1
|
Chen J, Chen H, Mai H, Lou S, Luo M, Xie H, Zhou B, Hou J, Jiang DK. A functional variant of CD40 modulates clearance of hepatitis B virus in hepatocytes via regulation of the ANXA2/CD40/BST2 axis. Hum Mol Genet 2023; 32:1334-1347. [PMID: 36383401 PMCID: PMC10077505 DOI: 10.1093/hmg/ddac284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
More than 250 million people in the world are chronically infected with hepatitis B virus (HBV), which causes serious complications. Host genetic susceptibility is essential for chronic hepatitis B (CHB), and our previous genome-wide association study identified a single-nucleotide polymorphism (SNP), rs1883832, in the 5' untranslated region of CD40 predisposing to chronic HBV infection, but the underlying mechanism remains undefined. This study aimed to investigate whether rs1883832 was the real functional SNP (fSNP) of CD40 and how it modulated HBV clearance in hepatocytes. We determined the fSNP of CD40 and its regulatory protein(s) using luciferase reporter assays, electrophoretic mobility shift assay, flanking restriction enhanced pulldown and chromatin immunoprecipitation. The potential anti-HBV activity of CD40 and its downstream molecule BST2 was assessed in HBV-transfected and HBV-infected hepatoma cells and HBV-infected primary human hepatocytes. Moreover, the mechanism of CD40 was investigated by mRNA sequencing, quantitative real-time polymerase chain reaction, immunofluorescence and western blot. We revealed rs1883832 as the true fSNP of CD40 and identified ANXA2 as a negative regulatory protein that preferentially bound to the risk allele T of rs1883832 and hence reduced CD40 expression. Furthermore, CD40 suppressed HBV replication and transcription in hepatocytes via activating the JAK-STAT pathway. BST2 was identified to be the key IFN-stimulated gene regulated by CD40 after activating JAK-STAT pathway. Inhibition of JAK/STAT/BST2 axis attenuated CD40-induced antiviral effect. In conclusion, a functional variant of CD40 modulates HBV clearance via regulation of the ANXA2/CD40/BST2 axis, which may shed new light on HBV personalized therapy.
Collapse
Affiliation(s)
- Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuang Lou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengqi Luo
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
2
|
Tao L, Ren X, Zhai W, Chen Z. Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases. Molecules 2022; 27:molecules27134275. [PMID: 35807520 PMCID: PMC9268066 DOI: 10.3390/molecules27134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Collapse
Affiliation(s)
- Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Xiaomeng Ren
- College of Pharmaceutical and Biology Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| | - Wenhui Zhai
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| |
Collapse
|
3
|
Zhang R, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Chen S, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Yu Y, Zhang L, Liu Y, Tian B, Pan L. Molecular cloning of duck CD40 and its immune function research. Poult Sci 2021; 100:101100. [PMID: 33975048 PMCID: PMC8122164 DOI: 10.1016/j.psj.2021.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Cosignal molecules are cell surface molecules that transduce signals to other cells to modulate immune response positively (costimulate) or negatively (cosuppress). Costimulatory signals are key factors in determining whether T/B cells are capable of responding to specific antigens and ultimately mediating an appropriate immune response. In this study, the cDNA sequence containing the complete coding frame of the costimulatory molecule duck CD40 gene was cloned and reported for the first time, and its mediated antiviral innate immune was verified in vitro. Results suggested duck CD40 molecule plays an important role in the innate immune responsiveness against some viruses. These data will be beneficial for the further understand of the avian immune system.
