang YY, Ye ZH, Yu XP. Potential Drug Targets Against Hepatitis B Virus Based on Both Virus and Host Factors. Curr Drug Targets 2020; 20:1636-1651. [PMID: 31362671 DOI: 10.2174/1389450120666190729115646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis B is a very harmful and epidemic disease caused by hepatitis B virus (HBV). Although an effective anti-HBV vaccine is available, chronic infection poses still a huge health burden in the whole world. The present anti-HBV drugs including nucleoside analogues and interferonalpha have their limitations without exception. There is no effective drug and therapeutic method that can really and truly cure hepatitis B so far. The variability of HBV genome results in that a significant number of patients develop drug resistance during the long-term use of anti-HBV drugs. Hence, it is urgently needed to discover novel targets and develop new drugs against hepatitis B. OBJECTIVE The review aims to provide the theory support for designing of the anti-HBV innovative drugs by offering a summary of the current situation of antiviral potential targets. RESULTS AND CONCLUSION Since HBV is obligate intracellular parasite, and as such it depends on host cellular components and functions to replicate itself. The targeting both virus and host might be a novel therapeutic option for hepatitis B. Accordingly, we analyse the advances in the study of the potential drug targets for anti-HBV infection, focusing on targeting virus genome, on targeting host cellular functions and on targeting virus-host proteins interactions, respectively. Meanwhile, the immune targets against chronic hepatitis B are also emphasized. In short, the review provides a summary of antiviral therapeutic strategies to target virus factors, host factors and immune factors for future designing of the innovative drug against HBV infection.
Collapse
Affiliation(s)
- Bing-Yi Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Ping Chai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yi-Hang Wu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yong-Yong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zi-Hong Ye
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
14
|
Zhu Z, Huang S, Zhang Y, Sun C, Tang Y, Zhao Q, Zhou Q, Ju W, He X. Bioinformatics analysis on multiple Gene Expression Omnibus datasets of the hepatitis B virus infection and its response to the interferon-alpha therapy. BMC Infect Dis 2020; 20:84. [PMID: 31996147 PMCID: PMC6990549 DOI: 10.1186/s12879-019-4720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection is a global health problem and interferon-alpha (IFN-α) is one of the effective therapies. However, little is known about the genetic background of the HBV infection or the genetic determinants of the IFN-α treatment response. Thus, we aim to explore the possible molecular mechanisms of HBV infection and its response to the IFN-α therapy with a comprehensive bioinformatics analysis. Methods The Gene Expression Omnibus datasets (GSE83148, GSE84044 and GSE66698) were collected and the differentially expressed genes (DEGs), key biological processes and intersecting pathways were analyzed. The expression of the co-expressed DEGs in the clinical samples was verified by quantitative real time polymerase chain reaction (qRT-PCR). Results Analysis of all the 3 datasets revealed that there were eight up-regulated and one down-regulated co-expressed DEGs following the HBV infection and after IFN-α treatment. In clinical samples, the mRNA level of HKDC1, EPCAM, GSN, ZWINT and PLD3 were significantly increased, while, the mRNA level of PLEKHA2 was significantly decreased in HBV infected liver tissues compared to normal liver tissues. PI3K-Akt signaling pathway, focal adhesion, HTLV-I infection, cytokine-cytokine receptor interaction, metabolic pathways, NF-κB signaling pathway were important pathways associated with the HBV infection and the response of IFN-α treatment. Conclusions The co-expressed genes, common biological processes and intersecting pathways identified in the study might play an important role in HBV infection and response of IFN-α treatment. The dysregulated genes may act as novel biomarkers and therapeutic targets for HBV.
