1
|
Meena K, Babu R, Pancholi B, Garabadu D. Exploring therapeutic potential of claudin in Flavivirus infection: A review on current advances and future perspectives. Int J Biol Macromol 2025; 309:142936. [PMID: 40203926 DOI: 10.1016/j.ijbiomac.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Flavivirus such as Dengue, Zika, West Nile, Japanese encephalitis, and yellow fever virus, composed of single-stranded positive-sense RNA, predominantly contaminated through arthropods. Flavivirus infection characterises from asymptomatic signs to severe hemorrhagic fever and encephalitis. The host's immune system detects these viruses and provides a defence mechanism to sustain their life and growth. However, flaviviruses through different mechanisms compromise the host's immune defence. The current pharmacotherapeutic strategies against Flavivirus infection target different stages of the Flavivirus life cycle and its proteins. On the contrary, the host's immune defence mechanism is equally important to restrict their growth. It has been suggested that flaviviruses compromise claudins to sustain their life and growth inside the mammalian cells. This review primarily focuses on the effect of Flavivirus on claudins (CLDNs), transmembrane proteins that form tight junctions in mammalian cells. CLDNs are crucial in viral entry and pathogenesis by regulating paracellular permeability, particularly in tissues and the blood-brain barrier. Recent studies indicate that the Dengue and Zika viruses can potentially be treated by targeting specific CLDNs-specifically CLDN 1, CLDN 5, and CLDN 7 to inhibit viral entry and fusion. Additionally, it highlights the current challenges and future prospects in developing claudin-based antiviral agents against Flavivirus infections.
Collapse
Affiliation(s)
- Kiran Meena
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | | | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
2
|
Lu C, Jiang J, Chen Q, Liu H, Ju X, Wang H. Analysis and prediction of interactions between transmembrane and non-transmembrane proteins. BMC Genomics 2024; 25:401. [PMID: 38658824 PMCID: PMC11040819 DOI: 10.1186/s12864-024-10251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Jiuhong Jiang
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Qiufen Chen
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Huanhuan Liu
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Xingda Ju
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China.
| | - Han Wang
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China.
| |
Collapse
|
3
|
Merlen G, Tordjmann T. Tight junction proteins and biliary diseases. Curr Opin Gastroenterol 2024; 40:70-76. [PMID: 38260939 DOI: 10.1097/mog.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
PURPOSE OF REVIEW In the pathophysiological context of cholangiopathies and more broadly of hepatopathies, while it is conceptually clear that the maintenance of inter-cholangiocyte and inter-hepatocyte tight junction integrity would be crucial for liver protection, only scarce studies have been devoted to this topic. Indeed, in the liver, alteration of tight junctions, the intercellular adhesion complexes that control paracellular permeability would result in leaky bile ducts and bile canaliculi, allowing bile reflux towards hepatic parenchyma, contributing to injury during the disease process. RECENT FINDINGS Last decades have provided a great deal of information regarding both tight junction structural organization and signaling pathways related to tight junctions, providing clues about potential intervention to modulate paracellular permeability during cholangiopathies pathogenesis. Interestingly, several liver diseases have been reported to be associated with abnormal expression of one or several tight junction proteins. However, the question remains unanswered if these alterations would be primarily involved in the disease pathogenesis or if they would occur secondarily in the pathological course. SUMMARY In this review, we provide an overview of tight junction disruptions described in various biliary diseases that should pave the way for defining new therapeutic targets in this field.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Université Paris-Saclay, bât Henri Moissan, 17 av. des Sciences, Orsay, France
| | | |
Collapse
|
4
|
Eskin-Schwartz M, Dolgin V, Didkovsky E, Aminov I, Pikovsky A, Hadar N, Kristal E, Ling G, Cohen I, Zilberman U, Birk OS. CLDN1 Arg81His founder variant causes ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis (ILVASC) syndrome in Moroccan Jews. Clin Genet 2024; 105:44-51. [PMID: 37814412 DOI: 10.1111/cge.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Neonatal ichthyosis and sclerosing cholangitis syndrome (NISCH), also known as ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis (ILVASC), is an extremely rare disease of autosomal recessive inheritance, resulting from loss of function of the tight junction protein claudin-1. Its clinical presentation is highly variable, and is characterized by liver and ectodermal involvement. Although most ILVASC cases described to date were attributed to homozygous truncating variants in CLDN1, a single missense variant CLDN1 p.Arg81His, associated with isolated skin ichthyosis phenotype, has been recently reported in a family of Moroccan Jewish descent. We now describe seven patients with ILVASC, originating from four non consanguineous families of North African Jewish ancestry (including one previously reported family), harboring CLDN1 p.Arg81His variant, and broaden the phenotypic spectrum attributed to this variant to include teeth, hair, and liver/bile duct involvement, characteristic of ILVASC. Furthermore, we provide additional evidence for pathogenicity of the CLDN1 p.Arg81His variant by transmission electron microscopy of the affected skin, revealing distorted tight junction architecture, and show through haplotype analysis in the vicinity of the CLDN1 gene, that this variant represents a founder variant in Jews of Moroccan descent with an estimated carrier frequency of 1:220.
Collapse
Affiliation(s)
- Marina Eskin-Schwartz
- Soroka University Medical Center, Genetics Institute, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elena Didkovsky
- Rabin Medical Center, Institute of Pathology, Petah Tiqwa, Israel
| | - Ilana Aminov
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Pikovsky
- Oral Medicine Unit, Department of Oral and Maxillofacial Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Kristal
- Saban Pediatric Medical Center, Beer-Sheva, Israel
| | - Galina Ling
- Saban Pediatric Medical Center, Beer-Sheva, Israel
- Pediatric Gastroenterology Unit, Beer-Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uri Zilberman
- Pediatric Dental Unit, Barzilai Medical Center, Ashkelon, Israel
| | - Ohad S Birk
- Soroka University Medical Center, Genetics Institute, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Demir E, Tuna Kirsaçlioğlu C, Saltik-Temizel İN, Ürel-Demir G, Karaosmanoğlu B, Taşkiran EZ, Şimşek-Kiper PÖ, Utine GE, Kuloğlu Z, Kansu A. Neonatal ichthyosis-sclerosing cholangitis syndrome: report of a novel mutation and a review of the literature. Clin Dysmorphol 2023; 32:88-91. [PMID: 36779798 DOI: 10.1097/mcd.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- Engin Demir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Faculty of Medicine, Ankara University
| | - Ceyda Tuna Kirsaçlioğlu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Faculty of Medicine, Ankara University
| | | | | | - Beren Karaosmanoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Zihni Taşkiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | - Zarife Kuloğlu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Faculty of Medicine, Ankara University
| | - Aydan Kansu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Faculty of Medicine, Ankara University
| |
Collapse
|
7
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
8
|
Mohamad J, Samuelov L, Assaf S, Malki L, Malovitski K, Meijers O, Adir N, Granot E, Pavlovsky M, Sarig O, Sprecher E. Autosomal recessive congenital ichthyosis caused by a pathogenic missense variant in CLDN1. Am J Med Genet A 2022; 188:2879-2887. [PMID: 35920354 DOI: 10.1002/ajmg.a.62924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/31/2023]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) refers to a large and genetically heterogenous group of non-syndromic disorders of cornification featuring diffuse scaling. Ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis (ILVASC) syndrome is a rare autosomal recessive syndromic form of ichthyosis. The disease usually results from premature termination codon-causing pathogenic variants in CLDN1 encoding CLAUDIN-1 (CLDN1). We used whole exome sequencing (WES), Sanger sequencing, 3D protein modeling, Western blotting, and immunofluorescence confocal microscopy to delineate the genetic basis of ichthyosis in two siblings with ichthyosis but no other ectodermal abnormalities. One of the two siblings underwent liver transplantation in early childhood due to biliary atresia. Both patients were found to carry a homozygous missense pathogenic variant, c.242G>A (p.Arg81His), in CLDN1. The variant resulted in decreased CLDN1 expression in patient skin. 3D protein modeling predicted that p.Arg81His induces deleterious conformational changes. Accordingly, HaCaT cells transfected with a construct expressing the mutant CLDN1 cDNA featured decreased levels and mislocation of CLDN1 as compared with cells expressing the wildtype cDNA. In conclusion, we describe the first pathogenic missense variant in CLDN1 shown to result in ARCI.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sari Assaf
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liron Malki
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Odile Meijers
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Haifa, Israel
| | | | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Salik D, Hadj-Rabia S, Hohl D, Vahidnezhad H, Youssefian L, Rakosi A, Dangoisse C, Marangoni M, Vilain C, Smits G. Evaluation of neurodevelopmental symptoms in 10 cases of neonatal ichthyosis and sclerosing cholangitis syndrome. Pediatr Dermatol 2022; 39:590-593. [PMID: 35304779 DOI: 10.1111/pde.14976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
Neonatal ichthyosis and sclerosing cholangitis (NISCH) syndrome is an extremely rare entity with only 19 patients described in the literature. We report an extended family with the disorder and investigate the association of neurodevelopmental symptoms. Patients with CLDN1 mutations, and specifically « the Moroccan» c.200_201delTT deletion, may be an increased risk for neurodevelopmental symptoms such as learning disabilities, mental retardation, and language delay.