Collapse
Affiliation(s)
- Rujuan Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang 611130, People's Republic of China
| |
Collapse
|
4
|
Tian T, Huang P, Wu J, Wang C, Fan H, Zhang Y, Yu R, Wu C, Xia X, Fu Z, Li J, Yue M. CD40 polymorphisms were associated with HCV infection susceptibility among Chinese population. BMC Infect Dis 2019; 19:840. [PMID: 31615434 PMCID: PMC6792238 DOI: 10.1186/s12879-019-4482-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND CD40, encoded by TNFRSF5, participates in the survival of B cells, process of antigen presentation and generation of CD8+ T cell memory. It also has an important effect on HCV antiviral immune response. This study aims to investigate whether TNFRSF5 gene polymorphisms are associated with HCV infection outcomes among Chinese population. METHODS Three single nucleotide polymorphism (SNPs) (rs1535045, rs1883832, rs4810485) on TNFRSF5 were genotyped by TaqMan assay among Chinese population, including 1513 uninfected subjects, 496 spontaneous viral clearance subjects and 768 persistent HCV-infected subjects. Logistic analysis was used to compare these SNPs among different groups in this cross-sectional study. Functional annotations of the identified SNPs were further evaluated by bioinformatics analysis. RESULTS After adjusted by age, gender and routes of infection, the results of logistic analysis indicated that individuals carrying rs1535045 T allele had a higher risk to infect HCV compared with C allele (in recessive model, adjusted OR = 1.368, 95%CI = 1.070-1.749, P = 0.012). Subjects carried rs1535045 TT genotype were more likely to infect HCV than wild CC genotype (adjusted OR = 1.397, 95%CI = 1.078-1.809, P = 0.011). For rs1883832, T allele was significantly associated with an increased risk of HCV infection (in recessive model, adjusted OR = 1.337, 95%CI = 1.069-1.673, P = 0.011). Subjects with TT genotype had more possibility to infect HCV (adjusted OR = 1.351, 95%CI = 1.060-1.702, P = 0.015). In the stratified analysis, rs1535045 and rs1883832 were remained in various subgroups and the heterogeneity test showed no pronounced heterogeneity in any pairwise comparison (all P > 0.05). In addition, the results of the cumulative effects showed a tendency of that the more risk alleles (rs1535045 T and rs1883832 T) subjects carried, the more possibility of HCV infection exhibited (P<0.001). In haplotype analyses, compared with the CC haplotype, CT, TC and TT was correlated with an increased risk to infect HCV (P = 0.029, P = 0.047 and P<0.001, respectively). CONCLUSIONS In conclusion, CD40 polymorphisms were significantly associated with the susceptibility to HCV among Chinese populations.
Collapse
Affiliation(s)
- Ting Tian
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Peng Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Jingjing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Chunhui Wang
- Chinese People’s Liberation Army Eastern Theater Disease Prevention and Control Center, Nanjing, 210002 China
| | - Haozhi Fan
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yun Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Rongbin Yu
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Chao Wu
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008 China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Zuqiang Fu
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Jun Li
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Ming Yue
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
5
|
DeTemple DE, Oldhafer F, Falk CS, Chen‐Wacker C, Figueiredo C, Kleine M, Ramackers W, Timrott K, Lehner F, Klempnauer J, Bock M, Vondran FWR. Hepatocyte-induced CD4 + T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells. Liver Transpl 2018; 24:407-419. [PMID: 29365365 PMCID: PMC5887891 DOI: 10.1002/lt.25019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/21/2022]
Abstract
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+ CD25high CD127low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD.
Collapse
Affiliation(s)
- Daphne E. DeTemple
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Felix Oldhafer
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Centre TransplantationHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| | - Chen Chen‐Wacker
- Institute for Transfusion MedicineHannover Medical SchoolHannoverGermany
| | | | - Moritz Kleine
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Wolf Ramackers
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Kai Timrott
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Frank Lehner
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Juergen Klempnauer
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Michael Bock
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| | - Florian W. R. Vondran
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| |
Collapse
|
6
|