Collapse
Affiliation(s)
- Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, Guangdong, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Qi Zhou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, 516081, Guangdong, China. .,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
15
|
Cheng AZ, Moraes SN, Attarian C, Yockteng-Melgar J, Jarvis MC, Biolatti M, Galitska G, Dell'Oste V, Frappier L, Bierle CJ, Rice SA, Harris RS. A Conserved Mechanism of APOBEC3 Relocalization by Herpesviral Ribonucleotide Reductase Large Subunits. J Virol 2019; 93:e01539-19. [PMID: 31534038 PMCID: PMC6854502 DOI: 10.1128/jvi.01539-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023] Open
Abstract
An integral part of the antiviral innate immune response is the APOBEC3 family of single-stranded DNA cytosine deaminases, which inhibits virus replication through deamination-dependent and -independent activities. Viruses have evolved mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellular APOBEC3B (A3B). The large subunit of the viral RNR, BORF2, causes A3B relocalization from the nucleus to cytoplasmic bodies and thereby protects viral DNA during lytic replication. Here, we use coimmunoprecipitation and immunofluorescence microscopy approaches to ask whether this mechanism is shared with the closely related gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) and the more distantly related alphaherpesvirus herpes simplex virus 1 (HSV-1). The large RNR subunit of KSHV, open reading frame 61 (ORF61), coprecipitated multiple APOBEC3s, including A3B and APOBEC3A (A3A). KSHV ORF61 also caused relocalization of these two enzymes to perinuclear bodies (A3B) and to oblong cytoplasmic structures (A3A). The large RNR subunit of HSV-1, ICP6, also coprecipitated A3B and A3A and was sufficient to promote the relocalization of these enzymes from nuclear to cytoplasmic compartments. HSV-1 infection caused similar relocalization phenotypes that required ICP6. However, unlike the infectivity defects previously reported for BORF2-null EBV, ICP6 mutant HSV-1 showed normal growth rates and plaque phenotypes. Combined, these results indicate that both gamma- and alphaherpesviruses use a conserved RNR-dependent mechanism to relocalize A3B and A3A and furthermore suggest that HSV-1 possesses at least one additional mechanism to neutralize these antiviral enzymes.IMPORTANCE The APOBEC3 family of DNA cytosine deaminases constitutes a vital innate immune defense against a range of different viruses. A novel counterrestriction mechanism has recently been uncovered for the gammaherpesvirus EBV, in which a subunit of the viral protein known to produce DNA building blocks (ribonucleotide reductase) causes A3B to relocalize from the nucleus to the cytosol. Here, we extend these observations with A3B to include a closely related gammaherpesvirus, KSHV, and a more distantly related alphaherpesvirus, HSV-1. These different viral ribonucleotide reductases also caused relocalization of A3A, which is 92% identical to A3B. These studies are important because they suggest a conserved mechanism of APOBEC3 evasion by large double-stranded DNA herpesviruses. Strategies to block this host-pathogen interaction may be effective for treating infections caused by these herpesviruses.
Collapse
Affiliation(s)
- Adam Z Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sofia N Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Claire Attarian
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jaime Yockteng-Melgar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Craig J Bierle
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen A Rice
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Wing PA, Davenne T, Wettengel J, Lai AG, Zhuang X, Chakraborty A, D'Arienzo V, Kramer C, Ko C, Harris JM, Schreiner S, Higgs M, Roessler S, Parish JL, Protzer U, Balfe P, Rehwinkel J, McKeating JA. A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Sci Alliance 2019; 2:e201900355. [PMID: 30918010 PMCID: PMC6438393 DOI: 10.26508/lsa.201900355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B is one of the world's unconquered diseases with more than 240 million infected subjects at risk of developing liver disease and hepatocellular carcinoma. Hepatitis B virus reverse transcribes pre-genomic RNA to relaxed circular DNA (rcDNA) that comprises the infectious particle. To establish infection of a naïve target cell, the newly imported rcDNA is repaired by host enzymes to generate covalently closed circular DNA (cccDNA), which forms the transcriptional template for viral replication. SAMHD1 is a component of the innate immune system that regulates deoxyribonucleoside triphosphate levels required for host and viral DNA synthesis. Here, we show a positive role for SAMHD1 in regulating cccDNA formation, where KO of SAMHD1 significantly reduces cccDNA levels that was reversed by expressing wild-type but not a mutated SAMHD1 lacking the nuclear localization signal. The limited pool of cccDNA in infected Samhd1 KO cells is transcriptionally active, and we observed a 10-fold increase in newly synthesized rcDNA-containing particles, demonstrating a dual role for SAMHD1 to both facilitate cccDNA genesis and to restrict reverse transcriptase-dependent particle genesis.
