1
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Hof WFJ, de Boer JF, Verkade HJ. Emerging drugs for the treatment of progressive familial intrahepatic cholestasis: a focus on phase II and III trials. Expert Opin Emerg Drugs 2024; 29:305-320. [PMID: 38571480 DOI: 10.1080/14728214.2024.2336986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Progressive familial intrahepatic cholestasis (PFIC) is a group of disorders characterized by inappropriate bile formation, causing hepatic accumulation of bile acids and, subsequently, liver injury. Until recently, no approved treatments were available for these patients. AREAS COVERED Recent clinical trials for PFIC treatment have focused on intestine-restricted ileal bile acid transporter (IBAT) inhibitors. These compounds aim to reduce the pool size of bile acids by interrupting their enterohepatic circulation. Other emerging treatments in the pipeline include systemic IBAT inhibitors, synthetic bile acid derivatives, compounds targeting bile acid synthesis via the FXR/FGF axis, and chaperones/potentiators that aim to enhance the residual activity of the mutated transporters. EXPERT OPINION Substantial progress has been made in drug development for PFIC patients during the last couple of years. Although data concerning long-term efficacy are as yet only scarcely available, new therapies have demonstrated robust efficacy in a considerable fraction of patients at least on the shorter term. However, a substantial fraction of PFIC patients do not respond to these novel therapies and thus still requires surgical treatment, including liver transplantation before adulthood. Hence, there is still an unmet medical need for long-term effective medical, preferably non-surgical, treatment for all PFIC patients.
Collapse
Affiliation(s)
- Willemien F J Hof
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Zhao Z, Du JF, Wang QL, Qiu FN, Li P, Jiang Y, Li HJ. Natural Product Baohuoside I Impairs the Stability and Membrane Location of MRP2 Reciprocally Regulated by SUMOylation and Ubiquitination in Hepatocytes. Chem Res Toxicol 2024; 37:57-71. [PMID: 38177062 DOI: 10.1021/acs.chemrestox.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Epimedii Folium (EF) is a botanical dietary supplement to benefit immunity. Baohuoside I (BI), a prenylated flavonoid derived from EF, has exhibited the cholestatic risk before. Here, the mechanism of BI on the stability and membrane localization of liver MRP2, a bile acid exporter in the canalicular membrane of hepatocytes, was investigated. The fluorescent substrate of MRP2, CMFDA was accumulated in sandwich-cultured primary mouse hepatocytes (SCH) under BI stimulation, followed by reduced membrane MRP2 expression. BI triggered MRP2 endocytosis associated with oxidative stress via inhibition of the NRF2 signaling pathway. Meanwhile, BI promoted the degradation of MRP2 by reducing its SUMOylation and enhancing its ubiquitination level. Co-IP and fluorescence colocalization experiments all proved that MRP2 was a substrate protein for SUMOylation for SUMO proteins. CHX assays showed that SUMO1 prolonged the half-life of MRP2 and further increased its membrane expression, which could be reversed by UBC9 knockdown. Correspondingly, MRP2 accumulated in the cytoplasm by GP78 knockdown or under MG132 treatment. Additionally, the SUMOylation sites of MRP2 were predicted by the algorithm, and a conversion of lysines to arginines at positions 940 and 953 of human MRP2 caused its decreased stability and membrane location. K940 was further identified as the essential ubiquitination site for MRP2 by an in vitro ubiquitination assay. Moreover, the decreased ubiquitination of MRP2 enhanced the SUMOylation MRP2 and vice versa, and the crosstalk of these two modifiers could be disrupted by BI. Collectively, our findings indicated the process of MRP2 turnover from the membrane to cytoplasm at the post-translational level and further elucidated the novel toxicological mechanism of BI.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jin-Fa Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang-Ning Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
4
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Ghanem CI, Manautou JE. Role and Regulation of Hepatobiliary ATP-Binding Cassette Transporters during Chemical-Induced Liver Injury. Drug Metab Dispos 2022; 50:1376-1388. [PMID: 35914951 PMCID: PMC9513844 DOI: 10.1124/dmd.121.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| | - Jose E Manautou
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| |
Collapse
|
6
|
Ahmed RO, Ali A, Al-Tobasei R, Leeds T, Kenney B, Salem M. Weighted Single-Step GWAS Identifies Genes Influencing Fillet Color in Rainbow Trout. Genes (Basel) 2022; 13:genes13081331. [PMID: 35893068 PMCID: PMC9332390 DOI: 10.3390/genes13081331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
The visual appearance of the fish fillet is a significant determinant of consumers' purchase decisions. Depending on the rainbow trout diet, a uniform bright white or reddish/pink fillet color is desirable. Factors affecting fillet color are complex, ranging from the ability of live fish to accumulate carotenoids in the muscle to preharvest environmental conditions, early postmortem muscle metabolism, and storage conditions. Identifying genetic markers of fillet color is a desirable goal but a challenging task for the aquaculture industry. This study used weighted, single-step GWAS to explore the genetic basis of fillet color variation in rainbow trout. We identified several SNP windows explaining up to 3.5%, 2.5%, and 1.6% of the additive genetic variance for fillet redness, yellowness, and whiteness, respectively. SNPs are located within genes implicated in carotenoid metabolism (β,β-carotene 15,15'-dioxygenase, retinol dehydrogenase) and myoglobin homeostasis (ATP synthase subunit β, mitochondrial (ATP5F1B)). These genes are involved in processes that influence muscle pigmentation and postmortem flesh coloration. Other identified genes are involved in the maintenance of muscle structural integrity (kelch protein 41b (klh41b), collagen α-1(XXVIII) chain (COL28A1), and cathepsin K (CTSK)) and protection against lipid oxidation (peroxiredoxin, superoxide dismutase 2 (SOD2), sestrin-1, Ubiquitin carboxyl-terminal hydrolase-10 (USP10)). A-to-G single-nucleotide polymorphism in β,β-carotene 15,15'-dioxygenase, and USP10 result in isoleucine-to-valine and proline-to-leucine non-synonymous amino acid substitutions, respectively. Our observation confirms that fillet color is a complex trait regulated by many genes involved in carotenoid metabolism, myoglobin homeostasis, protection against lipid oxidation, and maintenance of muscle structural integrity. The significant SNPs identified in this study could be prioritized via genomic selection in breeding programs to improve fillet color in rainbow trout.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
- Correspondence:
| |
Collapse
|
7
|
Wu H, Hua Y, Wu J, Zeng Q, Yang X, Zhu X, Zhang X. The morphology of hydroxyapatite nanoparticles regulates clathrin-mediated endocytosis in melanoma cells and resultant anti-tumor efficiency. NANO RESEARCH 2022; 15:6256-6265. [DOI: 10.1007/s12274-022-4220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2025]
|
8
|
Kobayashi T, Takeba Y, Ohta Y, Ootaki M, Kida K, Watanabe M, Iiri T, Matsumoto N. Prenatal glucocorticoid administration enhances bilirubin metabolic capacity and increases Ugt1a and Abcc2 gene expression via glucocorticoid receptor and PXR in rat fetal liver. J Obstet Gynaecol Res 2022; 48:1591-1606. [PMID: 35445507 DOI: 10.1111/jog.15235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