Zhou B, Chu M, Xu S, Chen X, Liu Y, Wang Z, Zhang F, Han S, Yin J, Peng B, He X, Liu W. Hsa-let-7c-5p augments enterovirus 71 replication through viral subversion of cell signaling in rhabdomyosarcoma cells. Cell Biosci 2017; 7:7. [PMID: 28101327 PMCID: PMC5237547 DOI: 10.1186/s13578-017-0135-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Background Human enterovirus 71 (EV71) causes severe hand, foot and mouse disease, accompanied by neurological complications. During the interaction between EV71 and the host, the virus subverts host cell machinery for its own replication. However, the roles of microRNAs (miRNAs) in this process remain obscure. Results In this study, we found that the miRNA hsa-let-7c-5p was significantly upregulated in EV71-infected rhabdomyosarcoma cells. The overexpression of hsa-let-7c-5p promoted replication of the virus, and the hsa-let-7c-5p inhibitor suppressed viral replication. Furthermore, hsa-let-7c-5p targeted mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and inhibited its expression. Interestingly, downregulation of MAP4K4 expression led to an increase in EV71 replication. In addition, MAP4K4 knockdown or transfection with the hsa-let-7c-5p mimic led to activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas the hsa-let-7c-5p inhibitor inhibited activation of this pathway. Moreover, EV71 infection promoted JNK pathway activation to facilitate viral replication. Conclusions Our data suggested that hsa-let-7c-5p facilitated EV71 replication by inhibiting MAP4K4 expression, which might be related to subversion of the JNK pathway by the virus. These results may shed light on a novel mechanism underlying the defense of EV71 against cellular responses. In addition, these findings may facilitate the development of new antiviral strategies for use in future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13578-017-0135-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingfei Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Min Chu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Shanshan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xiong Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Yongjuan Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Zhihao Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Fengfeng Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
7
|
Guo M, Wei J, Zhou Y, Qin Q. c-Jun N-terminal kinases 3 (JNK3) from orange-spotted grouper, Epinephelus coioides, inhibiting the replication of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:169-181. [PMID: 27422159 DOI: 10.1016/j.dci.2016.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
C-Jun N-terminal kinases (JNKs), a subgroup of serine-threonine protein kinases that activated by phosphorylation, are involve in physiological and pathophysiological processes. JNK3 is one of JNK proteins involved in JNK3 signaling transduction. In the present study, two JNK3 isoforms, Ec-JNK3 X1 and Ec-JNK3 X2, were cloned from orange-spotted grouper, Epinephelus coioides. Both Ec-JNK3 X1 and Ec-JNK3 X2 were mainly expressed in liver, gill, skin, brain and muscle of juvenile grouper. The relative expression of Ec-JNK3 X2 mRNA was much higher in muscle and gill than that of Ec-JNK3 X1. Isoform-specific immune response to challenges was revealed by the expression profiles in vivo. Immunofluorescence staining indicated that JNK3 was localized in the cytoplasm of grouper spleen (GS) cells and shown immune response to SGIV infection in vitro. Over-expressing Ec-JNK3 X1 and/or Ec-JNK3 X2 inhibited the SGIV infection and replication and the SGIV-induced apoptosis. To achieve the antiviral and anti-apoptosis activities, JNK3 promoted the activation of genes ISRE and type I IFN in the antiviral IFN signaling pathway, and inhibited the activation of transcription factors NF-κB and p53 relating to apoptosis, respectively. Ec-JNK3 X2 showed stronger activities in antivirus and anti-apoptosis than that of Ec-JNK3 X1. Our results not only define the characterization of JNK3 but also reveal new immune functions and the molecular mechanisms of JNK3 on iridoviruses infection and the virus-induced apoptosis.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yongcan Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
8
|
Guo M, Wei J, Huang X, Zhou Y, Yan Y, Qin Q. JNK1 Derived from Orange-Spotted Grouper, Epinephelus coioides, Involving in the Evasion and Infection of Singapore Grouper Iridovirus (SGIV). Front Microbiol 2016; 7:121. [PMID: 26903999 PMCID: PMC4748057 DOI: 10.3389/fmicb.2016.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/22/2015] [Indexed: 01/16/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) regulates cellular responses to various extracellular stimuli, environmental stresses, pathogen infections, and apoptotic agents. Here, a JNK1, Ec-JNK1, was identified from orange-spotted grouper, Epinephelus coioides. Ec-JNK1 has been found involving in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis in vitro. SGIV infection activated Ec-JNK1, of which phosphorylation of motif TPY is crucial for its activity. Over-expressing Ec-JNK1 phosphorylated transcription factors c-Jun and promoted the infection and replication of SGIV, while partial inhibition of the phosphorylation of Ec-JNK1 showed the opposite effects by over-expressing the dominant-negative EcJNK1-Δ183-185 mutant. Interestingly, SGIV enhanced the viral infectivity by activating Ec-JNK1 which in turn drastically inhibited the antiviral responses of type 1 IFN, indicating that Ec-JNK1 could be involved in blocking IFN signaling during SGIV infection. In addition, Ec-JNK1 enhanced the activation of AP-1, p53, and NF-κB, and resulted in increasing the levels of SGIV-induced cell death. The caspase 3-dependent activation correlated with the phosphorylation of Ec-JNK1 and contributed to SGIV-induced apoptosis. Taken together, SGIV modulated the phosphorylation of Ec-JNK1 to inactivate the antiviral signaling, enhance the SGIV-induced apoptosis and activate transcription factors for efficient infection and replication. The “positive cooperativity” molecular mechanism mediated by Ec-JNK1 contributes to the successful evasion and infection of iridovirus pathogenesis.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Yongcan Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou, China
| | - Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
9
|
Hu J, Zhu XH, Zhang XJ, Wang PX, Zhang R, Zhang P, Zhao GN, Gao L, Zhang XF, Tian S, Li H. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury. J Hepatol 2016; 64:146-59. [PMID: 26334576 DOI: 10.1016/j.jhep.2015.08.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/01/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The hallmarks of hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, include severe cell death and inflammatory responses that contribute to early graft failure and a higher incidence of organ rejection. Unfortunately, effective therapeutic strategies are limited. Tumor necrosis factor receptor (TNFR)-associated factor (TRAF) 3 transduces apoptosis and/or inflammation-related signaling pathways to regulate cell survival and cytokine production. However, the role of TRAF3 in hepatic I/R-induced liver damage remains unknown. METHODS Hepatocyte- or myeloid cell-specific TRAF3 knockdown or transgenic mice were subjected to an I/R model in vivo, and in vitro experiments were performed by treating primary hepatocytes from these mice with hypoxia/reoxygenation stimulation. The function of TRAF3 in I/R-induced liver damage and the potential underlying mechanisms were investigated through various phenotypic analyses and biological approaches. RESULTS Hepatocyte-specific, but not myeloid cell-specific, TRAF3 deficiency reduced cell death, inflammatory cell infiltration, and cytokine production in both in vivo and in vitro hepatic I/R models, whereas hepatic TRAF3 overexpression resulted in the opposite effects. Mechanistically, TRAF3 directly binds to TAK1, which enhances the activation of the downstream NF-κB and JNK pathways. Importantly, inhibition of TAK1 almost completely reversed the TRAF3 overexpression-mediated exacerbation of I/R injury. CONCLUSIONS TRAF3 is a novel hepatic I/R mediator that promotes liver damage and inflammation via TAK1-dependent activation of the JNK and NF-κB pathways. Inhibition of hepatic TRAF3 may represent a promising approach to protect the liver against I/R injury-related diseases.
Collapse
Affiliation(s)
- Junfei Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Xue-Hai Zhu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Ran Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Guang-Nian Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Jiang DK, Ma XP, Yu H, Cao G, Ding DL, Chen H, Huang HX, Gao YZ, Wu XP, Long XD, Zhang H, Zhang Y, Gao Y, Chen TY, Ren WH, Zhang P, Shi Z, Jiang W, Wan B, Saiyin H, Yin J, Zhou YF, Zhai Y, Lu PX, Zhang H, Gu X, Tan A, Wang JB, Zuo XB, Sun LD, Liu JO, Yi Q, Mo Z, Zhou G, Liu Y, Sun J, Shugart YY, Zheng SL, Zhang XJ, Xu J, Yu L. Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B. Hepatology 2015; 62:118-128. [PMID: 25802187 DOI: 10.1002/hep.27794] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis B virus affects more than 2 billion people worldwide, 350 million of which have developed chronic hepatitis B (CHB). The genetic factors that confer CHB risk are still largely unknown. We sought to identify genetic variants for CHB susceptibility in the Chinese population. We undertook a genome-wide association study (GWAS) in 2,514 CHB cases and 1,130 normal controls from eastern China. We replicated 33 of the most promising signals and eight previously reported CHB risk loci through a two-stage validation totaling 6,600 CHB cases and 8,127 controls in four independent populations, of which two populations were recruited from eastern China, one from northern China and one from southern China. The joint analyses of 9,114 CHB cases and 9,257 controls revealed significant association of CHB risk with five novel loci. Four loci are located in the human leukocyte antigen (HLA) region at 6p21.3, including two nonsynonymous variants (rs12614 [R32W] in complement factor B [CFB], Pmeta =1.28 × 10(-34) ; and rs422951 [T320A] in NOTCH4, Pmeta = 5.33 × 10(-16) ); one synonymous variant (rs378352 in HLA-DOA corresponding to HLA-DOA*010101, Pmeta = 1.04 × 10(-23) ); and one noncoding variant (rs2853953 near HLA-C, Pmeta = 5.06 × 10(-20) ). Another locus is located at 20q13.1 (rs1883832 in the Kozak sequence of CD40, Pmeta = 2.95 × 10(-15) ). Additionally, we validated seven of eight previously reported CHB susceptibility loci (rs3130542 at HLA-C, rs1419881 at TCF19, rs652888 at EHMT2, rs2856718 at HLA-DQB1, rs7453920 at HLA-DQB2, rs3077 at HLA-DPA1, and rs9277535 at HLA-DPA2, which are all located in the HLA region, 9.84 × 10(-71) ≤ Pmeta ≤ 9.92 × 10(-7) ). CONCLUSION Our GWAS identified five novel susceptibility loci for CHB. These findings improve the understanding of CHB etiology and may provide new targets for prevention and treatment of this disease.