Collapse
Affiliation(s)
- Deborah Salik
- Department of Dermatology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Paris, France.,Institut Imagine, Université Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Daniel Hohl
- Department of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adèle Rakosi
- Department of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Chantal Dangoisse
- Department of Dermatology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martina Marangoni
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
Resveratrol Downregulates miR-155-5p to Block the Malignant Behavior of Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6968641. [PMID: 35789645 PMCID: PMC9250436 DOI: 10.1155/2022/6968641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Studies have shown that resveratrol (Res) exerts significant antiproliferative effects in cancer, and regulating the expression of microRNAs (miRNAs) is one the underlying mechanisms of these effects. Overexpression of miR-155-5p leads to oncogenesis. However, it is unclear whether Res exerts antitumor effects by regulating the expression of miR-155-5p, and its specific mechanism in gastric cancer remains unknown. In this study, qRT-PCR was performed to assess the expression of miR-155-5p in gastric cells and clinical tissues, and the MTT assay, plate clone formation test, cell scratch test, Transwell assay, and flow cytometry were performed to investigate the functions of Res on the growth of gastric cancer cells after treatment with miR-155-5p. Western blot analysis was performed to detect the expression of claudin 1, c-Myc, cyclin D1, Bcl-2, and caspase-3 proteins in gastric cancer cell lines after treatment with miR-155-5p and Res. We found that miR-155-5p was overexpressed in gastric cancer cells and clinical tissues, while Res inhibited gastric cancer cell growth by regulating miR-155-5p expression. The results of MTT assay, plate clone formation test, cell scratch test, Transwell test, and flow cytometry showed that miR-155-5p promoted the proliferation, invasion, and metastasis of gastric cancer cell lines and inhibited apoptosis, while Res addition inhibited this effect (
). When miR-155-5p was overexpressed, the expressions of claudin 1, c-Myc, cyclin D1, and Bcl-2 were upregulated and that of caspase-3 was downregulated. Collectively, these results suggest that miR-155-5p may be a therapeutic target in gastric cancer, and Res may be a potential therapeutic agent based on its regulation of miR-155-5p.
Collapse
|
11
|
Mao QY, Xie S, Wu LL, Xiang RL, Cai ZG. Alteration of tight junctions during botulinum toxin type A-inhibited salivary secretion. Oral Dis 2022. [PMID: 35472254 DOI: 10.1111/odi.14223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Tight junctions (TJs) are involved in the regulation of salivary secretion via paracellular pathway. Botulinum toxin type A (BTXA) is widely used for the treatment of hypersecretion diseases such as sialorrhea. This study aimed to investigate the role of TJs in BTXA-inhibited secretion of the submandibular gland (SMG). MATERIALS AND METHODS BTXA was injected into the SMGs of rats, and the same amount of saline was injected as a control. Western blot, real-time PCR and immunofluorescence staining were used to detect the expression and distribution of TJ proteins. Paracellular permeability was evaluated using the transepithelial electrical resistance (TER) measurements and fluorescent tracer detection in BTXA-stimulated SMG-C6 cells. RESULTS BTXA injection into the SMGs of rats led to increased expression of claudin (Cldn) -1 and Cldn3. Immunofluorescence staining showed no significant changes in the distribution of TJ proteins. In vitro, BTXA increased the TER values and significantly reduced the permeability of fluorescent tracer, suggesting that BTXA decreased the paracellular permeability. The expression levels of Cldn1, Cldn3 and Cldn4 were upregulated after BTXA treatment. CONCLUSION The expression of TJ proteins changed in both animal models and SMG-C6 cells after BTXA treatment, which may contribute to the inhibition of salivary secretion.
Collapse
Affiliation(s)
- Qian-Ying Mao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
12
|
Vij M, Sankaranarayanan S. Biallelic Mutations in Ubiquitin-Specific Peptidase 53 ( USP53) Causing Progressive Intrahepatic Cholestasis. Report of a Case With Review of Literature. Pediatr Dev Pathol 2022; 25:207-212. [PMID: 34809518 DOI: 10.1177/10935266211051175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whole-exome sequencing studies have recently identified novel genes implicated in normal- or low-GGT pediatric cholestasis including ubiquitin-specific peptidase 53 (USP53). We identified novel biallelic mutations in the USP53 gene in a 7-month-old infant with pruritus and progressive intrahepatic cholestasis. His liver biopsy showed portal and perivenular fibrosis with bland bilirubinostasis. His parents were asymptomatic heterozygous for the same mutation. He is currently on vitamin supplements and cholestyramine and his family has also been counseled for liver transplantation. Our report confirms that patients with biallelic mutation in USP53 develop cholestatic liver disease.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
13
|
Pryymachuk G, El-Awaad E, Piekarek N, Drebber U, Maul AC, Hescheler J, Wodarz A, Pfitzer G, Neiss WF, Pietsch M, Schroeter MM. Angiotensin II type 1 receptor localizes at the blood-bile barrier in humans and pigs. Histochem Cell Biol 2022; 157:513-524. [PMID: 35229169 PMCID: PMC9114028 DOI: 10.1007/s00418-022-02087-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Animal models and clinical studies suggest an influence of angiotensin II (AngII) on the pathogenesis of liver diseases via the renin–angiotensin system. AngII application increases portal blood pressure, reduces bile flow, and increases permeability of liver tight junctions. Establishing the subcellular localization of angiotensin II receptor type 1 (AT1R), the main AngII receptor, helps to understand the effects of AngII on the liver. We localized AT1R in situ in human and porcine liver and porcine gallbladder by immunohistochemistry. In order to do so, we characterized commercial anti-AT1R antibodies regarding their capability to recognize heterologous human AT1R in immunocytochemistry and on western blots, and to detect AT1R using overlap studies and AT1R-specific blocking peptides. In hepatocytes and canals of Hering, AT1R displayed a tram-track-like distribution, while in cholangiocytes AT1R appeared in a honeycomb-like pattern; i.e., in liver epithelia, AT1R showed an equivalent distribution to that in the apical junctional network, which seals bile canaliculi and bile ducts along the blood–bile barrier. In intrahepatic blood vessels, AT1R was most prominent in the tunica media. We confirmed AT1R localization in situ to the plasma membrane domain, particularly between tight and adherens junctions in both human and porcine hepatocytes, cholangiocytes, and gallbladder epithelial cells using different anti-AT1R antibodies. Localization of AT1R at the junctional complex could explain previously reported AngII effects and predestines AT1R as a transmitter of tight junction permeability.