AIM Jaundice is especially common in premature infant born before 35 weeks. Because the premature infant liver is not fully developed at birth it may be incomplete the bilirubin metabolism. The purpose was to evaluate the metabolism and the excretion of bilirubin in the premature infant rat liver following prenatal glucocorticoid (GC) administration. METHODS Dexamethasone (DEX) was administered subcutaneously to pregnant Wistar rats for two consecutive days on gestational days 17 and 19. The fetus were delivered by cesarean section in gestational days 19 and 21. The mRNA levels and protein levels of bilirubin-metabolic enzymes and transporters in the fetal liver tissues were analyzed using RT-PCR immunohistochemistry staining and ELISA, respectively. We evaluated that the effect of bilirubin-metabolic enzymes in the primary fetal rat hepatocytes treated with DEX after pretreated with glucocorticoid receptor (GR, Nr3c1) and Pxr (Nr1i2) siRNA. RESULTS Ugt1a1 and Bsep (Abcb11) mRNA levels were significantly increased in the fetuses by prenatal GC administration. The mRNA levels of nuclear transcription factors Nr1i2, Car (Nr1i3), and Rxrα (Nr2b1) were also significantly increased in the fetuses by prenatal GC administration. In addition, DEX increased Nr1i2, Ugt1a1, and Abcc2 (Mrp2) mRNA levels in the primary fetal hepatocytes. The Nr3c1 or Nr1i2 siRNA-mediated knockdown suppressed the increases of Ugt1a1, and Abcc2 mRNA levels induced by DEX, indicating that DEX are mediated by GC receptor and PXR in primary fetal hepatocytes. CONCLUSIONS These results suggest that prenatal GC administration increases bilirubin-metabolic ability, in the premature liver, which may prevent jaundice in neonates.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
9
|
Li CZ, Ogawa H, Ng SS, Chen X, Kishimoto E, Sakabe K, Fukami A, Hu YC, Mayhew CN, Hellmann J, Miethke A, Tasnova NL, Blackford SJ, Tang ZM, Syanda AM, Ma L, Xiao F, Sambrotta M, Tavabie O, Soares F, Baker O, Danovi D, Hayashi H, Thompson RJ, Rashid ST, Asai A. Human iPSC-derived hepatocyte system models cholestasis with tight junction protein 2 deficiency. JHEP Rep 2022; 4:100446. [PMID: 35284810 PMCID: PMC8904612 DOI: 10.1016/j.jhepr.2022.100446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS The truncating mutations in tight junction protein 2 (TJP2) cause progressive cholestasis, liver failure, and hepatocyte carcinogenesis. Due to the lack of effective model systems, there are no targeted medications for the liver pathology with TJP2 deficiency. We leveraged the technologies of patient-specific induced pluripotent stem cells (iPSC) and CRISPR genome-editing, and we aim to establish a disease model which recapitulates phenotypes of patients with TJP2 deficiency. METHODS We differentiated iPSC to hepatocyte-like cells (iHep) on the Transwell membrane in a polarized monolayer. Immunofluorescent staining of polarity markers was detected by a confocal microscope. The epithelial barrier function and bile acid transport of bile canaliculi were quantified between the two chambers of Transwell. The morphology of bile canaliculi was measured in iHep cultured in the Matrigel sandwich system using a fluorescent probe and live-confocal imaging. RESULTS The iHep differentiated from iPSC with TJP2 mutations exhibited intracellular inclusions of disrupted apical membrane structures, distorted canalicular networks, altered distribution of apical and basolateral markers/transporters. The directional bile acid transport of bile canaliculi was compromised in the mutant hepatocytes, resembling the disease phenotypes observed in the liver of patients. CONCLUSIONS Our iPSC-derived in vitro hepatocyte system revealed canalicular membrane disruption in TJP2 deficient hepatocytes and demonstrated the ability to model cholestatic disease with TJP2 deficiency to serve as a platform for further pathophysiologic study and drug discovery. LAY SUMMARY We investigated a genetic liver disease, progressive familial intrahepatic cholestasis (PFIC), which causes severe liver disease in newborns and infants due to a lack of gene called TJP2. By using cutting-edge stem cell technology and genome editing methods, we established a novel disease modeling system in cell culture experiments. Our experiments demonstrated that the lack of TJP2 induced abnormal cell polarity and disrupted bile acid transport. These findings will lead to the subsequent investigation to further understand disease mechanisms and develop an effective treatment.
Collapse
Key Words
- ALB, albumin
- ASGR2, asialoglycoprotein receptor 2
- ATP1a1, ATPases subunit alpha-1
- BMP4, bone morphogenetic protein 4
- BSA-FAF, bovine serum albumin fatty acid-free
- BSEP, bile salt export pump
- Bile acid transport
- CDFDA, 5-(and-6)-carboxy-2′,7′-dichlorofluorescein
- Cellular polarity
- DE, definitive endoderm
- DILI, drug-induced liver injury
- FGF2, fibroblast growth factor 2
- GCA, glycocholate
- GCDCA, glycochenodeoxycholate
- HCM, Hepatocyte Culture Medium
- HE, hepatic endodermal
- HGF, hepatocyte growth factor
- HNF4a, hepatic nuclear factor 4a
- MDCKII, Madin–Darby canine kidney II
- MRP2, multidrug resistance-associated protein 2
- NTCP, Na+-TCA cotransporter
- PFIC (progressive familial intrahepatic cholestasis)
- PFIC, progressive familial intrahepatic cholestasis
- PI, propidium iodide
- RT-qPCR, quantitative reverse transcription PCR
- TCA, taurocholic acid
- TCDCA, taurochenodeoxycholate
- TEER, transepithelial electrical resistance
- TEM, transmission electron microscopy
- TJP1, tight junction protein 1
- TJP2, tight junction protein 2
- iHep, iPSC-derived hepatocytes
- iPSC, induced pluripotent stem cell
- sgRNA, single-guide RNA
- ssODN, single-stranded oligonucleotide-DNA
Collapse
Affiliation(s)
- Chao Zheng Li
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Hiromi Ogawa
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Xindi Chen
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Eriko Kishimoto
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kokoro Sakabe
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aiko Fukami
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jennifer Hellmann
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, The University of Cincinnati, Cincinnati, OH, USA
| | - Alexander Miethke
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, The University of Cincinnati, Cincinnati, OH, USA
| | - Nahrin L. Tasnova
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | | | - Zu Ming Tang
- Stem Cell Hotel, King’s College London, London, UK
| | - Adam M. Syanda
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Liang Ma
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Fang Xiao
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Melissa Sambrotta
- Institute of Liver Studies King’s College London, London, United Kingdom
| | - Oliver Tavabie
- Institute of Liver Studies King’s College London, London, United Kingdom
| | | | - Oliver Baker
- Genome Editing and Embryology Core Facility, King’s College London, London, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Hisamitsu Hayashi
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | | | - S. Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Akihiro Asai
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, The University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
MRCK-Alpha and Its Effector Myosin II Regulatory Light Chain Bind ABCB4 and Regulate Its Membrane Expression. Cells 2022; 11:cells11040617. [PMID: 35203270 PMCID: PMC8870398 DOI: 10.3390/cells11040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.