Collapse
Affiliation(s)
- De-Ke Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiao-Pin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongjie Yu
- James D. Watson Institute of Genome Sciences, College of life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Dong-Lin Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Haitao Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Hui-Xing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Zhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xiao-Pan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xi-Dai Long
- Department of Pathology, Youjiang Medical College for Nationalities, Guangxi, China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Youjie Zhang
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yong Gao
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Tao-Yang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Wei-Hua Ren
- Luoyang Central Hospital, Affiliated to Zhengzhou University, Luoyang, China
| | - Pengyin Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Zhuqing Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Wei Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yuan-Feng Zhou
- Department of Pathology, Youjiang Medical College for Nationalities, Guangxi, China
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pei-Xin Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoli Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Aihua Tan
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jin-Bing Wang
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Xian-Bo Zuo
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Liang-Dan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Qing Yi
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Cancer Medicine, and the Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zengnan Mo
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jielin Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - S Lilly Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Xue-Jun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Vinexin β Interacts with Hepatitis C Virus NS5A, Modulating Its Hyperphosphorylation To Regulate Viral Propagation. J Virol 2015; 89:7385-400. [PMID: 25972535 DOI: 10.1128/jvi.00567-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is essential for HCV genome replication and virion production and is involved in the regulation of multiple host signaling pathways. As a proline-rich protein, NS5A is capable of interacting with various host proteins containing Src homology 3 (SH3) domains. Previous studies have suggested that vinexin, a member of the sorbin homology (SoHo) adaptor family, might be a potential binding partner of NS5A by yeast two-hybrid screening. However, firm evidence for this interaction is lacking, and the significance of vinexin in the HCV life cycle remains unclear. In this study, we demonstrated that endogenously and exogenously expressed vinexin β coimmunoprecipitated with NS5A derived from different HCV genotypes. Two residues, tryptophan (W307) and tyrosine (Y325), in the third SH3 domain of vinexin β and conserved Pro-X-X-Pro-X-Arg motifs at the C terminus of NS5A were indispensable for the vinexin-NS5A interaction. Furthermore, downregulation of endogenous vinexin β significantly suppressed NS5A hyperphosphorylation and decreased HCV replication, which could be rescued by expressing a vinexin β short hairpin RNA-resistant mutant. We also found that vinexin β modulated the hyperphosphorylation of NS5A in a casein kinase 1α-dependent on manner. Taken together, our findings suggest that vinexin β modulates NS5A phosphorylation via its interaction with NS5A, thereby regulating HCV replication, implicating vinexin β in the viral life cycle. IMPORTANCE Hepatitis C virus (HCV) nonstructural protein NS5A is a phosphoprotein, and its phosphorylation states are usually modulated by host kinases and other viral nonstructural elements. Additionally, cellular factors containing Src homology 3 (SH3) domains have been reported to interact with proline-rich regions of NS5A. However, it is unclear whether there are any relationships between NS5A phosphorylation and the NS5A-SH3 interaction, and little is known about the significance of this interaction in the HCV life cycle. In this work, we demonstrate that vinexin β modulates NS5A hyperphosphorylation through the NS5A-vinexin β interaction. Hyperphosphorylated NS5A induced by vinexin β is casein kinase 1α dependent and is also crucial for HCV propagation. Overall, our findings not only elucidate the relationships between NS5A phosphorylation and the NS5A-SH3 interaction but also shed new mechanistic insight on Flaviviridae NS5A (NS5) phosphorylation. We believe that our results may afford the potential to offer an antiviral therapeutic strategy.