Collapse
Affiliation(s)
- Galyna Pryymachuk
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Ehab El-Awaad
- Institute II of Pharmacology, Center of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Str. 24, 50931, Cologne, Germany
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Nadin Piekarek
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Uta Drebber
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexandra C Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Ostmerheimer Str. 200, 51109, Cologne, Germany
| | - Juergen Hescheler
- Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Andreas Wodarz
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| | - Mechthild M Schroeter
- Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
14
|
Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2022; 27:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
15
|
Ren S, Chen A, Tian Y, Bai Z, Wang C. Lactobacillus paracasei from Koumiss Ameliorates Diarrhea in mice via Tight Junctions Modulation. Nutrition 2022; 98:111584. [DOI: 10.1016/j.nut.2021.111584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/23/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
|
16
|
Bosma PJ, Wits M, Oude-Elferink RPJ. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci 2020; 22:E273. [PMID: 33383947 PMCID: PMC7796371 DOI: 10.3390/ijms22010273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive Familial Intrahepatic Cholestasis (PFIC) are inherited severe liver disorders presenting early in life, with high serum bile salt and bilirubin levels. Six types have been reported, two of these are caused by deficiency of an ABC transporter; ABCB11 (bile salt export pump) in type 2; ABCB4 (phosphatidylcholine floppase) in type 3. In addition, ABCB11 function is affected in 3 other types of PFIC. A lack of effective treatment makes a liver transplantation necessary in most patients. In view of long-term adverse effects, for instance due to life-long immune suppression needed to prevent organ rejection, gene therapy could be a preferable approach, as supported by proof of concept in animal models for PFIC3. This review discusses the feasibility of gene therapy as an alternative for liver transplantation for all forms of PFIC based on their pathological mechanism. Conclusion: Using presently available gene therapy vectors, major hurdles need to be overcome to make gene therapy for all types of PFIC a reality.
Collapse
Affiliation(s)
- Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AGEM, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.W.); (R.P.J.O.-E.)
| | | | | |
Collapse
|
17
|
Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQH. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020; 12:3709. [PMID: 33266235 PMCID: PMC7760347 DOI: 10.3390/nu12123709] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver from cholesterol. BA undergo continuous enterohepatic recycling through intestinal biotransformation by gut microbiome and reabsorption into the portal tract for uptake by hepatocytes. BA are detergent molecules aiding the digestion and absorption of dietary fat and fat-soluble vitamins, but also act as important signaling molecules via the nuclear receptor, farnesoid X receptor (FXR), and the membrane-associated G protein-coupled bile acid receptor 1 (GPBAR-1) in the distal intestine, liver and extra hepatic tissues. The hydrophilic-hydrophobic balance of the BA pool is finely regulated to prevent BA overload and liver injury. By contrast, hydrophilic BA can be hepatoprotective. The ultimate effects of BA-mediated activation of GPBAR-1 is poorly understood, but this receptor may play a role in protecting the remnant liver and in maintaining biliary homeostasis. In addition, GPBAR-1 acts on pathways involved in inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity, and sinusoidal blood flow. Recent evidence suggests that environmental factors influence GPBAR-1 gene expression. Thus, targeting GPBAR-1 might improve liver protection, facilitating beneficial metabolic effects through primary prevention measures. Here, we discuss the complex pathways linked to BA effects, signaling properties of the GPBAR-1, mechanisms of liver damage, gene-environment interactions, and therapeutic aspects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
18
|
Li L, Yang F, Jia R, Yan P, Ma L. Velvet antler polypeptide prevents the disruption of hepatic tight junctions via inhibiting oxidative stress in cholestatic mice and liver cell lines. Food Funct 2020; 11:9752-9763. [PMID: 33073799 DOI: 10.1039/d0fo01899f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study aims to examine the protective effects and mechanism of a velvet antler polypeptide (VAP) against lithocholic acid (LCA)-induced cholestatic liver injury in mice. A 7.0 kDa VAP was orally administered at doses of 10 and 20 mg kg-1 day-1. Hematoxylin and eosin (H&E) staining of the liver showed that VAP7.0 reduced LCA-induced infiltration of inflammatory cells and areas of necrotic hepatocytes. In addition, VAP7.0 greatly reduced the levels of alanine aminotransferase (ALT), total bile acid (TBA) and total bilirubin (TBIL) in LCA mouse serum and prolonged the survival time of mice with LCA. VAP7.0 reduced the production of reactive oxygen species (ROS), decreased malondialdehyde (MDA) and increased the superoxide dismutase (SOD) levels in LCA mice. VAP7.0 also reduced OGG1 expression, which is a biochemical indicator of oxidative stress. Mechanistic analysis revealed that VAP7.0 significantly inhibited LCA-induced disruption of tight junction integrity, as determined by observing the morphology of the bile canaliculus, and this finding was confirmed by observation of the bile canalicular structure and tight junction proteins Occludin and ZO-1 expression. Moreover, we also found that VAP7.0 maintained the stability of hepatic paracellular permeability, as determined by Evans blue dye assays and horseradish peroxidase (HRP) tracer distribution through inhibiting the activation of the PI3K pathway in LCA mouse livers. In addition, VAP7.0 ameliorated H2O2-induced barrier dysfunction and tight junction disruption via inhibiting the PI3K activity in human HepG2 and SMMC7721 cells, which was confirmed by the PI3K activator 740Y-P. H2O2 disturbed the localization of the tight junction proteins ZO-1 and Occludin, resulting in the transfer of these proteins from the membrane to the cytoplasm of cells, whereas pretreatment of cells with VAP7.0 prevented the disruption of the localization of these proteins, as determined by immunofluorescence staining and western blot analysis. These results demonstrate that VAP7.0 reduces liver injury by inhibiting oxidative stress and maintains the stability of hepatic tight junctions via suppressing the activation of the intracellular signaling molecule PI3K in LCA mice and hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Lihua Li
- Department of Cell Biology, Taizhou University, Taizhou, PR China.