Collapse
|
11
|
Ren T, Pang L, Dai W, Wu S, Kong J. Regulatory mechanisms of the bile salt export pump (BSEP/ABCB11) and its role in related diseases. Clin Res Hepatol Gastroenterol 2021; 45:101641. [PMID: 33581308 DOI: 10.1016/j.clinre.2021.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP/ABCB11) is located on the apical membrane and mediates the secretion of bile salts from hepatocytes into the bile. BSEP-mediated bile salt efflux is the rate-limiting step of bile salt secretion and the main driving force of bile flow. BSEP drives and maintains the enterohepatic circulation of bile salts. In recent years, research efforts have been focused on understanding the physiological and pathological functions and regulatory mechanisms of BSEP. These studies elucidated the roles of farnesoid X receptor (FXR), AMP-activated protein kinase (AMPK), liver receptor homolog-1(LRH-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) in BSEP expression and discovered some regulatory factors which participate in its post-transcriptional regulation. A series of liver diseases have also been shown to be related to BSEP expression and dysfunction, such as cholestasis, drug-induced liver injury, and gallstones. Here, we systematically review and summarize recent literature on BSEP structure, physiological functions, regulatory mechanisms, and related diseases.
Collapse
Affiliation(s)
- Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, Liaoning, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways. Antioxid Redox Signal 2021; 35:808-831. [PMID: 34293961 DOI: 10.1089/ars.2021.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Most hepatopathies are primarily or secondarily cholestatic in nature. Oxidative stress (OS) is a frequent trait among them, and impairs the machinery to generate bile by triggering endocytic internalization of hepatocellular transporters, thus causing cholestasis. This is critical, since it leads to accelerated transporter degradation, which could explain the common post-transcriptional downregulation of transporter expression in human cholestatic diseases. Recent Advances: The mechanisms involved in OS-induced hepatocellular transporter internalization are being revealed. Filamentous actin (F-actin) cytoskeleton disorganization and/or detachment of crosslinking actin proteins that afford transporter stability have been characterized as causal factors. Activation of redox-sensitive signaling pathways leading to changes in phosphorylation status of these structures is involved, including Ca2+-mediated activation of "classical" and "novel" protein kinase C (PKC) isoforms or redox-signaling cascades downstream of NADPH oxidase. Critical Issues: Despite the well-known occurrence of hepatocellular transporter internalization in human hepatopathies, the cholestatic implications of this phenomenon have been overlooked. Accordingly, no specific treatment has been established in the clinical practice for its prevention/reversion. Future Directions: We need to improve our knowledge on the pro-oxidant triggering factors and the multiple signaling pathways that mediate this oxidative injury in each cholestatic hepatopathy, so as to envisage tailor-made therapeutic strategies for each case. Meanwhile, administration of antioxidants or heme oxygenase-1 induction to elevate the hepatocellular levels of the endogenous scavenger bilirubin are promising alternatives that need to be re-evaluated and implemented. They may complement current treatments in cholestasis aimed to enhance transcriptional carrier expression, by providing membrane stability to the newly synthesized carriers. Antioxid. Redox Signal. 35, 808-831.
Collapse
Affiliation(s)
- Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| |
Collapse
|
13
|
Triggers of benign recurrent intrahepatic cholestasis and its pathophysiology: a review of literature. Acta Gastroenterol Belg 2021; 84:477-486. [PMID: 34599573 DOI: 10.51821/84.3.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benign recurrent intrahepatic cholestasis (BRIC) is a rare genetic disorder that is characterized by episodes of cholestasis followed by complete resolution. The episodic nature of BRIC raises concerns about its possible trigger factors. Indeed, case reports of this orphan disease have associated BRIC to some triggers. In the absence of any reviews, we reviewed BRIC trigger factors and its pathophysiology. The study consisted of a systematic search for case reports using PubMed. Articles describing a clear case of BRIC associated with a trigger were included resulting in 22 articles that describe 35 patients. Infection was responsible for 54.3% of triggered episodes, followed by hormonal, drugs, and miscellaneous causes reporting as 30%, 10%, and 5.7% respectively. Females predominated with 62.9%. The longest episode ranged between 3 months to 2 years with a mean of 32.37 weeks. The mean age of the first episode was 14.28 ranging between 3 months to 48 years. Winter and autumn were the major seasons during which episodes happened. Hence, BRIC is potentially triggered by infection, which is most commonly a viral infection, hormonal disturbances as seen in oral contraceptive pills and pregnancy state, and less commonly by certain drugs and other causes. The appearance of cholestasis during the first two trimesters of pregnancy compared to intrahepatic cholestasis of pregnancy could help to differentiate between the two conditions. The possible mechanism of BRIC induction implicates a role of BSEP and ATP8B1. While estrogen, drugs, and cytokines are known to affect BSEP, less is known about their action on ATP8B1.
Collapse
|
14
|
Osaka S, Nakano S, Mizuno T, Hiraoka Y, Minowa K, Hirai S, Mizutani A, Sabu Y, Miura Y, Shimizu T, Kusuhara H, Suzuki M, Hayashi H. A randomized trial to examine the impact of food on pharmacokinetics of 4-phenylbutyrate and change in amino acid availability after a single oral administration of sodium 4-phenylbutyrarte in healthy volunteers. Mol Genet Metab 2021; 132:220-226. [PMID: 33648834 DOI: 10.1016/j.ymgme.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Urea cycle disorders (UCDs), inborn errors of hepatocyte metabolism, result in the systemic accumulation of ammonia to toxic levels. Sodium 4-phenylbutyrate (NaPB), a standard therapy for UCDs for over 20 years, generates an alternative pathway of nitrogen deposition through glutamine consumption. Administration during or immediately after a meal is the accepted use of NaPB. However, this regimen is not based on clinical evidence. Here, an open-label, single-dose, five-period crossover study was conducted in healthy adults to investigate the effect of food on the pharmacokinetics of NaPB and determine any subsequent change in amino acid availability. Twenty subjects were randomized to one of four treatment groups. Following an overnight fast, NaPB was administered orally at 4.3 g/m2 (high dose, HD) or 1.4 g/m2 (low dose, LD) either 30 min before or just after breakfast. At both doses, compared with post-breakfast administration, pre-breakfast administration significantly increased systemic exposure of PB and decreased plasma glutamine availability. Pre-breakfast LD administration attenuated plasma glutamine availability to the same extent as post-breakfast HD administration. Regardless of the regimen, plasma levels of branched-chain amino acids (BCAA) were decreased below baseline in a dose-dependent manner. In conclusion, preprandial oral administration of NaPB maximized systemic exposure of the drug and thereby its potency to consume plasma glutamine. This finding may improve poor medication compliance because of the issues with odor, taste, and pill burden of NaPB and reduce the risk of BCAA deficiency in NaPB therapy.
Collapse
Affiliation(s)
- Shuhei Osaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan
| | - Satoshi Nakano
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan; Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan
| | - Yuka Hiraoka
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Minowa
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saeko Hirai
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayumu Mizutani
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan
| | - Yusuke Sabu
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Japan.
| |
Collapse
|
15
|
Wu SH, Chang MH, Chen YH, Wu HL, Chua HH, Chien CS, Ni YH, Chen HL, Chen HL. The ESCRT-III molecules regulate the apical targeting of bile salt export pump. J Biomed Sci 2021; 28:19. [PMID: 33750401 PMCID: PMC7941988 DOI: 10.1186/s12929-020-00706-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. Methods The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. Results We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. Conclusions Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.