Collapse
Affiliation(s)
- Peter Ac Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jochen Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anindita Chakraborty
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | | | - Catharina Kramer
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chunkyu Ko
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabrina Schreiner
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Martin Higgs
- Institutes of Cancer and Genomic Sciences and Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joanna L Parish
- Institutes of Cancer and Genomic Sciences and Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Peter Balfe
- Institutes of Cancer and Genomic Sciences and Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019; 208:513-529. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Collapse
Affiliation(s)
- Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany. .,Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|
18
|
Lubelsky Y, Shaul Y. Recruitment of the protein phosphatase-1 catalytic subunit to promoters by the dual-function transcription factor RFX1. Biochem Biophys Res Commun 2019; 509:1015-1020. [PMID: 30654936 DOI: 10.1016/j.bbrc.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023]
Abstract
RFX proteins are a family of conserved DNA binding proteins involved in various, essential cellular and developmental processes. RFX1 is a ubiquitously expressed, dual-activity transcription factor capable of both activation and repression of target genes. The exact mechanism by which RFX1 regulates its target is not known yet. In this work, we show that the C-terminal repression domain of RFX1 interacts with the Serine/Threonine protein phosphatase PP1c, and that interaction with RFX1 can target PP1c to specific sites in the genome. Given that PP1c was shown to de-phosphorylate several transcription factors, as well as the regulatory C-terminal domain of RNA Polymerase II the recruitment of PP1c to promoters may be a mechanism by which RFX1 regulates the target genes.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
19
|
Tang F, Wang F, Lv H, Xiang H, Liu Y, Liu P. Retracted Article: MicroRNA-1271 modulates hepatitis B virus replication, cell proliferation and apoptosis in hepatitis B virus-related hepatocellular carcinoma by targeting SIRT1. RSC Adv 2019; 9:39904-39913. [PMID: 35541395 PMCID: PMC9076187 DOI: 10.1039/c9ra08248d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC). Certain studies have revealed that microRNAs play crucial roles in HBV-related HCC. The aim of this study was to investigate the effects of microRNA-1271 (miR-1271) on HBV replication, cell proliferation and apoptosis in HBV-related HCC. The expression of HBV DNA and miR-1271 was detected by quantitative real time-polymerase chain reaction (qRT-PCR). The mRNA and protein levels of SIRT1 were detected by qRT-PCR and western blot analysis, respectively. HBV replication was assessed by the expression of HBV DNA and the levels of HBsAg and HBeAg. Cell proliferation was assessed by cell counting kit-8 (CCK-8) and 5-bromo-2-deoxyuidine (BrdU) assay, and apoptosis was evaluated by flow cytometry assay, enzyme-linked immunosorbent assay (ELISA) and the activity of caspase-3. The relationship between miR-1271 and SIRT1 was predicated by online software and confirmed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assay. We first found that the expression of miR-1271 was downregulated and SIRT1 was upregulated in both HBV-related HCC tissues and cells. Overexpression of miR-1271 inhibited HBV replication and cell proliferation whilst promoting apoptosis in HBV-related HCC cells. Subsequently, SIRT1 was identified as a target of miR-1271. Moreover, overexpression of SIRT1 reversed the effects of miR-1271 overexpression on HBV replication, cell proliferation and apoptosis in HBV-related HCC cells. In conclusion, our study demonstrated that miR-1271 inhibited HBV replication and proliferation and promoted apoptosis of HBV-related HCC cells via targeting SIRT1, which might contribute to the diagnosis and therapy of HBV-related HCC. MiR-1271 suppressed HBV-related HCC cells development by downregulating SIRT1.![]()
Collapse
Affiliation(s)
- Fei Tang
- Department of Gastroenterology and Hepatology
- The Third Central Clinical College of Tianjin Medical University (Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cells)
- Tianjin 317000
- China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology
- The Third Central Hospital of Tianjin (Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cells)
- Tianjin
- China
| | - Hongmin Lv
- Department of Gastroenterology and Hepatology
- The Third Central Hospital of Tianjin (Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cells)
- Tianjin
- China
| | - Huiling Xiang
- Department of Gastroenterology and Hepatology
- The Third Central Hospital of Tianjin (Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cells)
- Tianjin
- China
| | - Yi Liu
- Department of Gastroenterology and Hepatology
- The Third Central Hospital of Tianjin (Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cells)
- Tianjin
- China
| | - Ping Liu
- Department of Clinical Diagnostic Medicine, Bioscience (Tianjin) Diagnostic Technology CO., LTD
- Tianjin
- China
| |
Collapse
|
20
|
Gómez-Moreno A, Garaigorta U. Hepatitis B Virus and DNA Damage Response: Interactions and Consequences for the Infection. Viruses 2017; 9:v9100304. [PMID: 29048354 PMCID: PMC5691655 DOI: 10.3390/v9100304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is a major etiologic agent of acute and chronic hepatitis, and end-stage liver disease. Establishment of HBV infection, progression to persistency and pathogenesis are determined by viral and cellular factors, some of which remain still undefined. Key steps of HBV life cycle e.g., transformation of genomic viral DNA into transcriptionally active episomal DNA (cccDNA) or transcription of viral mRNAs from cccDNA, take place in the nucleus of infected cells and strongly depend on enzymatic activities provided by cellular proteins. In this regard, DNA damage response (DDR) pathways and some DDR proteins are being recognized as important factors regulating the infection. On one hand, HBV highjacks specific DDR proteins to successfully complete some of the steps of its life cycle. On the other hand, HBV subverts DDR pathways to presumably create a cellular environment that favours its replication. Direct consequences of these interactions are: HBV DNA integration into host chromosomal DNA, and accumulation of mutations in host chromosomal DNA that could eventually trigger carcinogenic processes, which would explain in part the incidence of hepatocellular carcinoma in chronically infected patients. Unravelling the interactions that HBV establishes with DDR pathways might help identify new molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andoni Gómez-Moreno
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| | - Urtzi Garaigorta
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
21
|
Sommer AFR, Rivière L, Qu B, Schott K, Riess M, Ni Y, Shepard C, Schnellbächer E, Finkernagel M, Himmelsbach K, Welzel K, Kettern N, Donnerhak C, Münk C, Flory E, Liese J, Kim B, Urban S, König R. Restrictive influence of SAMHD1 on Hepatitis B Virus life cycle. Sci Rep 2016; 6:26616. [PMID: 27229711 PMCID: PMC4882586 DOI: 10.1038/srep26616] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
Deoxynucleotide triphosphates (dNTPs) are essential for efficient hepatitis B virus (HBV) replication. Here, we investigated the influence of the restriction factor SAMHD1, a dNTP hydrolase (dNTPase) and RNase, on HBV replication. We demonstrated that silencing of SAMHD1 in hepatic cells increased HBV replication, while overexpression had the opposite effect. SAMHD1 significantly affected the levels of extracellular viral DNA as well as intracellular reverse transcription products, without affecting HBV RNAs or cccDNA. SAMHD1 mutations that interfere with the dNTPase activity (D137N) or in the catalytic center of the histidine-aspartate (HD) domain (D311A), and a phospho-mimetic mutation (T592E), abrogated the inhibitory activity. In contrast, a mutation diminishing the potential RNase but not dNTPase activity (Q548A) and a mutation disabling phosphorylation (T592A) did not affect antiviral activity. Moreover, HBV restriction by SAMHD1 was rescued by addition of deoxynucleosides. Although HBV infection did not directly affect protein level or phosphorylation of SAMHD1, the virus upregulated intracellular dATPs. Interestingly, SAMHD1 was dephosphorylated, thus in a potentially antiviral-active state, in primary human hepatocytes. Furthermore, SAMHD1 was upregulated by type I and II interferons in hepatic cells. These results suggest that SAMHD1 is a relevant restriction factor for HBV and restricts reverse transcription through its dNTPase activity.