| | | | | | | | | |
Collapse
|
19
|
Izurieta Pacheco AC, Monfort Carretero L, Prat Torres C, García-Alix Pérez A, Molera Busoms C. NISCH syndrome: An extremely rare cause of neonatal cholestasis. J Hepatol 2020; 73:1257-1258. [PMID: 32863047 DOI: 10.1016/j.jhep.2020.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/04/2022]
Affiliation(s)
| | | | - Carolina Prat Torres
- Pediatric Dermatology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Alfredo García-Alix Pérez
- Institut de Recerca Sant Joan de Dèu, Hospital Sant Joan de Déu, NeNe Foundation, University of Barcelona, Barcelona, Spain
| | - Cristina Molera Busoms
- Pediatric Gastroenterology, Hepatology and Nutrition Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Hahn L, Helmrich N, Herebian D, Mayatepek E, Drebber U, Domann E, Olejniczak S, Weigel M, Hain T, Rath T, Wirtz S, Mollenkopf HJ, Schmidt N, Ewers C, Baier A, Churin Y, Windhorst A, Weiskirchen R, Steinhoff U, Roeb E, Roderfeld M. IL-13 as Target to Reduce Cholestasis and Dysbiosis in Abcb4 Knockout Mice. Cells 2020; 9:1949. [PMID: 32846954 PMCID: PMC7564366 DOI: 10.3390/cells9091949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/13/2023] Open
Abstract
The Th2 cytokine IL-13 is involved in biliary epithelial injury and liver fibrosis in patients as well as in animal models. The aim of this study was to investigate IL-13 as a therapeutic target during short term and chronic intrahepatic cholestasis in an Abcb4-knockout mouse model (Abcb4-/-). Lack of IL-13 protected Abcb4-/- mice transiently from cholestasis. This decrease in serum bile acids was accompanied by an enhanced excretion of bile acids and a normalization of fecal bile acid composition. In Abcb4-/-/IL-13-/- double knockout mice, bacterial translocation to the liver was significantly reduced and the intestinal microbiome resembled the commensal composition in wild type animals. In addition, 52-week-old Abcb4-/-IL-13-/- mice showed significantly reduced hepatic fibrosis. Abcb4-/- mice devoid of IL-13 transiently improved cholestasis and converted the composition of the gut microbiota towards healthy conditions. This highlights IL-13 as a potential therapeutic target in biliary diseases.
Collapse
Affiliation(s)
- Luisa Hahn
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Nora Helmrich
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; (D.H.); (E.M.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; (D.H.); (E.M.)
| | - Uta Drebber
- Institute for Pathology, University Hospital of Cologne, D-50937 Cologne, Germany;
| | - Eugen Domann
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Stefan Olejniczak
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Markus Weigel
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Torsten Hain
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Timo Rath
- Department of Medicine 1, Division of Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany; (T.R.); (S.W.)
| | - Stefan Wirtz
- Department of Medicine 1, Division of Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany; (T.R.); (S.W.)
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany;
| | - Nadine Schmidt
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; (N.S.); (C.E.)
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; (N.S.); (C.E.)
| | - Anne Baier
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Yuri Churin
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Anita Windhorst
- Institute for Medical Informatics, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, D-35043 Marburg, Germany;
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| |
Collapse
|
21
|
Merlen G, Bidault-Jourdainne V, Kahale N, Glenisson M, Ursic-Bedoya J, Doignon I, Garcin I, Humbert L, Rainteau D, Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver Int 2020; 40:1005-1015. [PMID: 32145703 DOI: 10.1111/liv.14427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/13/2023]
Abstract
During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | | | - Nicolas Kahale
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Mathilde Glenisson
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - José Ursic-Bedoya
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Doignon
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Garcin
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Lydie Humbert
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Dominique Rainteau
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Thierry Tordjmann
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| |
Collapse
|
22
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
23
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| |
Collapse
|
24
|
Merlen G, Kahale N, Ursic-Bedoya J, Bidault-Jourdainne V, Simerabet H, Doignon I, Tanfin Z, Garcin I, Péan N, Gautherot J, Davit-Spraul A, Guettier C, Humbert L, Rainteau D, Ebnet K, Ullmer C, Cassio D, Tordjmann T. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 2020; 69:146-157. [PMID: 30723104 DOI: 10.1136/gutjnl-2018-316975] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.
Collapse
Affiliation(s)
- Grégory Merlen
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Nicolas Kahale
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | | | | - Hayat Simerabet
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Doignon
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Zahra Tanfin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Garcin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Noémie Péan
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Julien Gautherot
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Anne Davit-Spraul
- Service de Biochimie, Hopital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France.,Service d'Anatomie Pathologique, Hopital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lydie Humbert
- ER7, Université Pierre et Marie Curie-Paris-6, Paris, France
| | | | - Klaus Ebnet
- Institute-associated Research Group 'Cell adhesion and cell polarity', Institute of Medical Biochemistry, ZMBE, Münster, University of Münster, Münster, Germany
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Cassio
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | |
Collapse
|
25
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
26
|
Abstract
Pediatric cholestasis often results from mechanical obstruction of the biliary tract or dysfunction in the processes of forming and excreting bile. Various genetic defects with resulting molecular inaccuracies are increasingly being recognized, often with specific clinical characteristics. Identifying of the molecular abnormality can enable implementation of timely, appropriate treatment in some affected individuals and provide prognostic indicators for both families and care teams.
Collapse
Affiliation(s)
- James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 6th Floor FP, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Patrick McKiernan
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 6th Floor FP, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
27
|
Abstract
Genetic cholestasis has been dissected through genetic investigation. The major PFIC genes are now described. ATP8B1 encodes FIC1, ABCB11 encodes BSEP, ABCB4 encodes MDR3, TJP2 encodes TJP2, NR1H4 encodes FXR, and MYO5B encodes MYO5B. The full spectra of phenotypes associated with mutations in each gene are discussed, along with our understanding of the disease mechanisms. Differences in treatment response and targets for future treatment are emerging.
Collapse
Affiliation(s)
- Laura N Bull
- Department of Medicine and Institute for Human Genetics, University of California San Francisco, UCSF Liver Center Laboratory, Zuckerberg San Francisco General, 1001 Potrero Avenue, Building 40, Room 4102, San Francisco, CA 94110, USA.
| | - Richard J Thompson
- Institute of Liver Studies, King's College London, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
28
|
Anesthetic Care of 2 Siblings With Neonatal Ichthyosis and Sclerosing Cholangitis Syndrome: Case Reports. A A Pract 2018; 11:216-218. [PMID: 29738332 DOI: 10.1213/xaa.0000000000000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report for the first time the anesthetic management of 2 sisters suffering from neonatal ichthyosis and sclerosing cholangitis syndrome. They both presented with neonatal cholestatic jaundice and ichthyosis. The first was admitted for orthotopic liver transplantation at the age of 1 year, and the second patient underwent open pyeloplasty for a pyeloureteric junction syndrome at the age of 4 years. These 2 case reports highlight that, except for the potential difficulties with securing the catheters, dressings and endotracheal tube to the skin, the anesthetic implications of neonatal ichthyosis and sclerosing cholangitis syndrome are mainly related to the liver disease: cirrhosis and portal hypertension.
Collapse
|
29
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
30
|
Szepetowski S, Lacoste C, Mallet S, Roquelaure B, Badens C, Fabre A. [NISCH syndrome, a rare cause of neonatal cholestasis: A case report]. Arch Pediatr 2017; 24:1228-1234. [PMID: 29146216 DOI: 10.1016/j.arcped.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
NISCH syndrome is a rare autosomal recessive disease. It is characterized by scalp hypotrichosis, scarring alopecia, ichthyosis, and neonatal sclerosing cholangitis. It is caused by mutations in the CLDN1 gene encoding the claudin-1 protein, which is located at tight junctions. Fifteen cases have been reported to date and three different mutations have been identified. We report on the case of a 2-year-old boy from a consanguineous Moroccan family, presenting with NISCH syndrome and carrying the so-called Moroccan homozygous mutation (c.200-201delTT). The patient presented with the characteristic symptoms of the syndrome and a favorable progression with normalization of hepatic analyses under symptomatic treatment (vitamin supplementation and ursodeoxycholic acid). The currently limited availability of clinical and therapeutic data does not allow accurate prediction of the course of the disease and short- and long-term prognosis. Moreover, substantial interindividual variability has been reported. Description of new cases will provide new insights into the understanding and the overall management of this syndrome, the course of which remains elusive.