Collapse
Affiliation(s)
- Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Mei-Hwei Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Chin-Sung Chien
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.,Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan. .,Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
16
|
Molecular Regulation of Canalicular ABC Transporters. Int J Mol Sci 2021; 22:ijms22042113. [PMID: 33672718 PMCID: PMC7924332 DOI: 10.3390/ijms22042113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.
Collapse
|
17
|
A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. BIOLOGY 2021; 10:biology10020119. [PMID: 33557414 PMCID: PMC7914782 DOI: 10.3390/biology10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cholestasis refers to a medical condition in which the liver is not capable of secreting bile. The consequent accumulation of toxic bile components in the liver leads to liver failure. Cholestasis can be caused by mutations in genes that code for proteins involved in bile secretion. Recently mutations in other genes have been discovered in patients with cholestasis of unknown origin. Interestingly, many of these newly discovered genes code for proteins that regulate the intracellular distribution of other proteins, including those involved in bile secretion. This group of genes thus suggests the deregulated intracellular distribution of bile-secreting proteins as an important but still poorly understood mechanism that underlies cholestasis. To expedite a better understanding of this mechanism, we have reviewed these genes and their mutations and we discuss these in the context of cholestasis. Abstract Intrahepatic cholestasis is characterized by the accumulation of compounds in the serum that are normally secreted by hepatocytes into the bile. Genes associated with familial intrahepatic cholestasis (FIC) include ATP8B1 (FIC1), ABCB11 (FIC2), ABCB4 (FIC3), TJP2 (FIC4), NR1H4 (FIC5) and MYO5B (FIC6). With advanced genome sequencing methodologies, additional mutated genes are rapidly identified in patients presenting with idiopathic FIC. Notably, several of these genes, VPS33B, VIPAS39, SCYL1, and AP1S1, together with MYO5B, are functionally associated with recycling endosomes and/or the Golgi apparatus. These are components of a complex process that controls the sorting and trafficking of proteins, including those involved in bile secretion. These gene variants therefore suggest that defects in intracellular trafficking take a prominent place in FIC. Here we review these FIC-associated trafficking genes and their variants, their contribution to biliary transporter and canalicular protein trafficking, and, when perturbed, to cholestatic liver disease. Published variants for each of these genes have been summarized in table format, providing a convenient reference for those who work in the intrahepatic cholestasis field.
Collapse
|
18
|
Sohail MI, Dönmez-Cakil Y, Szöllősi D, Stockner T, Chiba P. The Bile Salt Export Pump: Molecular Structure, Study Models and Small-Molecule Drugs for the Treatment of Inherited BSEP Deficiencies. Int J Mol Sci 2021; 22:E784. [PMID: 33466755 PMCID: PMC7830293 DOI: 10.3390/ijms22020784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). Over the past few years, several small molecular weight compounds have been identified, which hold the potential to treat these genetic diseases (chaperones and potentiators). As the treatment response is mutation-specific, genetic analysis of the patients and their families is required. Furthermore, some of the mutations are refractory to therapy, with the only remaining treatment option being liver transplantation. In this review, we will focus on the molecular structure of ABCB11, reported mutations involved in cholestasis and current treatment options for inherited BSEP deficiencies.
Collapse
Affiliation(s)
| | - Yaprak Dönmez-Cakil
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, 34857 Istanbul, Turkey;
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, 10, 1090 Vienna, Austria
| |
Collapse
|
19
|
Cryo-EM structure of human bile salts exporter ABCB11. Cell Res 2020; 30:623-625. [PMID: 32203132 DOI: 10.1038/s41422-020-0302-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
|
20
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
21
|
Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells. Acta Pharmacol Sin 2020; 41:56-64. [PMID: 31316180 PMCID: PMC7468545 DOI: 10.1038/s41401-019-0266-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
It was reported that antituberculosis medicines could induce liver damage via oxidative stress. In this study, we investigated the effects of rifampicin (RFP) on the membrane expression of multidrug resistance-associated protein 2 (MRP2) and the relationship between oxidative stress and RFP-induced endocytosis of MRP2 in HepG2 cells. We found that RFP (12.5–50 μM) dose-dependently decreased the expression and membrane localization of MRP2 in HepG2 cells without changing the messenger RNA level. RFP (50 μM) induced oxidative stress responses that further activated the PKC-ERK/JNK/p38 (protein kinase C-extracellular signal-regulated kinase/c-JUN N-terminal kinase/p38) and PI3K (phosphoinositide 3-kinase) signaling pathways in HepG2 cells. Pretreatment with glutathione reduced ethyl ester (2 mM) not only reversed the changes in oxidative stress indicators and signaling molecules but also diminished RFP-induced reduction in green fluorescence intensity of MRP2. We conducted co-immunoprecipitation assays and revealed that a direct interaction existed among MRP2, clathrin, and adaptor protein 2 (AP2) in HepG2 cells, and their expression was clearly affected by the changes in intracellular redox levels. Knockdown of clathrin or AP2 with small interfering RNA attenuated RFP-induced decreases of membrane and total MRP2. We further demonstrated that RFP markedly increased the ubiquitin–proteasome degradation of MRP2 in HepG2 cells, which was mediated by the E3 ubiquitin ligase GP78, but not HRD1 or TEB4. In conclusion, this study demonstrates that RFP-induced oxidative stress activates the PKC-ERK/JNK/p38 and PI3K signaling pathways that leads to clathrin-dependent endocytosis and ubiquitination of MRP2 in HepG2 cells, which provides new insight into the mechanism of RFP-induced cholestasis.
Collapse
|
22
|
Effect of food on the pharmacokinetics and therapeutic efficacy of 4-phenylbutyrate in progressive familial intrahepatic cholestasis. Sci Rep 2019; 9:17075. [PMID: 31745229 PMCID: PMC6863819 DOI: 10.1038/s41598-019-53628-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC), a rare inherited disorder, progresses to liver failure in childhood. We have shown that sodium 4-phenylbutyrate (NaPB), a drug approved for urea cycle disorders (UCDs), has beneficial effects in PFIC. However, there is little evidence to determine an optimal regimen for NaPB therapy. Herein, a multicenter, open-label, single-dose study was performed to investigate the influence of meal timing on the pharmacokinetics of NaPB. NaPB (150 mg/kg) was administered orally 30 min before, just before, and just after breakfast following overnight fasting. Seven pediatric PFIC patients were enrolled and six completed the study. Compared with postprandial administration, an approved regimen for UCDs, preprandial administration significantly increased the peak plasma concentration and area under the plasma concentration-time curve of 4-phenylbutyrate by 2.5-fold (95% confidential interval (CI), 2.0-3.0;P = 0.003) and 2.4-fold (95% CI, 1.7-3.2;P = 0.005). The observational study over 3 years in two PFIC patients showed that preprandial, but not prandial or postprandial, oral treatment with 500 mg/kg/day NaPB improved liver function tests and clinical symptoms and suppressed the fibrosis progression. No adverse events were observed. Preprandial oral administration of NaPB was needed to maximize its potency in PFIC patients.