Collapse
Affiliation(s)
| | - Lise Rivière
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caitlin Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, USA
| | | | | | | | - Karin Welzel
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Nadja Kettern
- Division of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Egbert Flory
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Juliane Liese
- General and Visceral Surgery, Goethe-University, Frankfurt, Germany
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany.,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,German Center for Infection Research (DZIF), Langen, Germany
| |
Collapse
|
22
|
Jeong GU, Park IH, Ahn K, Ahn BY. Inhibition of hepatitis B virus replication by a dNTPase-dependent function of the host restriction factor SAMHD1. Virology 2016; 495:71-8. [PMID: 27179347 DOI: 10.1016/j.virol.2016.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023]
Abstract
SAMHD1 is a cellular protein that possesses dNTPase activity and inhibits retroviruses and DNA viruses through the depletion of cellular dNTPs. However, recent evidence suggests the existence of alternative or additional mechanisms that involve novel nuclease activities. Hepatitis B virus is a DNA virus but resembles retroviruses in that its DNA genome is synthesized via reverse transcription of an RNA transcript. SAMHD1 was shown to inhibit the expression and replication of a transfected HBV DNA. We further investigated the antiviral mechanisms in a newly developed infection assay. Our data indicated that SAMHD1 exerts a profound antiviral effect. In addition, unlike previous findings, our results demonstrate the essential role of SAMHD1 dNTPase. SAMHD1 did not affect virion-derived cccDNA and gene expression but specifically inhibited viral DNA synthesis. These results indicate that SAMHD1 inhibits HBV replication at the reverse transcription step, most likely through the depletion of cellular dNTPs.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Il-Hyun Park
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kwangseog Ahn
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung-Yoon Ahn
- Department of Life Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Gong C, Liu H, Song R, Zhong T, Lou M, Wang T, Qi H, Shen J, Zhu L, Shao J. ATR–CHK1–E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:612-26. [DOI: 10.1016/j.bbagrm.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
|
24
|
Witt-Kehati D, Bitton Alaluf M, Shlomai A. Advances and Challenges in Studying Hepatitis B Virus In Vitro. Viruses 2016; 8:v8010021. [PMID: 26784218 PMCID: PMC4728581 DOI: 10.3390/v8010021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is a small DNA virus that infects the liver. Current anti-HBV drugs efficiently suppress viral replication but do not eradicate the virus due to the persistence of its episomal DNA. Efforts to develop reliable in vitro systems to model HBV infection, an imperative tool for studying HBV biology and its interactions with the host, have been hampered by major limitations at the level of the virus, the host and infection readouts. This review summarizes major milestones in the development of in vitro systems to study HBV. Recent advances in our understanding of HBV biology, such as the discovery of the bile-acid pump sodium-taurocholate cotransporting polypeptide (NTCP) as a receptor for HBV, enabled the establishment of NTCP expressing hepatoma cell lines permissive for HBV infection. Furthermore, advanced tissue engineering techniques facilitate now the establishment of HBV infection systems based on primary human hepatocytes that maintain their phenotype and permissiveness for infection over time. The ability to differentiate inducible pluripotent stem cells into hepatocyte-like cells opens the door for studying HBV in a more isogenic background, as well. Thus, the recent advances in in vitro models for HBV infection holds promise for a better understanding of virus-host interactions and for future development of more definitive anti-viral drugs.