Collapse
Affiliation(s)
- S Szepetowski
- Service de gastropédiatrie, Assistance publique-Hôpitaux de Marseille (AP-HM), hôpital de La Timone, 264, rue Saint-Pierre, 13385 Marseille, France.
| | - C Lacoste
- Service de gastropédiatrie, Assistance publique-Hôpitaux de Marseille (AP-HM), hôpital de La Timone, 264, rue Saint-Pierre, 13385 Marseille, France
| | - S Mallet
- Service de gastropédiatrie, Assistance publique-Hôpitaux de Marseille (AP-HM), hôpital de La Timone, 264, rue Saint-Pierre, 13385 Marseille, France
| | - B Roquelaure
- Service de gastropédiatrie, Assistance publique-Hôpitaux de Marseille (AP-HM), hôpital de La Timone, 264, rue Saint-Pierre, 13385 Marseille, France
| | - C Badens
- Service de gastropédiatrie, Assistance publique-Hôpitaux de Marseille (AP-HM), hôpital de La Timone, 264, rue Saint-Pierre, 13385 Marseille, France
| | - A Fabre
- Service de gastropédiatrie, Assistance publique-Hôpitaux de Marseille (AP-HM), hôpital de La Timone, 264, rue Saint-Pierre, 13385 Marseille, France
| |
Collapse
|
31
|
Vij M, Shanmugam NP, Reddy MS, Sankaranarayanan S, Rela M. Paediatric hepatocellular carcinoma in tight junction protein 2 (TJP2) deficiency. Virchows Arch 2017; 471:679-683. [PMID: 28733884 DOI: 10.1007/s00428-017-2204-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Mukul Vij
- Department of Pathology, Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India.
| | - Naresh P Shanmugam
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India
| | - Mettu Srinivas Reddy
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India
| | | | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India
- National Foundation for Liver Research, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Tanimizu N, Mitaka T. Epithelial Morphogenesis during Liver Development. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027862. [PMID: 28213465 DOI: 10.1101/cshperspect.a027862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue stem/progenitor cells supply multiple types of epithelial cells that eventually acquire specialized functions during organ development. In addition, three-dimensional (3D) tissue structures need to be established for organs to perform their physiological functions. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes, which are derived from hepatoblasts, fetal liver stem/progenitor cells (LPCs), in mid-gestation. Hepatocytes performing many metabolic reactions form cord-like structures, whereas cholangiocytes, biliary epithelial cells, form tubular structures called intrahepatic bile ducts. Analyses for human genetic diseases and mutant mice have identified crucial molecules for liver organogenesis. Functions of those molecules can be examined in in vitro culture systems where LPCs are induced to differentiate into hepatocytes or cholangiocytes. Recent technical advances have revealed 3D epithelial morphogenesis during liver organogenesis. Therefore, the liver is a good model to understand how tissue stem/progenitor cells differentiate and establish 3D tissue architectures during organ development.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
33
|
Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch 2016; 469:15-26. [PMID: 27904960 DOI: 10.1007/s00424-016-1914-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022]
Abstract
Intestinal inflammatory diseases, four of which are discussed here, are associated with alterations of claudins. In ulcerative colitis, diarrhea and antigen entry into the mucosa occurs. Claudin-2 is upregulated but data on other claudins are still limited or vary (e.g., claudin-1 and -4). Apart from that, tight junction changes contribute to diarrhea via a leak flux mechanism, while protection against antigen entry disappears behind epithelial gross lesions (erosions) and apoptotic foci. Crohn's disease is additionally characterized by a claudin-5 and claudin-8 reduction which plays an active role in antigen uptake already before gross lesions appear. In microscopic colitis (MC), upregulation of claudin-2 expression is weak and a reduction in claudin-4 may be only passively involved, while sodium malabsorption represents the main diarrheal mechanism. However, claudin-5 is removed from MC tight junctions which may be an active trigger for inflammation through antigen uptake along the so-called leaky gut concept. In celiac disease, primary barrier defects are discussed in the context of candidate genes as PARD3 which regulate cell polarity and tight junctions. The loss of claudin-5 allows small antigens to invade, while the reductions in others like claudin-3 are rather passive events. Taken together, the specific role of single tight junction proteins for the onset and perpetuation of inflammation and the recovery from these diseases is far from being fully understood and is clearly dependent on the stage of the disease, the background of the other tight junction components, the transport activity of the mucosa, and the presence of other barrier features like gross lesions, an orchestral interplay which is discussed in this article.
Collapse
Affiliation(s)
- Christian Barmeyer
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany.
| |
Collapse
|
34
|
Tanimizu N, Mitaka T. Morphogenesis of liver epithelial cells. Hepatol Res 2016; 46:964-76. [PMID: 26785307 DOI: 10.1111/hepr.12654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
The mammalian liver is a physiologically important organ performing various types of metabolism, producing serum proteins, detoxifying bilirubin and ammonia, and protecting the body from infection. Those physiological functions are achieved with the 3D tissue architecture of liver epithelial cells. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes. They split from hepatoblasts (embryonic liver stem cells) in mid-gestation and differentiate into structurally and functionally mature cells. Analyses of mutant mice showing abnormal liver organogenesis have identified genes involved in liver development. In vitro culture systems have been used to examine the mechanism in which each molecule or signaling pathway regulates the morphogenesis and functional differentiation of hepatocytes and cholangiocytes. In addition, liver epithelial cells as well as mesenchymal, sinusoidal endothelial and hematopoietic cells can be purified from developing livers, which enables us to perform genome-wide screening to identify novel genes regulating epithelial morphogenesis in the liver. By combining these in vivo and in vitro systems, the liver could be a unique and suitable model for revealing a principle, governing epithelial morphogenesis. In this review, we summarize recent progress in the understanding of the development of liver epithelial tissue structures.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
35
|
Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater 2015; 55:87-103. [PMID: 26569044 DOI: 10.1016/j.jmbbm.2015.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.
Collapse
Affiliation(s)
- Daniel B Deegan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Cynthia Zimmerman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
36
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
37
|
Zwanziger D, Rakov H, Engels K, Moeller LC, Führer D. Sex-Dependent Claudin-1 Expression in the Liver of Euthyroid and Hypothyroid Mice. Eur Thyroid J 2015; 4:67-73. [PMID: 26601075 PMCID: PMC4640300 DOI: 10.1159/000431316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/11/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In the liver the tight junction protein claudin-1 plays an important role in bile secretion by maintaining the paracellular barrier of bile canaliculi and the bile duct. A diminished bile excretion has been found in hypothyroid patients, and the prevalence of gallstones is increased in hypothyroidism. This association, however, only applies for men and is in contrast to the well-established female preponderance of biliary disease in the general population. OBJECTIVES We hypothesized that hypothyroidism could lead to altered claudin-1 expression in the liver, and that this effect may be sex specific. METHODS We characterized claudin-1 expression and localization in livers of euthyroid and hypothyroid male and female C57BL/6NTac mice by real-time PCR, Western blot and immunofluorescence. RESULTS Claudin-1 is expressed in canalicular regions and the bile ducts of the murine liver. Livers of female mice showed lower claudin-1 expression than male livers. In hypothyroid livers, female animals showed an elevated claudin-1 expression, whereas reduced claudin-1 expression was found in male animals compared to the euthyroid controls. CONCLUSION We demonstrate a correlation between claudin-1 expression and hypothyroidism in the murine liver. Furthermore, a sex-dependent alteration of claudin-1 expression was found.