Collapse
|
23
|
Anticholestatic mechanisms of ursodeoxycholic acid in lipopolysaccharide-induced cholestasis. Biochem Pharmacol 2019; 168:48-56. [DOI: 10.1016/j.bcp.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
24
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
25
|
Wang X, Chao Y, Wang Y, Xu B, Wang C, Li H. Identification of an adaptor protein‐2 mu gene (
AccAP2m
) in
Apis cerana cerana
and its role in oxidative stress responses. J Cell Biochem 2019; 120:16600-16613. [DOI: 10.1002/jcb.28919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xinxin Wang
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| | - Yuzhen Chao
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| | - Ying Wang
- College of Animal Science and Technology Shandong Agricultural University Taian Shandong PR China
| | - Baohua Xu
- College of Animal Science and Technology Shandong Agricultural University Taian Shandong PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| | - Han Li
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| |
Collapse
|
26
|
Fernández-Murga ML, Petrov PD, Conde I, Castell JV, Goméz-Lechón MJ, Jover R. Advances in drug-induced cholestasis: Clinical perspectives, potential mechanisms and in vitro systems. Food Chem Toxicol 2018; 120:196-212. [PMID: 29990576 DOI: 10.1016/j.fct.2018.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Despite growing research, drug-induced liver injury (DILI) remains a serious issue of increasing importance to the medical community that challenges health systems, pharmaceutical industries and drug regulatory agencies. Drug-induced cholestasis (DIC) represents a frequent manifestation of DILI in humans, which is characterised by an impaired canalicular bile flow resulting in a detrimental accumulation of bile constituents in blood and tissues. From a clinical point of view, cholestatic DILI generates a wide spectrum of presentations and can be a diagnostic challenge. The drug classes mostly associated with DIC are anti-infectious, anti-diabetic, anti-inflammatory, psychotropic and cardiovascular agents, steroids, and other miscellaneous drugs. The molecular mechanisms of DIC have been investigated since the 1980s but they remain debatable. It is recognised that altered expression and/or function of hepatobiliary membrane transporters underlies some forms of cholestasis, and this and other concomitant mechanisms are very likely in DIC. Deciphering these processes may pave the ways for diagnosis, prognosis and prevention, for which currently major gaps and caveats exist. In this review, we summarise recent advances in the field of DIC, including clinical aspects, the potential mechanisms postulated so far and the in vitro systems that can be useful to investigate and identify new cholestatic drugs.
Collapse
Affiliation(s)
- M Leonor Fernández-Murga
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Petar D Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Isabel Conde
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Jose V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| | - M José Goméz-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
27
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
28
|
Miszczuk GS, Barosso IR, Larocca MC, Marrone J, Marinelli RA, Boaglio AC, Sánchez Pozzi EJ, Roma MG, Crocenzi FA. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1072-1085. [DOI: 10.1016/j.bbadis.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
|
29
|
Imagawa K, Hayashi H, Sabu Y, Tanikawa K, Fujishiro J, Kajikawa D, Wada H, Kudo T, Kage M, Kusuhara H, Sumazaki R. Clinical phenotype and molecular analysis of a homozygous ABCB11 mutation responsible for progressive infantile cholestasis. J Hum Genet 2018; 63:569-577. [PMID: 29507376 DOI: 10.1038/s10038-018-0431-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
Abstract
The bile salt export pump (BSEP) plays an important role in biliary secretion. Mutations in ABCB11, the gene encoding BSEP, induce progressive familial intrahepatic cholestasis type 2 (PFIC2), which presents with severe jaundice and liver dysfunction. A less severe phenotype, called benign recurrent intrahepatic cholestasis type 2, is also known. About 200 missense mutations in ABCB11 have been reported. However, the phenotype-genotype correlation has not been clarified. Furthermore, the frequencies of ABCB11 mutations differ between Asian and European populations. We report a patient with PFIC2 carrying a homozygous ABCB11 mutation c.386G>A (p.C129Y) that is most frequently reported in Japan. The pathogenicity of BSEPC129Y has not been investigated. In this study, we performed the molecular analysis of this ABCB11 mutation using cells expressing BSEPC129Y. We found that trafficking of BSEPC129Y to the plasma membrane was impaired and that the expression of BSEPC129Y on the cell surface was significantly lower than that in the control. The amount of bile acids transported via BSEPC129Y was also significantly lower than that via BSEPWT. The transport activity of BSEPC129Y may be conserved because the amount of membrane BSEPC129Y corresponded to the uptake of taurocholate into membrane vesicles. In conclusion, we demonstrated that c.386G>A (p.C129Y) in ABCB11 was a causative mutation correlating with the phenotype of patients with PFIC2, impairment of biliary excretion from hepatocytes, and the absence of canalicular BSEP expression in liver histological assessments. Mutational analysis in ABCB11 could facilitate the elucidation of the molecular mechanisms underlying the development of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan. .,Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yusuke Sabu
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daigo Kajikawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroki Wada
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Toyoichiro Kudo
- Department of Pediatrics, Mito Saiseikai General Hospital, Ibaraki, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
30
|
Vauthier V, Housset C, Falguières T. Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol 2017; 136:1-11. [DOI: 10.1016/j.bcp.2017.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
|
31
|
Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Sci Rep 2017; 7:41806. [PMID: 28150711 PMCID: PMC5288783 DOI: 10.1038/srep41806] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5'-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development.
Collapse
|
32
|
Przybylla S, Stindt J, Kleinschrodt D, Schulte am Esch J, Häussinger D, Keitel V, Smits SH, Schmitt L. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches. PLoS One 2016; 11:e0159778. [PMID: 27472061 PMCID: PMC4966956 DOI: 10.1371/journal.pone.0159778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022] Open
Abstract
The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis.
Collapse
Affiliation(s)
- Susanne Przybylla
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Diana Kleinschrodt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulte am Esch
- Department of General, Visceral and Pediatric Surgery, University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander H. Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
33
|
Abstract
In vitro studies have suggested that 4-phenylbutyrate (PBA) may rescue missense mutated proteins that underlie some forms of progressive familial intrahepatic cholestasis. Encouraging preliminary responses to 4-PBA have been reported in liver disease secondary to mutations in ABCB11 and ATP8B1. A 4-year-old boy with Byler disease was treated with 4-PBA in the forms of sodium PBA (5 months) and then glycerol PBA (7 months) as part of expanded access single patient protocols. During this therapy serum total bilirubin fell and his general well-being was reported to be improved, although total serum bile acids were not reduced. Discontinuation of rifampin therapy, which had been used to treat pruritus, resulted in reversible severe acute liver injury that was potentially the result of phenylacetate toxicity. Interactions between 4-PBA and cytochrome P450 enzymes should be considered in the use of this agent with special attention to potential phenylacetate toxicity.