Collapse
Affiliation(s)
- Dvora Witt-Kehati
- The Liver Institute, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Maya Bitton Alaluf
- Department of Medicine D, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
| | - Amir Shlomai
- The Liver Institute, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Medicine D, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
| |
Collapse
|
25
|
Liu X, Xu Z, Hou C, Wang M, Chen X, Lin Q, Song R, Lou M, Zhu L, Qiu Y, Chen Z, Yang C, Zhu W, Shao J. Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein. Biochem Pharmacol 2016; 103:118-28. [PMID: 26774458 DOI: 10.1016/j.bcp.2016.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a key factor for hepatocellular carcinoma worldwide. Ribonucleotide reductase (RR) regulates the deoxyribonucleoside triphosphates biosynthesis and serves as a target for anti-cancer therapy. Here, we demonstrate that RR is essential for HBV replication and the viral covalently-closed-circular DNA (cccDNA) synthesis in host liver cells. By performing computer-assisted virtual screening against the crystal structure of RR small subunit M2 (RRM2), osalmid, was identified as a potential RRM2-targeting compound. Osalmid was shown to be 10-fold more active in inhibiting RR activity than hydroxyurea, and significantly inhibited HBV DNA and cccDNA synthesis in HepG2.2.15 cells. In contrast, hydroxyurea and the RR large subunit (RRM1)-inhibitory drug gemcitabine showed little selective activity against HBV replication. In addition, osalmid also was shown to possess potent activity against a 3TC-resistant HBV strain, suggesting utility in treating drug-resistant HBV infections. Interestingly, osalmid showed synergistic effects with lamivudine (3TC) in vitro and in vivo without significant toxicity, and was shown to inhibit RR activity in vivo, thus verifying its in vivo function. Furthermore, 4-cyclopropyl-2-fluoro-N-(4-hydroxyphenyl) benzamide (YZ51), a novel derivative of osalmid, showed higher efficacy than osalmid with more potent RR inhibitory activity. These results suggest that RRM2 might be targeted for HBV inhibition, and the RRM2-targeting compound osalmid and its derivative YZ51 could be a novel class of anti-HBV candidates with potential use for hepatitis B and HBV-related HCC treatment.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China; Central Laboratory, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijian Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chuanwei Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinhuan Chen
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology and Pathophysiology, Zhengzhou University School of Medicine, Zhengzhou 450001, China
| | - Qinghui Lin
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Song
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meng Lou
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lijun Zhu
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yunqing Qiu
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chunhao Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
26
|
Yamashita A, Fujimoto Y, Tamaki M, Setiawan A, Tanaka T, Okuyama-Dobashi K, Kasai H, Watashi K, Wakita T, Toyama M, Baba M, de Voogd NJ, Maekawa S, Enomoto N, Tanaka J, Moriishi K. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay. Mar Drugs 2015; 13:6759-73. [PMID: 26561821 PMCID: PMC4663552 DOI: 10.3390/md13116759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Yuusuke Fujimoto
- Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Mayumi Tamaki
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Jl. Sumantri Brodjonegoro No. 1, Bandar Lampung 35145, Indonesia.
| | - Tomohisa Tanaka
- Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Kaori Okuyama-Dobashi
- Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Hirotake Kasai
- Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Masaaki Toyama
- Division of Antiviral Chemotherapy Center for Chronic Viral Disease, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Masanori Baba
- Division of Antiviral Chemotherapy Center for Chronic Viral Disease, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Nicole J de Voogd
- Naturalis, National Museum of Natural History, P.O. Box 9517, Leiden 2300 RA, The Netherlands.