Collapse
Affiliation(s)
- Denise Zwanziger
- *Denise Zwanziger, PhD, Department of Endocrinology and Metabolism and Division of Laboratory Research, University Hospital Essen, Hufelandstrasse 55, DE-45147 Essen (Germany), E-Mail
| | | | | | | | | |
Collapse
|
38
|
Karnati HK, Panigrahi M, Shaik NA, Greig NH, Bagadi SAR, Kamal MA, Kapalavayi N. Down regulated expression of Claudin-1 and Claudin-5 and up regulation of β-catenin: association with human glioma progression. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 13:1413-26. [PMID: 25345514 DOI: 10.2174/1871527313666141023121550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme is the most common form of intracranial malignancy in humans, and is characterized by aggressive tumor growth, tissue invasion and neurodegenerative properties. The present study investigated the expression status of tight junction associated Claudin 1 (CLDN1), Claudin 5 (CLDN5) and Adheren junction associated β-catenin genes in the light of their critical role in the progression of both low- and high-grade human gliomas. Using quantitative PCR and Western blot methods the mRNA and protein status of CLDN1, CLDN5 and β-catenin genes were studied in a total of 25 human gliomas of World Health Organization (WHO) grades I-IV, non-cancerous control brain tissues and their corresponding model cell lines (C6, U373, U118, T98 and U87MG). Quantitative analysis of the transcript and protein expression data showed that CLDN1 and CLDN5 were significantly down regulated (p=<0.001) in tumors of all four grades and model cell lines. This decrease in expression pattern was in accordance with the increasing grade of the tumor. A 4-fold stronger reduction of CLDN1 when compared to CLDN5 was evident in high-grade tumors. Interestingly, β-catenin was up regulated in all tumor types we studied (p=<0.005). Our findings, suggest that down regulated CLDN1 and CLDN5 genes have potential relevance in relation to the progression of glioblastoma multiforme. Hence, their therapeutic targeting may provide both insight and leads to control the cellular proliferation and subsequent invasiveness among affected individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nagaiah Kapalavayi
- (Nagaiah Kapalavayi) Department of Biotechnology, Gland Pharma Limited, Dundigal, Gandimaisamma X Roads, Hyderabad - 500 043, Andhra Pradesh, India.
| |
Collapse
|
39
|
Kirchmeier P, Sayar E, Hotz A, Hausser I, Islek A, Yilmaz A, Artan R, Fischer J. Novel mutation in the CLDN1 gene in a Turkish family with neonatal ichthyosis sclerosing cholangitis (NISCH) syndrome. Br J Dermatol 2015; 170:976-8. [PMID: 24641442 DOI: 10.1111/bjd.12724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P Kirchmeier
- Institute of Human Genetics, University Medical Center Freiburg, Breisacherstraße 33, 79106, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Expression of Tight Junction Components in Hepatocyte-Like Cells Differentiated from Human Embryonic Stem Cells. Pathol Oncol Res 2015; 21:1059-70. [PMID: 25845432 DOI: 10.1007/s12253-015-9936-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Human embryonic stem cells can be differentiated in vitro into a wide variety of progeny cells by addition of different morphogens and growth factors. Our aim was to monitor the expression pattern of tight junction (TJ) components and various cellular markers during differentiation of stem cell lines toward the hepatic lineage. Human embryonic stem cell lines (HUES1, HUES9) were differentiated into endoderm-like cells, and further differentiated to hepatocyte-like cells. Gene expressions of Oct3/4, Nanog, alpha-fetoprotein, albumin, cytokeratins (CK-7, CK-8, CK-18, CK-19), ATP-binding cassette (ABC) transporters (ABCC2, ABCC7, ABCG2), and various TJ components, including claudin-1, claudin-4, claudin-5, claudin-7, and tricellulin, as well as an extracellular matrix component, agrin were monitored during hepatic differentiation by real-time quantitative PCR. The differentiated cells exhibit epithelial morphology and functional assessments similar to that of hepatocytes. The expression level of stem cell marker genes (Oct3/4 and Nanog) significantly and gradually decreased, while liver-associated genes (alpha-fetoprotein, albumin) reached their highest expression at the end of the differentiation. The endoderm-like cells expressed claudin-1, which declined eventually. The expression levels of cholangiocyte markers including claudin-4, CK-7, CK-19, and agrin gradually increased and reached their highest level at the final stage of differentiation. In contrast, these cells did not express notable level of claudin-7, CK-8 and tricellulin. The marker set used for monitoring differentiation revealed both hepatocyte and cholangiocyte characteristics of the differentiated cells at the final stage. This is the first report describing the expression level changes of various TJ components, and underlining their importance in hepatic differentiation.
Collapse
|
41
|
Götze T, Blessing H, Grillhösl C, Gerner P, Hoerning A. Neonatal Cholestasis - Differential Diagnoses, Current Diagnostic Procedures, and Treatment. Front Pediatr 2015; 3:43. [PMID: 26137452 PMCID: PMC4470262 DOI: 10.3389/fped.2015.00043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
Cholestatic jaundice in early infancy is a complex diagnostic problem. Misdiagnosis of cholestasis as physiologic jaundice delays the identification of severe liver diseases. In the majority of infants, prolonged physiologic jaundice represent benign cases of breast milk jaundice, but few among them are masked and caused by neonatal cholestasis (NC) that requires a prompt diagnosis and treatment. Therefore, a prolonged neonatal jaundice, longer than 2 weeks after birth, must always be investigated because an early diagnosis is essential for appropriate management. To rapidly identify the cases with cholestatic jaundice, the conjugated bilirubin needs to be determined in any infant presenting with prolonged jaundice at 14 days of age with or without depigmented stool. Once NC is confirmed, a systematic approach is the key to reliably achieve the diagnosis in order to promptly initiate the specific, and in many cases, life-saving therapy. This strategy is most important to promptly identify and treat infants with biliary atresia, the most common cause of NC, as this requires a hepatoportoenterostomy as soon as possible. Here, we provide a detailed work-up approach including initial treatment recommendations and a clinically oriented overview of possible differential diagnoses in order to facilitate the early recognition and a timely diagnosis of cholestasis. This approach warrants a broad spectrum of diagnostic procedures and investigations including new methods that are described in this review.
Collapse
Affiliation(s)
- Thomas Götze
- Department for Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Holger Blessing
- Department for Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Christian Grillhösl
- Department for Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Patrick Gerner
- Department for Pediatric and Adolescent Medicine, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - André Hoerning
- Department for Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
42
|
Tatari MN, De Craene B, Soen B, Taminau J, Vermassen P, Goossens S, Haigh K, Cazzola S, Lambert J, Huylebroeck D, Haigh JJ, Berx G. ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins. Cell Mol Life Sci 2014; 71:3599-609. [PMID: 24573695 PMCID: PMC11113794 DOI: 10.1007/s00018-014-1589-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/26/2014] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
Abstract
Epithelial homeostasis within the epidermis is maintained by means of multiple cell-cell adhesion complexes such as adherens junctions, tight junctions, gap junctions, and desmosomes. These complexes co-operate in the formation and the regulation of the epidermal barrier. Disruption of the epidermal barrier through the deregulation of the above complexes is the cause behind a number of skin disorders such as psoriasis, dermatitis, keratosis, and others. During epithelial-to-mesenchymal transition (EMT), epithelial cells lose their adhesive capacities and gain mesenchymal properties. ZEB transcription factors are key inducers of EMT. In order to gain a better understanding of the functional role of ZEB2 in epidermal homeostasis, we generated a mouse model with conditional overexpression of Zeb2 in the epidermis. Our analysis revealed that Zeb2 expression in the epidermis leads to hyperproliferation due to the combined downregulation of different tight junction proteins compromising the epidermal barrier. Using two epidermis-specific in vivo models and in vitro promoter assays, we identified occludin as a new Zeb2 target gene. Immunohistological analysis performed on human skin biopsies covering various pathogeneses revealed ZEB2 expression in the epidermis of pemphigus vulgaris. Collectively, our data support the notion for a potential role of ZEB2 in intracellular signaling of this disease.