Collapse
|
34
|
Hayashi H, Naoi S, Hirose Y, Matsuzaka Y, Tanikawa K, Igarashi K, Nagasaka H, Kage M, Inui A, Kusuhara H. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption. Hepatol Res 2016; 46:192-200. [PMID: 26223708 DOI: 10.1111/hepr.12561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
AIM Benign recurrent intrahepatic cholestasis type 2 (BRIC2) is caused by mutations in ABCB11, a gene encoding the bile salt export pump (BSEP) that mediates biliary bile salt secretion, and presents with repeated intermittent cholestasis with refractory itching. Currently, no effective medical therapy has been established. We previously provided experimental and clinical evidence suggesting the therapeutic potential of 4-phenylbutyrate (4PB) for the cholestatic attacks of BRIC2. METHODS After examining the potential therapeutic use of 4PB treatment by in vitro studies, a patient with BRIC2 was treated p.o. with 4PB at gradually increasing doses (200, 350, and 500 mg/kg per day) for 4 months. Biochemical, histological and clinical data were collected. RESULTS The patient was diagnosed with BRIC2 because he had non-synonymous mutations (c.1211A>G [p.D404G] and 1331T>C [p.V444A]) in ABCB11, reduced hepatocanalicular expression of BSEP and low biliary bile salt concentrations. In vitro analysis showed that 4PB treatment partially restored the decreased expression of BSEP caused by p.D404G mutation. During the first 2 months of 4PB therapy at 200 and 350 mg/kg per day, the patient had no relief from his symptoms. No beneficial effect was observed after additional treatment with bilirubin absorption and endoscopic nasobiliary drainage. However, after starting treatment at a dose of 500 mg/kg per day, the patient's liver function tests and intractable itching were markedly improved. No apparent side-effects were observed during or after 4PB therapy. The symptoms relapsed within 1.5 months after cessation of 4PB therapy. CONCLUSION 4PB therapy would have a therapeutic effect on the cholestatic attacks of BRIC2.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sotaro Naoi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Hirose
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Matsuzaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, TOSOH, Ayase, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Venot Q, Delaunay JL, Fouassier L, Delautier D, Falguières T, Housset C, Maurice M, Aït-Slimane T. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression. PLoS One 2016; 11:e0146962. [PMID: 26789121 PMCID: PMC4720445 DOI: 10.1371/journal.pone.0146962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.
Collapse
Affiliation(s)
- Quitterie Venot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Jean-Louis Delaunay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Laura Fouassier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Danièle Delautier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Thomas Falguières
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares Maladies Inflammatoires des Voies Biliaires & Service d’Hépatologie, Paris, France
| | - Michèle Maurice
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Tounsia Aït-Slimane
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Cheng Y, Woolf TF, Gan J, He K. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review. Chem Biol Interact 2015; 255:23-30. [PMID: 26683212 DOI: 10.1016/j.cbi.2015.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | - Kan He
- Biotranex LLC, Monmouth Junction, NJ 08852, USA.
| |
Collapse
|
37
|
Matsuzaka Y, Hayashi H, Kusuhara H. Impaired Hepatic Uptake by Organic Anion-Transporting Polypeptides Is Associated with Hyperbilirubinemia and Hypercholanemia in Atp11c Mutant Mice. Mol Pharmacol 2015; 88:1085-92. [PMID: 26399598 DOI: 10.1124/mol.115.100578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022] Open
Abstract
Biliary excretion of organic anions, such as bile acids (BAs), is the main osmotic driving force for bile formation, and its impairment induces intrahepatic cholestasis. We investigated the involvement of Atp11c in the hepatic transport of organic anions using Atp11c mutant mice, which exhibit hypercholanemia and hyperbilirubinemia. Pharmacokinetic analysis following a constant intravenous infusion in Atp11c mutant mice showed decreased hepatic sinusoidal uptake and intact biliary secretion of [(3)H]17β estradiol 17β-d-glucuronide. Consistent with this result, compared with cells and membranes from control mice, isolated hepatocytes, and liver plasma membranes from Atp11c mutant mice had a much lower uptake of [(3)H]17β estradiol 17β-d-glucuronide and expression of organic anion-transporting polypeptides, which are transporters responsible for hepatic uptake of unconjugated BAs and organic anions, including bilirubin glucuronides. Uptake of [(3)H]TC into hepatocytes and expression of Na(+)-taurocholate cotransporting polypeptide in liver plasma membranes, which mediates hepatic uptake of conjugated BAs, was also lower in the Atp11c mutant mice. Bile flow rate, biliary BA concentration, and expression of hepatobiliary transporters did not differ between Atp11c mutant mice and control mice. These results suggest that Atp11c mediates the transport of BAs and organic anions across the sinusoidal membrane, but not the canalicular membrane, by regulating the abundance of transporters. Atp11c is a candidate gene for genetically undiagnosed cases of hypercholanemia and hyperbilirubinemia, but not of intrahepatic cholestasis. This gene may influence the pharmacological and adverse effect of drugs because organic anion-transporting polypeptides regulate their systemic exposure.
Collapse
Affiliation(s)
- Yusuke Matsuzaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Cellular Cholesterol Accumulation Facilitates Ubiquitination and Lysosomal Degradation of Cell Surface–Resident ABCA1. Arterioscler Thromb Vasc Biol 2015; 35:1347-56. [DOI: 10.1161/atvbaha.114.305182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/24/2015] [Indexed: 11/16/2022]
Abstract
Objective—
By excreting cellular cholesterol to apolipoprotein A-I, ATP-binding cassette transporter A1 (ABCA1) mediates the biogenesis of high-density lipoprotein in hepatocytes and prevents foam cell formation from macrophages. We recently showed that cell surface–resident ABCA1 (csABCA1) undergoes ubiquitination and later lysosomal degradation through the endosomal sorting complex required for transport system. Herein, we investigated the relevance of this degradation pathway to the turnover of csABCA1 in hypercholesterolemia.
Approach and Results—
Immunoprecipitation and cell surface-biotinylation studies with HepG2 cells and mouse peritoneal macrophages showed that the ubiquitination level and degradation of csABCA1 were facilitated by treatment with a liver X receptor (LXR) agonist and acetylated low-density lipoprotein. The effects of an LXR agonist and acetylated low-density lipoprotein on the degradation of csABCA1 were repressed completely by treatment with bafilomycin, an inhibitor of lysosomal degradation, and by depletion of tumor susceptibility gene 101, a major component of endosomal sorting complex required for transport-I. RNAi analysis indicated that LXRβ inhibited the accelerated lysosomal degradation of csABCA1 by the LXR agonist, regardless of its transcriptional activity. Cell surface coimmunoprecipitation with COS1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that LXRβ interacted with csABCA1 and inhibited the ubiquitination of csABCA1. Immunoprecipitates with anti-ABCA1 antibodies from the liver plasma membranes showed less LXRβ and a higher ubiquitination level of ABCA1 in high-fat diet–fed mice than in normal chow-fed mice.
Conclusions—
Under conditions of high cellular cholesterol content, csABCA1 became susceptible to ubiquitination by dissociation of LXRβ from csABCA1, which facilitated the lysosomal degradation of csABCA1 through the endosomal sorting complex required for transport system.