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Kohji Moriishi
- Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
27
|
Ricardo-Lax I, Ramanan V, Michailidis E, Shamia T, Reuven N, Rice CM, Shlomai A, Shaul Y. Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. J Hepatol 2015; 63:789-96. [PMID: 26026873 DOI: 10.1016/j.jhep.2015.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infects and replicates in quiescent hepatocytes, which are deficient in dNTPs, the critical precursors of HBV replication. Most tumor viruses promote dNTP production in host cells by inducing cell proliferation. Although HBV is known as a major cause of hepatocellular carcinoma, it does not lead to cellular proliferation. Instead, HBV acquires dNTPs by activating the expression of the R2 subunit of the Ribonucleotide Reductase (RNR) holoenzyme, the cell cycle gene that is rate-limiting for generation of dNTPs, without inducing the cell cycle. We wished to elucidate the molecular basis of HBV-dependent R2 expression in quiescent cells. METHODS Quiescent HepG2 cells were transduced with an HBV-containing lentiviral vector, and primary human hepatocytes were infected with HBV. DNA damage response and RNR-R2 gene expression were monitored under this condition. RESULTS We report here that HBV-induced R2 expression is mediated by the E2F1 transcription factor, and that HBV induces E2F1 accumulation, modification and binding to the R2 promoter. We found that Chk1, a known E2F1 kinase that functions in response to DNA damage, was activated by HBV. In cells where Chk1 was pharmacologically inhibited, or depleted by shRNA-mediated knockdown, HBV-mediated R2 expression was severely attenuated. Furthermore, we found that HBV attenuates DNA repair, thus reducing cellular dNTP consumption. CONCLUSIONS Our findings demonstrate that HBV exploits the Chk1-E2F1 axis of the DNA damage response pathway to induce R2 expression in a cell cycle-independent manner. This suggests that inhibition of this pathway may have a therapeutic value for HBV carriers.
Collapse
Affiliation(s)
- Inna Ricardo-Lax
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States
| | - Tal Shamia
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 2015; 5:10833. [PMID: 26035283 PMCID: PMC4649911 DOI: 10.1038/srep10833] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/29/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients.
Collapse
Affiliation(s)
- Vyas Ramanan
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - David B.T. Cox
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert E. Schwartz
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Ankit Bhatta
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - David A. Scott
- Broad Institute, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Feng Zhang
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Sangeeta N. Bhatia
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Chook JB, Ngeow YF, Khang TF, Ng KP, Tiang YP, Mohamed R. Comparative analysis of viral genomes from acute and chronic hepatitis B reveals novel variants associated with a lower rate of chronicity. J Med Virol 2013; 85:419-24. [PMID: 23297244 DOI: 10.1002/jmv.23500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 01/05/2023]
Abstract
Infection with the hepatitis B virus (HBV) may lead to an acute or chronic infection. It is generally accepted that the clinical outcome of infection depends on the balance between host immunity and viral survival strategies. In order to persist, the virus needs to have a high rate of replication and some immune-escape capabilities. Hence, HBVs lacking these properties are likely to be eliminated more rapidly by the host, leading to a lower rate of chronicity. To test this hypothesis, 177 HBV genomes from acute non-fulminant cases and 1,149 from chronic cases were retrieved from GenBank for comparative analysis. Selection of candidate nucleotides associated with the disease state was done using random guess cut-off and the Bonferroni correction. Five significant nucleotides were detected using this filtering step. Their predictive values were assessed using the support vector machine classification with five-fold cross-validation. The average prediction accuracy was 61% ± 1%, with a sensitivity of 24% ± 1%, specificity of 98% ± 1%, positive predictive value of 92% ± 4% and negative predictive value of 56% ± 1%. BCP/X, enhancer I and surface/polymerase variants were found to be associated almost exclusively with acute hepatitis. These HBV variants are novel potential markers for non-progression to chronic hepatitis.
Collapse
Affiliation(s)
- Jack Bee Chook
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
30
|
Chen Z, Zhang L, Ying S. SAMHD1: a novel antiviral factor in intrinsic immunity. Future Microbiol 2012; 7:1117-26. [DOI: 10.2217/fmb.12.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some intracellular/membranous factors exert intrinsic immunity against viral pathogens. Most recently, SAMHD1 has been shown to be one of these factors. SAMHD1 is a nucleus-localized protein, and mutations in the gene are associated with Aicardi–Goutières syndrome. As a triphosphohydrolase, it depletes the intracellular pool of dNTPs in myeloid cells, such as macrophages and dendritic cells, to a low level that establishes a precursor-deficient environment for the synthesis of lentiviral cDNA, thereby restricting viral replication in these host cells. However, some viruses evolve Vpx to recruit SAMHD1 onto the CRL4DCAF1 E3 ubiquitin ligase in the cytoplasm for proteasome-dependent degradation, by which these viruses relieve SAMHD1-mediated restriction of primate lentivirus infection. In this review, we describe the latest knowledge of SAMHD1 biology.