Collapse
Affiliation(s)
- Marianthi N. Tatari
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bieke Soen
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Joachim Taminau
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Petra Vermassen
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Steven Goossens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Unit of Vascular Cell Biology, Inflammation Research Center, VIB, 9052 Ghent, Belgium
| | - Katharina Haigh
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Unit of Vascular Cell Biology, Inflammation Research Center, VIB, 9052 Ghent, Belgium
| | - Silvia Cazzola
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Faculty of Medicine, Research Unit Embryo and Stem Cells, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jo Lambert
- Department of Dermatology 2K4, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Faculty of Medicine, Research Unit Embryo and Stem Cells, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jody J. Haigh
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Unit of Vascular Cell Biology, Inflammation Research Center, VIB, 9052 Ghent, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
43
|
Wang T, Chen T, Liang HY, Yan HT, Lin N, Liu LY, Luo H, Huang Z, Li NL, Liu WH, Tang LJ. Notch inhibition promotes fetal liver stem/progenitor cells differentiation into hepatocytes via the inhibition of HNF-1β. Cell Tissue Res 2014; 357:173-184. [PMID: 24737489 DOI: 10.1007/s00441-014-1825-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/20/2014] [Indexed: 01/15/2023]
Abstract
In a previous study, the Notch pathway inhibited with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (also called DAPT) was shown to promote the differentiation of fetal liver stem/progenitor cells (FLSPCs) into hepatocytes and to impair cholangiocyte differentiation. The precise mechanism for this, however, was not elucidated. Two mechanisms are possible: Notch inhibition might directly up-regulate hepatocyte differentiation via HGF (hepatocyte growth factor) and HNF (hepatocyte nuclear factor)-4α or might impair cholangiocyte differentiation thereby indirectly rendering hepatocyte differentiation as the dominant state. In this study, HGF and HNF expression was detected after the Notch pathway was inhibited. Although our initial investigation indicated that the inhibition of Notch induced hepatocyte differentiation with an efficiency similar to the induction via HGF, the results of this study demonstrate that Notch inhibition does not induce significant up-regulation of HGF or HNF-4α in FLSPCs. This suggests that Notch inhibition induces hepatocyte differentiation without the influence of HGF or HNF-4α. Moreover, significant down-regulation of HNF-1β was observed, presumably dependent on an impairment of cholangiocyte differentiation. To confirm this presumption, HNF-1β was blocked in FLSPCs and was followed by hepatocyte differentiation. The expression of markers of mature cholangiocyte was impaired and hepatocyte markers were elevated significantly. The data thus demonstrate that the inhibition of cholangiocyte differentiation spontaneously induces hepatocyte differentiation and further suggest that hepatocyte differentiation from FLSPCs occurs at the expense of the impairment of cholangiocyte differentiation, probably being enhanced partially via HNF-1β down-regulation or Notch inhibition.
Collapse
Affiliation(s)
- Tao Wang
- General Surgery Center, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet 2014; 46:326-8. [PMID: 24614073 DOI: 10.1038/ng.2918] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/14/2014] [Indexed: 12/14/2022]
Abstract
Elucidating genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Here we show that protein-truncating mutations in the tight junction protein 2 gene (TJP2) cause failure of protein localization and disruption of tight-junction structure, leading to severe cholestatic liver disease. These findings contrast with those in the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species.
Collapse
|
45
|
Firrincieli D, Zúñiga S, Rey C, Wendum D, Lasnier E, Rainteau D, Braescu T, Falguières T, Boissan M, Cadoret A, Housset C, Chignard N. Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of biliary epithelial cell junctions in mice. Hepatology 2013; 58:1401-12. [PMID: 23696511 PMCID: PMC4286017 DOI: 10.1002/hep.26453] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Alterations in apical junctional complexes (AJCs) have been reported in genetic or acquired biliary diseases. The vitamin D nuclear receptor (VDR), predominantly expressed in biliary epithelial cells in the liver, has been shown to regulate AJCs. The aim of our study was thus to investigate the role of VDR in the maintenance of bile duct integrity in mice challenged with biliary-type liver injury. Vdr(-/-) mice subjected to bile duct ligation (BDL) displayed increased liver damage compared to wildtype BDL mice. Adaptation to cholestasis, ascertained by expression of genes involved in bile acid metabolism and tissue repair, was limited in Vdr(-/-) BDL mice. Furthermore, evaluation of Vdr(-/-) BDL mouse liver tissue sections indicated altered E-cadherin staining associated with increased bile duct rupture. Total liver protein analysis revealed that a truncated form of E-cadherin was present in higher amounts in Vdr(-/-) mice subjected to BDL compared to wildtype BDL mice. Truncated E-cadherin was also associated with loss of cell adhesion in biliary epithelial cells silenced for VDR. In these cells, E-cadherin cleavage occurred together with calpain 1 activation and was prevented by the silencing of calpain 1. Furthermore, VDR deficiency led to the activation of the epidermal growth factor receptor (EGFR) pathway, while EGFR activation by EGF induced both calpain 1 activation and E-cadherin cleavage in these cells. Finally, truncation of E-cadherin was blunted when EGFR signaling was inhibited in VDR-silenced cells. CONCLUSION Biliary-type liver injury is exacerbated in Vdr(-/-) mice by limited adaptive response and increased bile duct rupture. These results indicate that loss of VDR restricts the adaptation to cholestasis and diminishes bile duct integrity in the setting of biliary-type liver injury.
Collapse
Affiliation(s)
- Delphine Firrincieli
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Silvia Zúñiga
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,Departamento de Gastroenterologia, Pontificia Universidad Catolica de ChileSantiago, Chile
| | - Colette Rey
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Dominique Wendum
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Saint Antoine, Service d'Anatomie PathologiqueF-75012, Paris, France
| | - Elisabeth Lasnier
- AP-HP, Hôpital Saint Antoine, Service de BiochimieF-75012, Paris, France
| | - Dominique Rainteau
- UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Saint Antoine, Service de BiochimieF-75012, Paris, France
| | - Thomas Braescu
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Thomas Falguières
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Mathieu Boissan
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Tenon, Service de Biochimie et HormonologieF-75020, Paris, France
| | - Axelle Cadoret
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Chantal Housset
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Saint Antoine, Service d'HépatologieF-75012, Paris, France
| | - Nicolas Chignard
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| |
Collapse
|
46
|
Roussel AJJ, Knol AC, Bourdeau PJ, Bruet V. Optimization of an immunohistochemical method to assess distribution of tight junction proteins in canine epidermis and adnexae. J Comp Pathol 2013; 150:35-46. [PMID: 24016781 DOI: 10.1016/j.jcpa.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/03/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023]
Abstract
Epidermal tight junctions (TJs) have been well characterized in human medicine. Abnormality of these structures is involved in skin diseases such as atopic dermatitis. There is little information about the expression and distribution of TJ proteins in the canine skin. The aim of this study was to develop an optimal immunohistochemical method for assessment of the expression of TJ proteins in the skin of healthy dogs. Formalin-fixed and paraffin wax-embedded skin biopsy samples from healthy human and canine patients were used. Canine skin samples were from the inguinal region and the nasal planum. Immunohistochemistry was used to study the expression of zonula occludens-1 (ZO-1), occludin and claudin-1, -4 and -7. Heat-induced antigen retrieval with EDTA (pH 9.0) yielded the best labelling of TJ proteins. ZO-1 and occludin were expressed in the cytoplasm and along the keratinocyte membrane, while claudin-1 and -4 were mainly membrane in distribution. ZO-1, occludin and claudin-1 were detected in all epidermal layers with the exception of the stratum corneum, while claudin-4 expression was restricted to the stratum granulosum. Expression of claudin-7 was difficult to evaluate. There was no difference in labelling pattern between inguinal and nasal planum skin.