Collapse
|
39
|
Barosso IR, Zucchetti AE, Miszczuk GS, Boaglio AC, Taborda DR, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. EGFR participates downstream of ERα in estradiol-17β-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets. Arch Toxicol 2015; 90:891-903. [PMID: 25813982 DOI: 10.1007/s00204-015-1507-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Estradiol-17β-D-glucuronide (E17G) induces acute endocytic internalization of canalicular transporters, including multidrug resistance-associated protein 2 (Abcc2) in rat, generating cholestasis. Several proteins organized in at least two different signaling pathways are involved in E17G cholestasis: one pathway involves estrogen receptor alpha (ERα), Ca(2+)-dependent protein kinase C and p38-mitogen activated protein kinase, and the other pathway involves GPR30, PKA, phosphoinositide 3-kinase/AKT and extracellular signal-related kinase 1/2. EGF receptor (EGFR) can potentially participate in both pathways since it interacts with GPR30 and ERα. Hence, the aim of this study was to analyze the potential role of this receptor and its downstream effectors, members of the Src family kinases in E17G-induced cholestasis. In vitro, EGFR inhibition by Tyrphostin (Tyr), Cl-387785 or its knockdown with siRNA strongly prevented E17G-induced impairment of Abcc2 function and localization. Activation of EGFR was necessary but not sufficient to impair the canalicular transporter function, whereas the simultaneous activation of EGFR and GPR30 could impair Abcc2 transport. The protection of Tyr was not additive to that produced by the ERα inhibitor ICI neither with that produced by Src kinase inhibitors, suggesting that EGFR shared the signaling pathway of ERα and Src. Further analysis of ERα, EGFR and Src activations induced by E17G, demonstrated that ERα activation precedes that of EGFR and EGFR activation precedes that of Src. In conclusion, activation of EGFR is a key factor in the alteration of canalicular transporter function and localization induced by E17G and it occurs before that of Src and after that of ERα.
Collapse
Affiliation(s)
- Ismael R Barosso
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrea C Boaglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Diego R Taborda
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
40
|
Hayashi H. [Development of new therapeutic strategy for transporter-related diseases]. YAKUGAKU ZASSHI 2015; 134:1007-11. [PMID: 25274209 DOI: 10.1248/yakushi.14-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant technological advances in gene sequence analysis and construction of genetically-modified animals during the last two decades made it possible to reveal that many transporters are associated with diseases. The bile salt export pump (BSEP/ABCB11), a member of the family of ATP-binding cassette transporters, is localized on the canalicular membrane of hepatocytes and predominantly mediates the biliary excretion of bile salts. A hereditary defect of BSEP results in severe cholestasis called progressive familial intrahepatic cholestasis type 2 (PFIC2). Without liver transplantation, this disease progresses to liver failure and death before adulthood; therefore the development of new, less invasive medical therapy for PFIC2 is of the highest priority. We have previously shown that in many cases of PFIC2 patients, the dysfunction of BSEP is attributable to decreased BSEP expression on the hepatocanalicular membrane and that 4-phenylbutyrate (4PB), an approved drug for urea cycle disorder, may be a compound with potential to restore BSEP expression. This drug inhibits ubiquitination of cell surface-resident BSEP and thereby its clathrin-mediated endocytosis through the AP2 adaptor complex, leading to increase in BSEP expression on the canalicular membrane. Clinical studies to investigate the efficacy of 4PB in the treatment of PFIC2 revealed that 4PB therapy biochemically and histologically improved liver function without any side effect. Therefore, 4PB therapy may become the preferred choice, instead of liver transplantation, for PFIC2 patients. The strategy employed and findings in this study would be valuable for the drug development of transporter-related disorders.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
41
|
Hasegawa Y, Hayashi H, Naoi S, Kondou H, Bessho K, Igarashi K, Hanada K, Nakao K, Kimura T, Konishi A, Nagasaka H, Miyoshi Y, Ozono K, Kusuhara H. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1. Orphanet J Rare Dis 2014; 9:89. [PMID: 25022842 PMCID: PMC4105841 DOI: 10.1186/1750-1172-9-89] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 1 (PFIC1), an inherited liver disease caused by mutations in ATP8B1, progresses to severe cholestasis with a sustained intractable itch. Currently, no effective therapy has been established for PFIC1. Decreased function of the bile salt export pump (BSEP) in hepatocytes is suggested to be responsible for the severe cholestasis observed in PFIC1. We found a previously unidentified pharmacological effect of 4-phenylbutyrate (4PB) that increases the expression and function of BSEP. Here, we tested 4PB therapy in three patients with PFIC1. METHODS The therapeutic potency of 4PB in these patients was tested by oral administration of this drug with gradually increasing dosage (200, 350, and 500 mg/kg/day) for 6 months. Biochemical, histological, and clinical data were collected. RESULTS 4PB therapy had no beneficial effect on the patients' liver functions, as assessed by biochemical and histological analyses, despite an increase in hepatic BSEP expression. However, therapy with 4PB at a dosage of 350 or 500 mg/kg/day significantly relieved the intractable itch. Serum levels of potential pruritogens in cholestasis were much higher than the reference ranges during the 4PB therapy. CONCLUSIONS 4PB therapy may be a new medication for patients with intractable cholestatic pruritus and may improve quality of life for patients and their families.
Collapse
Affiliation(s)
- Yasuhiro Hasegawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sotaro Naoi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, TOSOH Corporation, 2743-1 Hayakawa, Ayase-shi, Kanagawa 252-1123, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kie Nakao
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takeshi Kimura
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akiko Konishi
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, 4-5-1 Kohama, Takarazuka-shi, Hyogo 665-0827, Japan
| | - Yoko Miyoshi
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Przybylla S, Schmitt L. Posttranslational regulation of the bile salt export pump. Eur J Med Res 2014. [PMCID: PMC4118448 DOI: 10.1186/2047-783x-19-s1-s20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
43
|
Soroka CJ, Boyer JL. Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Aspects Med 2014; 37:3-14. [PMID: 23685087 PMCID: PMC3784619 DOI: 10.1016/j.mam.2013.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022]
Abstract
The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy. Development of clinical therapies for these conditions necessitates a clear understanding of the cell biology of biosynthesis, trafficking, and transcriptional and translational regulation of BSEP. This chapter will focus on the molecular and cell biological aspects of this critical hepatic membrane transporter.
Collapse
Affiliation(s)
- Carol J Soroka
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.
| | - James L Boyer
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
44
|
Naoi S, Hayashi H, Inoue T, Tanikawa K, Igarashi K, Nagasaka H, Kage M, Takikawa H, Sugiyama Y, Inui A, Nagai T, Kusuhara H. Improved liver function and relieved pruritus after 4-phenylbutyrate therapy in a patient with progressive familial intrahepatic cholestasis type 2. J Pediatr 2014; 164:1219-1227.e3. [PMID: 24530123 DOI: 10.1016/j.jpeds.2013.12.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022]
Abstract
To examine the effects of 4-phenylbutyrate (4PB) therapy in a patient with progressive familial intrahepatic cholestasis type 2. A homozygous c.3692G>A (p.R1231Q) mutation was identified in ABCB11. In vitro studies showed that this mutation decreased the cell-surface expression of bile salt export pump (BSEP), but not its transport activity, and that 4PB treatment partially restored the decreased expression of BSEP. Therapy with 4PB had no beneficial effect for 1 month at 200 mg/kg/day and the next month at 350 mg/kg/day but partially restored BSEP expression at the canalicular membrane and significantly improved liver tests and pruritus at a dosage of 500 mg/kg/day. We conclude that 4PB therapy would have a therapeutic effect in patients with progressive familial intrahepatic cholestasis type 2 who retain transport activity of BSEP per se.