Collapse
Affiliation(s)
- Zhangming Chen
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Linjie Zhang
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Songcheng Ying
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| |
Collapse
|
31
|
Abstract
HIV replication is limited by cellular restriction factors, such as APOBEC and tetherin, which themselves are counteracted by viral proteins. SAMHD1 was recently identified as a novel HIV restriction factor in myeloid cells, and was shown to be blocked by the lentiviral protein Vpx. SAMHD1 limits viral replication through an original mechanism: it hydrolyses intracellular dNTPs in non-cycling cells, thus decreasing the amount of these key substrates, which are required for viral DNA synthesis. In this Progress article, we describe how SAMHD1 regulates the pool of intracellular nucleotides to control HIV replication and the innate immune response.
Collapse
|
32
|
Mason WS. Hepadnaviruses and Hepatocellular Carcinoma. CANCER ASSOCIATED VIRUSES 2012:531-569. [DOI: 10.1007/978-1-4614-0016-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Bouchard MJ, Navas-Martin S. Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett 2011; 305:123-43. [PMID: 21168955 PMCID: PMC3071446 DOI: 10.1016/j.canlet.2010.11.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/15/2010] [Accepted: 11/25/2010] [Indexed: 12/15/2022]
Abstract
Worldwide, hepatocellular carcinoma (HCC) is one of the most common cancers. It is thought that 80% of hepatocellular carcinomas are linked to chronic infections with the hepatitis B (HBV) or hepatitis C (HCV) viruses. Chronic HBV and HCV infections can alter hepatocyte physiology in similar ways and may utilize similar mechanisms to influence the development of HCC. There has been significant progress towards understanding the molecular biology of HBV and HCV and identifying the cellular signal transduction pathways that are altered by HBV and HCV infections. Although the precise molecular mechanisms that link HBV and HCV infections to the development of HCC are not entirely understood, there is considerable evidence that both inflammatory responses to infections with these viruses, and associated destruction and regeneration of hepatocytes, as well as activities of HBV- or HCV-encoded proteins, contribute to hepatocyte transformation. In this review, we summarize progress in defining mechanisms that may link HBV and HCV infections to the development of HCC, discuss the challenges of directly defining the processes that underlie HBV- and HCV-associated HCC, and describe areas that remain to be explored.
Collapse
Affiliation(s)
- Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
34
|
Gearhart TL, Bouchard MJ. Replication of the hepatitis B virus requires a calcium-dependent HBx-induced G1 phase arrest of hepatocytes. Virology 2010; 407:14-25. [PMID: 20719353 PMCID: PMC2946470 DOI: 10.1016/j.virol.2010.07.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/18/2010] [Accepted: 07/26/2010] [Indexed: 12/17/2022]
Abstract
Chronic HBV infections cause hepatocellular carcinoma (HCC). Activities of the HBV HBx protein regulate HBV replication and may contribute to the development of HCC. We previously reported that HBx causes primary rat hepatocytes to exit G0 but stall in G1 phase of the cell cycle; entry into G1 stimulated HBV replication. We now report that the activity of the mitochondria permeability transition pore is required for HBx regulation of cell cycle proteins and HBV replication in primary rat hepatocytes, that progression from G0 to G1 stimulates HBV polymerase activity, and that HBV replication is facilitated by the HBx-induced G1 arrest. HBx stimulation of HBV replication was linked to elevation of the R2 subunit of ribonucleotide reductase. Our studies suggest that HBx uses mitochondrial-dependent calcium signaling to cause hepatocytes to exit G0 but stall in G1 and that this HBx activity alters the cellular environment and stimulates HBV replication.
Collapse
Affiliation(s)
- Tricia L. Gearhart
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|