Collapse
|
12
|
Parvez MK, Al-Dosari MS. Evidence of MAPK-JNK1/2 activation by hepatitis E virus ORF3 protein in cultured hepatoma cells. Cytotechnology 2015; 67:545-550. [PMID: 25280525 PMCID: PMC4371560 DOI: 10.1007/s10616-014-9785-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/03/2014] [Indexed: 01/24/2023] Open
Abstract
Hepatitis E virus (HEV) has recently emerged to cause chronic infection in some immunosuppressed individuals, including extrahepatic manifestations in acute and chronic patients. Mammalian MAPK-JNK1/2 is expressed in hepatocytes, which is known to be involved in anti-apoptotic signaling pathway for the establishment of persistent infection. Though in vitro modulation of cellular MAPK-ERK cascade by HEV-ORF3 protein is suggested to have a role in host pathobiology, activation of the JNK module has not been studied so far. In this report, we have shown for the first time, evidence of MAPK-JNK1/2 activation by HEV-ORF3, using viral replicon as well as expression vector in human hepatoma cells. Phospho-ELISA based relative quantitaion has demonstrated ~54% and ~66% phosphorylation of JNK1/2 in replicon-RNA and ORF3-vector DNA transfected cells, respectively. Our finding however, suggests further molecular studies to validate a role of JNK1/2 in HEV pathogenesis.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, PO Box 2457, Riyadh, 11451, Saudi Arabia,
| | | |
Collapse
|
13
|
Lin W, Zhu C, Hong J, Zhao L, Jilg N, Fusco DN, Schaefer EA, Brisac C, Liu X, Peng LF, Xu Q, Chung RT. The spliceosome factor SART1 exerts its anti-HCV action through mRNA splicing. J Hepatol 2015; 62:1024-1032. [PMID: 25481564 PMCID: PMC4404186 DOI: 10.1016/j.jhep.2014.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/29/2014] [Accepted: 11/24/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND &/AIMS The broadly used antiviral cytokine interferon-α (IFNα)'s mechanisms of action against HCV infection are not well understood. We previously identified SART1, a host protein involved in RNA splicing and pre-mRNA processing, as a regulator of IFN's antiviral effects. We hypothesized that SART1 regulates antiviral IFN effector genes (IEGs) through mRNA processing and splicing. METHODS We performed siRNA knockdown in HuH7.5.1 cells and mRNA-sequencing with or without IFN treatment. Selected gene mRNA variants and their proteins, together with HCV replication, were monitored by qRT-PCR and Western blot in HCV OR6 replicon cells and the JFH1 HCV infectious model. RESULTS We identified 419 genes with a greater than 2-fold expression difference between Neg siRNA and SART1 siRNA treated cells in the presence or absence of IFN. Bioinformatic analysis identified at least 10 functional pathways. SART1 knockdown reduced classical IFN stimulating genes (ISG) mRNA transcription including MX1 and OAS3. However, SART1 did not affect JAK-STAT pathway gene mRNA expression and IFN stimulated response element (ISRE) signaling. We identified alternative mRNA splicing events for several genes, including EIF4G3, GORASP2, ZFAND6, and RAB6A that contribute to their antiviral effects. EIF4G3 and GORASP2 were also confirmed to have anti-HCV effect. CONCLUSIONS The spliceosome factor SART1 is not IFN-inducible but is an IEG. SART1 exerts its anti-HCV action through direct transcriptional regulation for some ISGs and alternative splicing for others, including EIF4G3, GORASP2. SART1 does not have an effect on IFN receptor or canonical signal transduction components. Thus, SART1 regulates ISGs using a novel, non-classical mechanism.