Collapse
Affiliation(s)
- Sotaro Naoi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Takeshi Inoue
- Department of Pediatrics, Dokkyo Medical University, Koshigaya Hospital, Saitama, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, TOSOH Corporation, Kanagawa, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka-shi, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Toshiro Nagai
- Department of Pediatrics, Dokkyo Medical University, Koshigaya Hospital, Saitama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
45
|
Kagawa T, Orii R, Hirose S, Arase Y, Shiraishi K, Mizutani A, Tsukamoto H, Mine T. Ursodeoxycholic acid stabilizes the bile salt export pump in the apical membrane in MDCK II cells. J Gastroenterol 2014; 49:890-899. [PMID: 23722250 DOI: 10.1007/s00535-013-0833-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/03/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) partly exerts choleretic effects by modifying the function of the bile salt export pump (Bsep, ABCB11). UDCA induces insertion of Bsep into the canalicular membrane of hepatocytes; however, underlying mechanisms remain unknown. We aimed to elucidate molecular mechanisms behind UDCA-induced Bsep activation. METHODS We established MDCK II cells stably expressing both Bsep and Na(+)-taurocholate cotransporting polypeptide, and investigated the effect of UDCA on activity and protein expression of Bsep using these cells. We performed inhibitor study to know the molecules involved in UDCA-induced Bsep activation, and also tested the influence of UDCA on Bsep having a disease-associated mutation. RESULTS UDCA activated Bsep in a dose-dependent manner. UDCA did not affect Bsep protein expression in whole cell lysates but increased its apical surface expression by extending the half-life from 2.4 to 5.0 h. This effect was specific to Bsep because UDCA did not affect other apical and basolateral proteins, and was independent of protein kinase A, adenylate cyclase, p38(MAPK), phosphatidylinositide 3-kinase, Ca(2+), and microtubules. NorUDCA activated Bsep similar to UDCA; however, cholic acid, taurocholic acid, and tauroUDCA had no effect. UDCA significantly increased the activity of Bsep with a benign recurrent intrahepatic cholestasis 2 mutation (A570T) but did not affect Bsep with a progressive familial intrahepatic cholestasis 2 mutation (G982R or D482G). CONCLUSIONS We demonstrated that UDCA stabilizes Bsep protein in the apical membrane and increases its activity in MDCK II cells, presumably by retarding the endocytotic process.
Collapse
Affiliation(s)
- Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, 259-1193, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Aida K, Hayashi H, Inamura K, Mizuno T, Sugiyama Y. Differential roles of ubiquitination in the degradation mechanism of cell surface-resident bile salt export pump and multidrug resistance-associated protein 2. Mol Pharmacol 2014; 85:482-91. [PMID: 24378332 DOI: 10.1124/mol.113.091090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
We previously showed that ubiquitination, a reversible post-translational modification, facilitates degradation of cell surface-resident bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2), ABC transporters that are expressed at the canalicular membrane (CM) of hepatocytes. In the current study, its underlying mechanism was investigated by evaluating the role of ubiquitination in the processes of internalization and subsequent degradation of cell surface-resident BSEP and MRP2. Cell surface biotinylation analysis using Flp-In T-REx 293 cells showed that ectopic expression of Ub(Δ)(GG), which is ubiquitin (Ub) lacking the two C-terminal glycines essential for the Ub conjugation reaction, inhibited the internalization of 3× FLAG-BSEP, but not of MRP2, and the degradation of the internalized MRP2, but not of the internalized 3× FLAG-BSEP. Its inhibitory effect on BSEP internalization was also indicated by a time-lapse imaging analysis using the rat hepatoma cell line McA-RH7777 in which Ub(Δ)(GG) delayed the loss of fluorescence from photoactivated Dronpa-BSEP on the CM. The effect of Ub(Δ)(GG) on BSEP internalization in these experiments was abrogated by treatment with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, and the introduction of a Y1311A mutation into BSEP. This mutation eliminates the ability of BSEP to interact with the AP2 adaptor complex, an adaptor protein required for cargo selection in clathrin-mediated endocytosis. In conclusion, our data suggest that ubiquitination facilitates clathrin-mediated endocytosis of BSEP and the degradation of internalized MRP2, leading to the degradation of the cell surface-resident form of both transporters.
Collapse
Affiliation(s)
- Kensuke Aida
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.A., H.H., K.I., T.M.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan (Y.S.)
| | | | | | | | | |
Collapse
|
47
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
48
|
Metabolic improvements in intrahepatic porto-systemic venous shunt presenting various metabolic abnormalities by 4-phenylacetate. Clin Chim Acta 2013; 419:52-6. [PMID: 23399721 DOI: 10.1016/j.cca.2013.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Intrahepatic congenital portosystemic venous shunt (CPSVS) presents hyperammonemia, cholestasis, hypergalactosemia and imbalanced vasomediators. Especially, fluctuating plasma ammonia often causing neurological signs and symptoms is a serious problem in the daily life. 4-Phenylacetate (4-PA) has effects to eliminate blood ammonia, bile acids and bilirubin. 4-PA might be expected to improve the metabolic abnormalities in intrahepatic CPSVS. METHODS Three intrahepatic CPSVS children often receiving 4-PA from early life were enrolled. We analyzed biological and clinical changes by intravenous administration of 4-PA. RESULTS 4-PA improved hyperammonemia enough to subside the clinical presentations: headache, cognition dysfunction and attention deficit. Concurrently, this drug decreased serum total bilirubin and total bile acid levels. In their neonatal ages, 4-PA also decreased galactose and galactose-1-phosphate levels. In their preschool or school ages, 4-PA increased nitric oxide (NO) prompting vasodilation, but not changed amino acids controlling NO production and endothelin-1 prompting vasoconstriction. Plasma ammonia level returned to the pre-administration level within one day of the discontinuation, and serum total bilirubin and total bile acid levels were maintained to be reduced a few days after the discontinuation. CONCLUSION 4-PA improves galactosemia and imbalanced vasomediators, together with liver functions, in CPSVS, although such effects retract after the discontinuation.
Collapse
|
49
|
The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol 2012; 36:536-53. [PMID: 22795478 DOI: 10.1016/j.clinre.2012.06.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP) is the major transporter for the secretion of bile acids from hepatocytes into bile in humans. Mutations of BSEP are associated with cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 2 (PFIC-2), benign recurrent intrahepatic cholestasis type 2 (BRIC-2) and genetic polymorphisms are linked to intrahepatic cholestasis of pregnancy (ICP) and drug-induced liver injury (DILI). Detailed analysis of these diseases has considerably increased our knowledge about physiology and pathophysiology of bile secretion in humans. This review focuses on expression, localization, and function, short- and long-term regulation of BSEP as well as diseases association and treatment options for BSEP-associated diseases.
Collapse
|
50
|
Marin JJG. Plasma membrane transporters in modern liver pharmacology. SCIENTIFICA 2012; 2012:428139. [PMID: 24278693 PMCID: PMC3820525 DOI: 10.6064/2012/428139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca and CIBERehd, Spain
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S09, 37007 Salamanca, Spain
| |
Collapse
|