Collapse
Affiliation(s)
- A J J Roussel
- Unité de Dermatologie, Parasitologie et Mycologie, ONIRIS, Atlanpole-La Chantrerie, Route de Gachet - CS 40706, 44307 Nantes, France.
| | - A C Knol
- CRCNA, UMR 892, INSERM/6299CNRS, Université de Nantes, Laboratoire de Dermato-immunologie, RJ PT1, Institut de Biologie, CHU Hôtel Dieu, 9 quai Moncousu, 44093 Nantes, France
| | - P J Bourdeau
- Unité de Dermatologie, Parasitologie et Mycologie, ONIRIS, Atlanpole-La Chantrerie, Route de Gachet - CS 40706, 44307 Nantes, France
| | - V Bruet
- Unité de Dermatologie, Parasitologie et Mycologie, ONIRIS, Atlanpole-La Chantrerie, Route de Gachet - CS 40706, 44307 Nantes, France
| |
Collapse
|
47
|
Rao RK, Samak G. Bile duct epithelial tight junctions and barrier function. Tissue Barriers 2013; 1:e25718. [PMID: 24665411 PMCID: PMC3783222 DOI: 10.4161/tisb.25718] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 01/15/2023] Open
Abstract
Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions.
Collapse
Affiliation(s)
- R K Rao
- Department of Physiology; University of Tennessee Health Science Center; Memphis, TN USA
| | - G Samak
- Department of Zoology; D.V.S. College; Shimoga, India
| |
Collapse
|
48
|
Grosse B, Degrouard J, Jaillard D, Cassio D. Build them up and break them down: Tight junctions of cell lines expressing typical hepatocyte polarity with a varied repertoire of claudins. Tissue Barriers 2013; 1:e25210. [PMID: 24665408 PMCID: PMC3783225 DOI: 10.4161/tisb.25210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022] Open
Abstract
Tight junctions (TJs) of cells expressing simple epithelial polarity have been extensively studied, but less is known about TJs of cells expressing complex polarity. In this paper we analyzed, TJs of four different lines, that form bile canaliculi (BC) and express typical hepatocyte polarity; WIF-B9, 11–3, Can 3–1, Can 10. Striking differences were observed in claudin expression. None of the cell lines produced claudin-1. WIF-B9 and 11–3 expressed only claudin-2 while Can 3–1 and Can 10 expressed claudin-2,-3,-4,-5. TJs of these two classes of lines differed in their ultra-stucture, paracellular permeability, and robustness. Lines expressing a large claudin repertoire, especially Can 10, had complex and efficient TJs, that were maintained when cells were depleted in calcium. Inversely, TJs of WIF-B9 and 11–3 were leaky, permissive and dismantled by calcium depletion. Interestingly, we found that during the polarization process, TJ proteins expressed by all lines were sequentially settled in a specific order: first occludin, ZO-1 and cingulin, then JAM-A and ZO-2, finally claudin-2. Claudins expressed only in Can lines were also sequentially settled: claudin-3 was the first settled. Inhibition of claudin-3 expression delayed BC formation in Can10 and induced the expression of simple epithelial polarity. These results highlight the role of claudins in the settlement and the efficiency of TJs in lines expressing typical hepatocyte polarity. Can 10 seems to be the most promising of these lines because of its claudin repertoire near that of hepatocytes and its capacity to form extended tubular BC sealed by efficient TJs.
Collapse
Affiliation(s)
- Brigitte Grosse
- Inserm, UMR-S 757; Orsay, France ; Université Paris-Sud; Orsay, France
| | | | | | - Doris Cassio
- Inserm, UMR-S 757; Orsay, France ; Université Paris-Sud; Orsay, France
| |
Collapse
|
49
|
Müller T, Beutler C, Picó AH, Otten M, Dürr A, Al-Abadi H, Guckelberger O, Meyer Zum Büschenfelde D, Jöhrens K, Volkmann M, Lankisch T, Voigtländer T, Anders M, Shibolet O, Jefferson DM, Podolsky DK, Fischer A, Veltzke-Schlieker W, Adler A, Baumgart DC, Sturm A, Wiedenmann B, Schott E, Berg T. Increased T-helper 2 cytokines in bile from patients with IgG4-related cholangitis disrupt the tight junction-associated biliary epithelial cell barrier. Gastroenterology 2013; 144:1116-28. [PMID: 23391819 DOI: 10.1053/j.gastro.2013.01.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS IgG4-related cholangitis is a chronic inflammatory biliary disease that involves different parts of the pancreatobiliary system, but little is known about its mechanisms of pathogenesis. A T-helper (Th) 2 cell cytokine profile predominates in liver tissues from these patients. We investigated whether Th2 cytokines disrupt the barrier function of biliary epithelial cells (BECs) in patients with IgG4-related cholangitis. METHODS We assessed the Th2 cytokine profile in bile samples and brush cytology samples from 16 patients with IgG4-related cholangitis and respective controls, and evaluated transcription of tight junction (TJ)-associated proteins in primary BECs from these patients. The effect of Th2 cytokines on TJ-mediated BEC barrier function and wound closure was examined by immunoblot, transepithelial resistance, charge-selective Na(+)/Cl(-) permeability, and 4-kDa dextran flux analyses. RESULTS Bile samples from patients with IgG4-related cholangitis had significant increases in levels of Th2 cytokines, interleukin (IL)-4, and IL-5. IL-13 was not detected in bile samples, but polymerase chain reaction analysis of whole-brush cytology samples from patients with IgG4-related cholangitis revealed increased levels of IL-13 mRNA, compared with controls. BECs isolated from the brush cytology samples revealed decreased levels of claudin-1 and increased levels of claudin-2 mRNAs. In vitro, IL-4 and IL-13 significantly reduced TJ-associated BEC barrier function by activating claudin-2-mediated paracellular pore pathways. Th2 cytokines also impaired wound closure in BEC monolayers. CONCLUSIONS Th2 cytokines predominate in bile samples from patients with IgG4-related cholangitis and disrupt the TJ-mediated BEC barrier in vitro. Subsequent increases in biliary leaks might contribute to the pathogenesis of chronic biliary inflammation in these patients.
Collapse
Affiliation(s)
- Tobias Müller
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hartley JL, Gissen P, Kelly DA. Alagille syndrome and other hereditary causes of cholestasis. Clin Liver Dis 2013; 17:279-300. [PMID: 23540503 DOI: 10.1016/j.cld.2012.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neonatal conjugated jaundice is a common presentation of hereditary liver diseases, which, although rare, are important to recognize early. Developments in molecular genetic techniques have enabled the identification of causative genes, which has improved diagnostic accuracy for patients and has led to a greater understanding of the molecular pathways involved in liver biology and pathogenesis of liver diseases. This review provides an update of the current understanding of clinical and molecular features of the inherited liver diseases that cause neonatal conjugated jaundice.
Collapse
Affiliation(s)
- Jane L Hartley
- Liver Unit, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | | | | |
Collapse
|