Collapse
Affiliation(s)
- Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chuanlong Zhu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, China
| | - Jian Hong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lei Zhao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nikolaus Jilg
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dahlene N Fusco
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cynthia Brisac
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee F Peng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qikai Xu
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? Cancer Lett 2013; 345:210-5. [PMID: 23871966 DOI: 10.1016/j.canlet.2013.06.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a cause of liver diseases that range from steatohepatitis, to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The challenge of understanding the pathogenesis of HCV-associated liver cancer is difficult as most standard animal models used in biomedical research are not permissive to HCV infection. Herein, we provide an overview of a number of creative in vivo, mostly in the mouse, and in vitro models that have been developed to advance our understanding of the molecular and cellular effects of HCV on the liver, specifically with their relevance to HCC.
Collapse
|
15
|
CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins. Infect Immun 2013; 81:2002-11. [PMID: 23509150 DOI: 10.1128/iai.01145-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toxoplasma gondii infects both hematopoietic and nonhematopoietic cells and can cause cerebral and ocular toxoplasmosis, as a result of either congenital or postnatally acquired infections. Host protection likely acts at both cellular levels to control the parasite. CD40 is a key factor for protection against cerebral and ocular toxoplasmosis. We determined if CD40 induces anti-T. gondii activity at the level of nonhematopoietic cells. Engagement of CD40 on various endothelial cells including human microvascular brain endothelial cells, human umbilical vein endothelial cells, and a mouse endothelial cell line as well as human and mouse retinal pigment epithelial cells resulted in killing of T. gondii. CD40 stimulation increased expression of the autophagy proteins Beclin 1 and LC3 II, enhanced autophagy flux, and led to recruitment of LC3 around the parasite. The late endosomal/lysosomal marker LAMP-1 accumulated around the parasite in CD40-stimulated cells. This was accompanied by killing of T. gondii dependent on lysosomal enzymes. Accumulation of LAMP-1 and killing of T. gondii were dependent on the autophagy proteins Beclin 1 and Atg7. Together, these studies revealed that CD40 induces toxoplasmacidal activity in various nonhematopoietic cells dependent on proteins of the autophagy machinery.
Collapse
|
16
|
Shi W, Li X, Hou X, Peng H, Jiang Q, Shi M, Ji Y, Liu X, Liu J. Differential apoptosis gene expressions of rhabdomyosarcoma cells in response to enterovirus 71 infection. BMC Infect Dis 2012. [PMID: 23191987 PMCID: PMC3536580 DOI: 10.1186/1471-2334-12-327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Enterovirus 71 (EV71) infection can induce the apoptosis of infected cells. The aim of this study is to explore the effect of EV71 infection on apoptosis mechanisms in virus-infected human rhabdomyosarcoma (RD) cells. Methods The apoptosis of RD cells was examined using annexin V-FITC/PI by flow cytometry and cytokines were detected by ELISA. Cellular RNA was extracted and transcribed to cDNA. PCR array was employed to analyze the expressions of 84 apoptotic genes from EV71-infected RD cells at 8 and 20 h postinfection, respectively. In addition, the expressions of FasL, caspase, AKT2, JNK1/2, c-Jun and NF-κB proteins were detected by western blotting. Results Flow cytometry demonstrated that the apoptosis or death of EV71-infected RD cells was increased by 37.1% with a multiplicity of infection (MOI) of 5 at 20 h postinfection. The production of IL-4, IL-10 and TNF-α was enhanced by the subsequent EV71 infection. PCR array revealed significant changes in the expressions of apoptotic genes. Among 84 genes, 42 genes were down-regulated after EV71 infection at 8 h, whereas 32 genes were up-regulated at 20 h postinfection. Moreover, the ligands of TNF superfamily such as FasL, CD40L and TNF-α were significantly up-regulated and enhanced the expressions of apoptosis-related cysteine peptidases, including caspase-10, -8, -7 and -3. In addition, EV71 infection induces the phosphorylation of AKT2, JNK1/2, c-Jun and NF-κB at 20 h postinfection. Conclusion PCR array for the determination of apoptosis gene expressions is an informative assay in elucidating biological pathways. During the early stage of EV71 infection, the apoptotic process of RD cells is significantly delayed. EV71 infection can also induce the expressions of FasL, TNF-α and CD40L, which contribute to the apoptosis of RD cells.
Collapse
Affiliation(s)
- Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, 213003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|